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NONLINEAR SPECTROSCOPY 
1. Introduction 
Spectroscopy comes from the Latin “spectron” for spirit or ghost and the Greek “σκοπιεν” for 

to see. These roots are very telling, because in molecular spectroscopy you use light to 

interrogate matter, but you actually never see the molecules, only their influence on the light.  

Different spectroscopies give you different perspectives. This indirect contact with the 

microscopic targets means that the interpretation of spectroscopy in some manner requires a 

model, whether it is stated or not. Modeling and laboratory practice of spectroscopy are 

dependent on one another, and therefore a spectroscopy is only as useful as its ability to 

distinguish different models.  The observables that we have to extract microscopic information in 

traditional spectroscopy are resonance frequencies, spectral amplitudes, and lineshapes. We can 

imagine studying these spectral features as a function of control variables for the light field 

(amplitude, frequency, polarization, phase, etc.) or for the sample (for instance a systematic 

variation of the physical properties of the sample).  

 In complex systems, those in which there are many interacting degrees of freedom and in 

which spectra become congested or featureless, the interpretation of traditional spectra is plagued 

by a number of ambiguities.  This is particularly the case for spectroscopy of disordered 

condensed phases, where spectroscopy is the primary tool for describing molecular structure, 

interactions and relaxation, kinetics and dynamics, and tremendous challenges exist on 

understanding the variation and dynamics of molecular structures.  This is the reason for using 

nonlinear spectroscopy, in which multiple light-matter interactions can be used to correlate 

different spectral features and dissect complex spectra. We can resonantly drive one 

spectroscopic feature and see how another is influenced, or we can introduce time delays to see 

how properties change with time.   

 Absorption or emission spectroscopies are referred to as linear spectroscopy, because 

they involve a weak light-matter interaction with one primary incident radiation field, and are 

typically presented through a single frequency axis. The ambiguities that arise when interpreting 

linear spectroscopy can be illustrated through two examples: 
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1) Absorption spectrum with two peaks. 

 Do these resonance arise from different, 

non-interacting molecules, or are these 

coupled quantum states of the same 

molecule? (One cannot resolve 

couplings or spectral correlations 

directly).  

 

 

  

 

 

 

 

 

 

2) Broad lineshapes. Can you distinguish whether it is a homogeneous lineshape broadened 

by fast irreversible relaxation or an inhomogeneous lineshape arising from a static 

distribution of different frequencies?   (Linear spectra cannot uniquely interpret line-

broadening mechanism, or decompose heterogeneous behavior in the sample). 

 

  homogeneous inhomogeneous 

 

 

 

 

 

 

In the end effect linear spectroscopy does not offer systematic ways of attacking these types of 

problems. It also has little ability to interpret dynamics and relaxation. These issues take on more 

urgency in the condensed phase, when lineshapes become broad and spectra are congested.  
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Nonlinear spectroscopy provides a way of resolving these scenarios because it uses multiple light 

fields with independent control over frequency or time-ordering in order to probe correlations 

between different spectral features.  For instance, the above examples could be interpreted with 

the use of a double-resonance experiment that reveals how excitation at one frequency ω1 

influences absorption at another frequency ω2. 

What is nonlinear spectroscopy? 
Linear spectroscopy commonly refers to light-matter interaction with one primary incident 

radiation field which is weak, and can be treated as a linear response between the incident light 

and the matter.  From a quantum mechanical view of the light field, it is often conceived as a 

“one photon in/one photon out” measurement. Nonlinear spectroscopy is used to refer to cases 

that fall outside this view, including: (1) Watching the response of matter subjected to 

interactions with two or more independent incident fields, and (2) the case where linear response 

theory is inadequate for treating how the material behaves, as in the case of very intense incident 

radiation. If we work within the electric dipole Hamiltonian, nonlinear experiments can be 

expressed in terms of three or more transition matrix elements. The response of the matter in 

linear experiments will scale as   µab

2
 or  µabµba , whereas in nonlinear experiments will take a  

form such as  µabµbcµca .  Our approach to describing nonlinear spectroscopy will use the electric 

dipole Hamiltonian and a perturbation theory expansion of the dipole operator.   

 

 



 4 

2. Coherent Spectroscopy and the Nonlinear Polarization 

We will specifically be dealing with the description of coherent nonlinear spectroscopy, which is 

the term used to describe the case where one or more input fields coherently act on the dipoles of 

the sample to generate a macroscopic oscillating polarization. This polarization acts as a source 

to radiate a signal that we detect in a well-defined direction. This class includes experiments such 

as pump-probes, transient gratings, photon echoes, and coherent Raman methods. However 

understanding these experiments allows one to rather quickly generalize to other techniques.  

Detection: Coherent Spontaneous 

 

  
Icoherent  ∝ µii∑

2
 

Dipoles are driven coherently, and 
radiate with constructive interference 

in direction  
ksig  

  
Ispont . ∝ µi

2

i
∑  

Dipoles radiate independently  

  
Esig ∝ sinθ  

Linear: 

Absorption 

 

 

Fluorescence, phosphorescence, Raman, 
and light scattering 

 

Nonlinear: 
 

Pump-probe transient absorption, photon 
echoes, transient gratings, CARS, 

impulsive Raman scattering 

 
Fluorescence-detected nonlinear 

spectroscopy, i.e. stimulated emission 
pumping, time-dependent Stokes shift 
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 Spontaneous and coherent signals are both emitted from all samples, however, the 

relative amplitude of the two depend on the time-scale of dephasing within the sample. For 

electronic transitions in which dephasing is typically much faster than the radiative lifetime, 

spontaneous emission is the dominant emission process. For the case of vibrational transitions 

where non-radiative relaxation is typically a picoseconds process and radiative relaxation is a µs 

or longer process, spontaneous emission is not observed. 

 The description of coherent nonlinear spectroscopies is rooted in the calculation of the 

polarization,  P . The polarization is a macroscopic collective dipole moment per unit volume, 

and for a molecular system is expressed as a sum over the displacement of all charges for all 

molecules being interrogated by the light 

Sum over molecules: 
 
P r( ) = µmδ

m
∑ r − Rm( )  (1) 

Sum over charges on molecules: 
  
µm ≡ qmα rmα − Rm( )

α
∑  (2) 

In coherent spectroscopies, the input fields  E  act to create a macroscopic, coherently oscillating 

charge distribution 

  P ω( ) = χE ω( )  (3) 

as dictated by the susceptibility of the sample.  The polarization acts as a source to radiate a new 

electromagnetic field, which we term the signal  
Esig . (Remember that an accelerated charge 

radiates an electric field.) In the electric dipole approximation, the polarization is one term in the 

current and charge densities that you put into Maxwell’s equations.  

 From our earlier description of freely propagating electromagnetic waves, the wave 

equation for a transverse, plane wave was 

 
  
∇2E r ,t( ) − 1

c2

∂2 E r ,t( )
∂t2  = 0 , (4) 

which gave a solution for a sinusoidal oscillating field with frequency ω propagating in the 

direction of the wavevector k. In the present case, the polarization acts as a source −an 

accelerated charge− and we can write 

 
  
∇2E r ,t( ) − 1

c2

∂2 E r ,t( )
∂t2  =  4π

c2

∂2 P r ,t( )
∂t2  (5) 

The polarization can be described by solutions of the form 
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P r ,t( ) = P t( )exp i ′ksig ⋅r − iω sigt( ) + c.c. (6) 

As we will discuss further later, the wavevector and frequency of the polarization depend on the 

frequency and wave vector of incident fields.   

 
  
ksig  = ±kn

n
∑  (7) 

 
 
ω sig = ±ω n

n
∑ . (8) 

These relationships enforce momentum and energy conservation for the problem. The oscillating 

polarization radiates a coherent signal field,  
Esig , in a wave vector matched direction  

ksig . 

Although a single dipole radiates as a sin θ field distribution relative to the displacement of the 

charge,1 for an ensemble of dipoles that have been coherently driven by external fields, P is 

given by (6) and the radiation of the ensemble only constructively adds along  
ksig . For the 

radiated field we obtain 

 
  
Esig r ,t( ) = Esig r ,t( )exp i ksig ⋅r − iω sigt( ) + c.c.  (9) 

This solution comes from solving (5) for a thin sample of length l, for which the radiated signal 

amplitude grows and becomes directional as it propagates through the sample. The emitted signal   

 
  
Esig t( ) = i

2πω s

nc
l P t( )sinc Δkl

2
⎛
⎝⎜

⎞
⎠⎟

eiΔkl /2  (10) 

Here we note the oscillating polarization is proportional to the signal field, although there is a 

π/2 phase shift between the two, Esig ∝i P , because in the sample the polarization is related to the 

gradient of the field. Δk is the wave-vector mismatch between the wavevector of the polarization 

 ′ksig  and the radiated field  
ksig , which we will discuss more later. 

 For the purpose of our work, we obtain the polarization from the expectation value of the 

dipole operator  

   P t( ) ⇒ µ t( )  (11) 

The treatment we will use for the spectroscopy is semi-classical, and follows the formalism that 

was popularized by Mukamel.2 As before our Hamiltonian can generally be written as 

   H = H0 +V t( )  (12) 
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where the material system is described by H0 and treated quantum mechanically, and the 

electromagnetic fields V(t) are treated classically and take the standard form 

  V t( ) = −µ ⋅E  (13) 

The fields only act to drive transitions between quantum states of the system. We take the 

interaction with the fields to be sufficiently weak that we can treat the problem with perturbation 

theory. Thus, nth-order perturbation theory will be used to describe the nonlinear signal derived 

from interacting with n electromagnetic fields.   

 
Linear absorption spectroscopy 

Absorption is the simplest example of a coherent spectroscopy. In the semi-classical picture, the 

polarization induced by the electromagnetic field radiates a signal field that is out-of-phase with 

the transmitted light. To describe this, all of the relevant information is in  R t( )  or χ ω( ) .   

 
  
P t( ) = dτ

0

∞

∫ R τ( ) E t −τ( )  (14) 

   P ω( ) = χ ω( )E ω( )  (15) 

Let’s begin with a frequency-domain description of the absorption spectrum, which we 

previously found was proportional to the imaginary part of the susceptibility, ′′χ . 3  We consider 

one monochromatic field incident on the sample that resonantly drives dipoles in the sample to 

create a polarization, which subsequently re-radiate a signal field (free induction decay). For one 

input field, the energy and momentum 

conservation conditions dictate that   
ω in = ω sig  

and   
kin = ksig , that is a signal field of the same 

frequency propagates in the direction of the 

transmitted excitation field.   

 In practice, an absorption spectrum is measured by characterizing the frequency-

dependent transmission decrease on adding the sample   A = − log Iout Iin . For the perturbative 

case, let’s take the change of intensity  δ I = Iin − Iout  to be small, so that  A ≈ δ I  and   Iin ≈ Iout . 

Then we can write the measured intensity after the sample as 
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Iout  = Eout + Esig

2
= Eout + iP( ) 2

 = Eout + iχEin

2
≈ Ein + iχEin

2

= Ein

2
1+ i ′χ + i ′′χ( ) 2

= Iin 1− 2 ′′χ +…( ) ⇒ Iout  = Iin −δ I

 (16) 

Here we have made use of the assumption that  Ein >> χ . We see that as a result of the phase 

shift between the polarization and the radiated field that the absorbance is proportional to ′′χ : 

  δ I = 2 ′′χ Iin .    

 A time-domain approach to absorption draws on eq. (14) and should recover the 

relationships to the dipole autocorrelation function that we discussed previously. Equating 

  P t( ) with    µ t( ) , we can calculate the polarization in the density matrix picture as 

 
  
P t( ) = Tr µI t( )ρ I

1( ) t( )( )  (17) 

where the first-order expansion of the density matrix is 

 
   
ρ I

1( ) = − i
!

dt1−∞

t

∫ VI t1( ),ρeq
⎡⎣ ⎤⎦ . (18) 

Substituting eq. (13) we find 

 

   

P t( ) = Tr µI t( ) i
!

d ′t −µI ′t( )E ′t( ),ρeq
⎡⎣ ⎤⎦−∞

t

∫
⎛
⎝⎜

⎞
⎠⎟

= −i
!

d ′t E ′t( )Tr µI t( ) µI ′t( ),ρeq
⎡⎣ ⎤⎦( )−∞

t

∫
= + i
!

dτ E t −τ( )
0

∞

∫ Tr µI τ( ),µI 0( )⎡⎣ ⎤⎦ρeq( )
. (19) 

In the last line, we switched variables to the time interval  τ = t − ′t , and made use of the identity 

  
A, B,C⎡⎣ ⎤⎦⎡⎣ ⎤⎦ = A, B⎡⎣ ⎤⎦ ,C⎡⎣ ⎤⎦ . Now comparing to eq. (14), we see, as expected 

 
   
R τ( ) = i

!
θ τ( )Tr µI τ( ),µI 0( )⎡⎣ ⎤⎦ρeq( )  (20) 

So the linear response function is the sum of two correlation functions, or more precisely, the 

imaginary part of the dipole correlation function. 

 
   
R τ( ) = i

!
θ τ( ) C τ( )−C* τ( )( )  (21) 
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C τ( ) = Tr µI τ( )µI 0( )ρeq( )
C* τ( ) = Tr µI τ( )ρeq µI 0( )( )  (22) 

Also, as we would expect, when we use an impulsive driving potential to induce a free induction 

decay (i.e.,  E t −τ( ) = E0δ t −τ( ) ), the polarization is directly proportional to the response 

function, which can be Fourier transformed to obtain the absorption lineshape. 

Nonlinear Polarization 
For nonlinear spectroscopy, we will calculate the polarization arising from interactions with 

multiple fields. We will use a perturbative expansion of  P  in powers of the incoming fields   

    P t( ) = P 0( ) + P 1( ) + P 2( ) + P 3( ) + ! (23) 

where  P
n( )  refers to the polarization arising from n incident light fields. So,   P

2( )  and higher are 

the nonlinear terms. We calculate  P  from the density matrix 

 

   

P t( ) = Tr µI t( )ρ I t( )( )
= Tr µIρ I

0( )( ) +Tr µI ρ I
1( ) t( )( ) +Tr µIρ I

2( ) t( )( ) + …
 (24) 

As we wrote earlier,  ρ I
n( )  is the  nth  order expansion of the density matrix  

 

   

ρ 0( ) = ρeq

ρ I
1( ) = − i

!
dt1−∞

t

∫ VI t1( ),ρeq
⎡⎣ ⎤⎦

ρ I
2( ) = − i

!
⎛
⎝⎜

⎞
⎠⎟

2

dt2 dt1−∞

t2∫−∞

t

∫ VI t2( ), VI t1( ),ρeq
⎡⎣ ⎤⎦⎡

⎣
⎤
⎦

 (25) 

 

 
   
ρ I

n( ) = − i
!

⎛
⎝⎜

⎞
⎠⎟

n

dtn dtn−1… dt1 VI tn( ), VI tn−1( ), …, VI t1( ),ρeq
⎡⎣ ⎤⎦…⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥−∞

t2∫−∞

tn∫−∞

t

∫ . (26) 

 
 Let’s examine the second-order polarization in order to describe the nonlinear response 

function. Earlier we stated that we could write the second-order nonlinear response arise from 

two time-ordered interactions with external potentials in the form 
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P 2( ) t( ) = dτ 2 dτ1 R

2( ) τ 2 ,τ1( )E1 t −τ 2 −τ1( )E2 t −τ 2( )
0

∞

∫0

∞

∫  (27) 

We can compare this result to what we obtain from 
  
P 2( ) t( ) = Tr µI t( )ρ I

2( ) t( )( ) . Substituting as we 

did in the linear case,  

 

   

P 2( ) t( ) = Tr µI t( ) − i
!

⎛
⎝⎜

⎞
⎠⎟

2

dt2 dt1 VI t2( ), VI t1( ),ρeq
⎡⎣ ⎤⎦⎡

⎣
⎤
⎦−∞

t2∫−∞

t

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= i
!

⎛
⎝⎜

⎞
⎠⎟

2

dt2−∞

t

∫ dt1 E2 t2( )E1 t1( )Tr µI t( ),µI t2( )⎡⎣ ⎤⎦ ,µI t1( )⎡
⎣

⎤
⎦ρeq{ }−∞

t2∫

= i
!

⎛
⎝⎜

⎞
⎠⎟

2

dτ 2 dτ10

∞

∫ E2 t −τ 2( )E1 t −τ 2 −τ1( )Tr µI τ1 +τ 2( ),µI τ1( )⎡⎣ ⎤⎦ ,µI 0( )⎡
⎣

⎤
⎦ρeq{ }0

∞

∫

 (28) 

In the last line we switched variables to the time-intervals   t1 = t −τ1 −τ 2  and   t2 = t −τ 2 , and 

enforced the time-ordering  t1 ≤ t2 . Comparison of eqs. (27) and (28) allows us to state that the 

second order nonlinear response function is 

 
   
R 2( ) τ1,τ 2( ) = i

!
⎛
⎝⎜

⎞
⎠⎟

2

θ τ1( )θ τ 2( )Tr µI τ1 +τ 2( ),µI τ1( )⎡⎣ ⎤⎦ ,µI 0( )⎡
⎣

⎤
⎦ρeq{ }  (29) 

Again, for impulsive interactions (i.e., delta function light pulses), the nonlinear polarization is 

directly proportional to the response function.  

 Similar exercises to the linear and second order response can be used to show that the 

nonlinear response function to arbitrary order  R
n( )  is 

 

   

R n( ) τ1,τ 2 ,…τ n( ) = i
!

⎛
⎝⎜

⎞
⎠⎟

n

θ τ1( )θ τ 2( )…θ τ n( )

× Tr … µI τ n +τ n−1 +…+τ1( ),µI τ n−1 +τ n +"τ1( )⎡⎣ ⎤⎦ ,…⎡
⎣

⎤
⎦µI 0( )⎡

⎣
⎤
⎦ρeq{ }

 (30) 

We see that in general the nonlinear response functions are sums of correlation functions, and the 

nth order response has   2n  correlation functions contributing.  These correlation functions differ 

by whether sequential operators act on the bra or ket side of ρ  when enforcing the time-

ordering.  Since the bra and ket sides represent conjugate wavefunctions, these correlation 

functions will contain coherences with differing phase relationships during subsequent time-

intervals. 
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 To see more specifically what a specific term in these nested commutators refers to, let’s 

look at   R
2( )  and enforce the time-ordering: 

 
Term 1 in eq. (29): 
 

 

  

Q1 = Tr µI τ1 +τ 2( )µI τ1( )µI 0( )ρeq( )
= Tr U0

† τ1 +τ 2( )µ U0 τ1 +τ 2( )U0
† τ1( ) µ U0 τ1( )µ ρeq( )

U0
† τ1( )U0

† τ 2( ) U0 τ 2( )
= Tr µU0 τ 2( ) µ U0 τ1( )µ ρeqU0

† τ1( )U0
† τ 2( )( )

 

(1) dipole acts on ket of ρeq 
(2) evolve under H0 during τ1. 
(3) dipole acts on ket. 
(4) Evolve during τ2. 
(5) Multiply by µ and take 

trace. 
 

KET/KET interaction 
 
At each point of interaction with the external potential, the dipole operator acted on ket side of 

ρ . Different correlation functions are distinguished by the order that they act on bra or ket. We 

only count the interactions with the incident fields, and the convention is that the final operator 

that we use prior to the trace acts on the ket side.  So the term Q1 is a ket/ket interaction. 

 An alternate way of expressing this correlation function is in terms of the time-propagator 

for the density matrix, a superoperator defined through:   Ĝ t( )ρab = U0 a b U0
† . Remembering 

the time-ordering, this allows Q1 to be written as 

 
  
Q1 = Tr µ Ĝ τ 2( )µ Ĝ τ1( )µ ρeq( ) . (31) 

 

Term 2: 

 

  

Q2 = Tr µI 0( )µI τ1 +τ 2( )µI τ1( )ρeq( )
= Tr µI τ1 +τ 2( )µI τ1( )ρeq µI 0( )( )  

   BRA/KET interaction  
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For the remaining terms we note that the bra side interaction is the complex conjugate of ket 

side, so of the four terms in eq. (29), we can identify only two independent terms: 

  Q1 ⇒ ket / ket  Q1
* ⇒ bra / bra  Q2 ⇒ ket / bra  Q2

* = bra / ket . 

This is a general observation. For ( )nR , you really only need to calculate 12n−  correlation 

functions.  So for R(2) we write 

 
   
R 2( ) = i

!
⎛
⎝⎜

⎞
⎠⎟

2

θ τ1( )θ τ 2( ) Qα τ1,τ 2( )−Qα
* τ1,τ 2( )⎡⎣ ⎤⎦

α=1

2

∑  (32) 

where  
 

  
Q1 = Tr µI τ1 +τ 2( )µI τ1( )µI 0( )ρeq

⎡⎣ ⎤⎦  (33) 

 ( ) ( ) ( )2 1 1 2  0  I I I eqQ Tr µ τ µ τ τ µ ρ⎡ ⎤= +⎣ ⎦ . (34) 

 So what is the difference in these correlation functions?  Once there is more than one 

excitation field, and more than one time period during which coherences can evolve, then one 

must start to carefully watch the relative phase that coherences acquire during different 

consecutive time-periods, φ τ( ) =ω abτ . To illustrate, consider wavepacket evolution: light 

interaction can impart positive or negative momentum ( ±kin ) to the evolution of the wavepacket, 

which influences the direction of propagation and the phase of motion relative to other states.  

Any subsequent field that acts on this state must account for time-dependent overlap of these 

wavepackets with other target states. The different terms in the nonlinear response function 

account for all of the permutations of interactions and the phase acquired by these coherences 

involved. The sum describes the evolution including possible interference effects between 

different interaction pathways. 

 
Third-Order Response 

Since R(2) orientationally averages to zero for isotropic systems, the third-order nonlinear 

response described the most widely used class of nonlinear spectroscopies.  

   
R 3( ) τ1,τ 2 ,τ 3( ) = i

!
⎛
⎝⎜

⎞
⎠⎟

3

θ τ 3( )θ τ 2( )θ τ1( ) Tr µI τ1 +τ 2 +τ 3( ),µI τ1 +τ 2( )⎡⎣ ⎤⎦ ,µI τ1( )⎤⎦ ,µI 0( )⎤⎦ρeq{ }    (35) 
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R 3( ) τ1,τ 2 ,τ 3( ) = i

!
⎛
⎝⎜

⎞
⎠⎟

3

θ τ 3( )θ τ 2( )θ τ1( ) Rα τ 3,τ 2 ,τ1( )− Rα
* τ 3,τ 2 ,τ1( )⎡⎣ ⎤⎦

α=1

4

∑  (36) 

Here the convention for the time-ordered interactions with the density matrix is 

  R1 = ket / ket / ket ;   R2 = bra / ket / bra ;   R3 = bra / bra / ket ; and   R4 ⇒ ket / bra / bra . In the 
eigenstate representation, the individual correlation functions can be explicitly written in terms 
of a sum over all possible intermediate states (a,b,c,d): 
 

 

  

R1 = pa µad τ1 +τ 2 +τ 3( )µdc τ1 +τ 2( )µcb τ1( )µba 0( )
a,b,c,d
∑

R2 = pa µad 0( )µdc τ1 +τ 2( )µcb τ1 +τ 2 +τ 3( )µba τ1( )
a,b,c,d
∑

R3 = pa µad 0( )µdc τ1( )µcb τ1 +τ 2 +τ 3( )µba τ1 +τ 2( )
a,b,c,d
∑

R4 = pa µad τ1( )µdc τ1 +τ 2( )µcb τ1 +τ 2 +τ 3( )µba 0( )
a,b,c,d
∑

 (37) 

Summary: General Expressions for nth Order Nonlinearity 
For an nth-order nonlinear signal, there are n interactions with the incident electric field or fields 

that give rise to the radiated signal. Counting the radiated signal there are n+1 fields involved 

(n+1 light-matter interactions), so that nth order spectroscopy is at times referred to as (n+1)-

wave mixing.  

 The radiated nonlinear signal field is proportional to the nonlinear polarization: 

 
   
P n( ) t( ) = dτ n! dτ10

∞

∫ R n( ) τ1,τ 2 ,…τ n( )E1 t −τ n −!−τ1( )!En t −τ n( )
0

∞

∫  (38) 

 

   

R n( ) τ1,τ 2 ,…τ n( ) = i
!

⎛
⎝⎜

⎞
⎠⎟

n

θ τ1( )θ τ 2( )…θ τ n( )

× Tr … µI τ n +τ n−1 +…+τ1( ),µI τ n−1 +τ n +"τ1( )⎡⎣ ⎤⎦ ,…⎡
⎣

⎤
⎦µI 0( )⎡

⎣
⎤
⎦ρeq{ }

 (39) 

Here the interactions of the light and 
matter are expressed in terms of a 
sequence of consecutive time-
intervals    τ1…τ n  prior to observing 
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the system. For delta-function interactions,   Ei t − t0( ) = Ei δ t − t0( ) , the polarization and 
response function are directly proportional 

    P
n( ) t( ) = R n( ) τ1,τ 2 ,…τ n−1,t( ) E1! En . (40) 

                                                
1.  The radiation pattern in the far field for the electric field emitted by a dipole aligned along 

the z axis is 

  
E r,θ ,φ,t( ) = −

p0k
2

4πε0

sinθ
r

sin k⋅r −ωt( ) . 

 (written in spherical coordinates). See Jackson, Classical Electrodynamics. 
2.  S. Mukamel, Principles of Nonlinear Optical Spectroscopy. (Oxford University Press, New 

York, 1995). 
3.  Remember the following relationships of the susceptibility with the complex dielectric 

constant ε ω( ) , the index of refraction  n ω( ) , and the absorption coefficientκ ω( ) : 

 ε ω( ) = 1+ 4πχ ω( )  

  
ε ω( ) = !n ω( ) = n ω( ) + iκ ω( )  
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3. Diagrammatic Perturbation Theory 
 
In practice, the nonlinear response functions as written above provide little insight into what the 

molecular origin of particular nonlinear signals is. These multiply nested terms are difficult to 

understand when faced the numerous light-matter interactions, which can take on huge range of 

permutations when performing experiments on a system with multiple quantum states. The 

different terms in the response function can lead to an array of different nonlinear signals that 

vary not only microscopically by the time-evolution of the molecular system, but also differ 

macroscopically in terms of the frequency and wavevector of the emitted radiation.   

 Diagrammatic perturbation theory (DPT) is a simplified way of keeping track of the 

contributions to a particular nonlinear signal given a particular set of states in H0 that are probed 

in an experiment.  It uses a series of simple diagrams to represent the evolution of the density 

matrix for H0, showing repeated interaction of ρ with the fields followed by time-propagation 

under  H0 . From a practical sense, DPT allows us to interpret the microscopic origin of a signal 

with a particular frequency and wavevector of detection, given the specifics of the quantum 

system we are studying and the details of the incident radiation.  It provides a shorthand form of 

the correlation functions contributing to a particular nonlinear signal, which can be used to 

understand the microscopic information content of particular experiments. It is also a 

bookkeeping method that allows us to keep track of the contributions of the incident fields to the 

frequency and wavevector of the nonlinear polarization. 

There are two types of diagrams we will discuss, Feynman and ladder diagrams, each of 

which has certain advantages and disadvantages. For both types of diagrams, the first step in 

drawing a diagram is to identify the states of H0 that will be interrogated by the light-fields. The 

diagrams show an explicit series of absorption or stimulated emission events induced by the 

incident fields which appear as action of the dipole operator on the bra or ket side of the density 

matrix. They also symbolize the coherence or population state in which the density matrix 

evolves during a given time interval. The trace taken at the end following the action of the final 

dipole operator, i.e. the signal emission, is represented by a final wavy line connecting dipole 

coupled states.  
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Feynman Diagrams
Feynman diagrams are the easiest way of tracking the state of coherences in different time 

periods, and for noting absorption and emission events.   

 
1. Double line represents ket and bra side of ρ . 

2. Time-evolution is upward. 

3. Lines intersecting diagram represent field 

interaction. Absorption is designated through an 

inward pointing arrow. Emission is an outward 

pointing arrow. Action on the left line is action 

on the ket, whereas the right line is bra.  

4. System evolves freely under   H0  between 

interactions, and density matrix element for that 

period is often explicitly written. 

 

Ladder Diagrams1 

Ladder diagrams are helpful for describing experiments on multistate systems and/or with 

multiple frequencies; however, it is difficult to immediately see the state of the system during a 

given time interval. They naturally lend themselves to a description of interactions in terms of 

the eigenstates of H0. 

 
1. Multiple states arranged vertically by energy. 

2. Time propagates to right. 

3. Arrows connecting levels indicate resonant 

interactions. Absorption is an upward arrow and 

emission is downward.  A solid line is used to 

indicate action on the ket, whereas a dotted line 

is action on the bra. 

4.  Free propagation under H0 between interactions, 

but the state of the density matrix is not always 

obvious. 
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For each light-matter interactions represented in a diagram, there is an understanding of 

how this action contributes to the response function and the final nonlinear polarization state. 

Each light-matter interaction acts on one side of ρ , either through absorption or stimulated 

emission. Each interaction adds a dipole matrix element µij that describes the interaction 

amplitude and any orientational effects.2 Each interaction adds input electric field factors to the 

polarization, which are used to describe the frequency and wavevector of the radiated signal. The 

action of the final dipole operator must return you to a diagonal element to contribute to the 

signal. Remember that action on the bra is the complex conjugate of ket and absorption is 

complex conjugate of stimulated emission. A table summarizing these interactions contributing 

to a diagram is below. 

 

KET SIDE

BRA SIDE

SIGNAL EMISSION: 

a

b

a

b

a

b

a

b

a

b

( ) expba n n nE ik r i tµ ω⎡ ⎤⋅ ⋅ −⎣ ⎦

( )* expba n n nE ik r i tµ ω⎡ ⎤⋅ − ⋅ +⎣ ⎦

( )* *
ba n n nE exp ik r i t⎡ ⎤µ ⋅ − ⋅ + ω⎣ ⎦

( )*
ba n n nE exp ik r i t⎡ ⎤µ ⋅ ⋅ − ω⎣ ⎦

Absorption

Stimulated Emission

Absorption

Stimulated Emission

a

b

a

b

a

b

a

b

a

b

nE

nE

*
nE

*
nE

n+ +ωnk

n− −ωnk

n+ +ωnk

n− −ωnk

ba nˆµ ⋅ ε

ba anˆµ ⋅ε(Final trace, 
convention: ket side)

Interaction

*
ba nˆµ ⋅ ε

Diagrammatic
Representation

contribution
to
 & sigk sigω( )nR

contrib.
to 

*
ba nˆµ ⋅ ε

ba nˆµ ⋅ ε
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Once you have written down the relevant diagrams, being careful to identify all permutations of 

interactions of your system states with the fields relevant to your signal, the correlation functions 

contributing to the material response and the frequency and wavevector of the signal field can be 

readily obtained. It is convenient to write the correlation function as a product of several factors 

for each event during the series of interactions:  

1) Start with a factor pn signifying the probability of occupying the initial state, typically a 

Boltzmann factor.  

2) Read off products of transition dipole moments for interactions with the incident fields, 

and for the final signal emission. 

3) Multiply by terms that describe the propagation under   H0  between interactions. 

 As a starting point for understanding an experiment, it is valuable to include the effects of 

relaxation of the system eigenstates in the time-evolution using a simple 

phenomenological approach. Coherences and populations are propagated by assigning the 

damping constant  Γab  to propagation of the  ρab  element: 

   Ĝ τ( )ρab = exp −iω abτ − Γabτ⎡⎣ ⎤⎦ρab . (41) 

Note  Γab = Γba  and   Gab
* = Gba . We can then recognize   Γ ii =1 T1  as the population 

relaxation rate for state i and   Γ ij = 1 T2  the dephasing rate for the coherence  ρij . 

4) Multiply by a factor of   −1( )n  where n is the number of bra side interactions. This factor 

accounts for the fact that in evaluating the nested commutator, some correlation functions 

are subtracted from others.   

5) The radiated signal will have frequency 
 
ω sig = ω i

i
∑  and wave vector 

 
ksig = ki

i
∑  

 
 
Example: Linear Response for a Two-Level System 

Let’s consider the diagrammatic approach to the linear absorption problem, using a two-level 

system with a lower level a and upper level b.  There is only one independent correlation 

function in the linear response function,  
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C t( ) = Tr µ t( )µ 0( )ρeq
⎡⎣ ⎤⎦

= Tr µ Ĝ t( )µ ρeq
⎡⎣ ⎤⎦

 (42) 

This does not need to be known before starting, but is useful to consider, since it should be 

recovered in the end.  The system will be taken to start in the ground state ρaa. Linear response 

only allows for one input field interaction, which must be absorption, and which we take to be a 

ket side interaction. We can now draw two diagrams: 

 

 

  
 
 
With this diagram, we can begin by describing the signal characteristics in terms of the induced 

polarization. The product of incident fields indicates:   

   E1 e
− iω1t+ik1⋅r ⇒ P t( )e− iωsigt+iksig ⋅r  (43) 

so that   
ω sig =ω1 ksig = k . (44) 

As expected the signal will radiate with the same frequency and in the same direction as the 

incoming beam. Next we can write down the correlation function for this term.  Working from 

bottom up: 

 

  

(1) (2) (3) (4)

C t( ) = pa µba⎡⎣ ⎤⎦ e− iωbat−Γbat⎡⎣ ⎤⎦ µab⎡⎣ ⎤⎦

= pa µba

2 e− iωbat−Γbat

 (45) 

More sophisticated ways of treating the time-evolution under H0 in step (3) could take the form 

of some of our earlier treatments of the absorption lineshape: 

(4) Act on ket with µ and take 
trace. 

(3) Propagate under H0: 
  Gab τ( ) = e−iωbaτ−Γbaτ . 

(2) Act on ket with µ(0) to 
create ρba. 

(1) Start in ρaa  (add factor of 
pa when reading). 
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Ĝ τ( )ρab ~ ρab exp −iω abτ⎡⎣ ⎤⎦F τ( )
= ρab exp −iω abτ − g t( )⎡⎣ ⎤⎦

 (46) 

 Note that one could draw four possible permutations of the linear diagram when 

considering bra and ket side interactions, and initial population in states a and b: 

 

 
However, there is no new dynamical content in these extra diagrams, and they are generally 

taken to be understood through one diagram. Diagram ii is just the complex conjugate of eq. (45) 

so adding this signal contribution gives: 

   C t( ) −C* t( ) = 2i pa µba

2
sin(ω bat)e−Γbat . (47) 

Accounting for the thermally excited population initially in b leads to the expected two-level 

system response function that depends on the population difference 

 
   
R t( ) = 2

!
pa − pb( ) µba

2
sin(ω bat)e−Γbat . (48) 

Example: Second-Order Response for a Three-Level System 

The second-order response is the simplest nonlinear case, but in molecular 

spectroscopy is less commonly used than third-order measurements. The 

signal generation requires a lack of inversion symmetry, which makes it 

useful for studies of interfaces and chiral systems. However, let’s show how 

one would diagrammatically evaluate the second order response for a very 

specific system pictured at right. If we only have population in the ground 

state at equilibrium and if there are only resonant interactions allowed, the 

permutations of unique diagrams are as follows: 
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From the frequency conservation conditions, it should be clear that process i is a sum-frequency 

signal for the incident fields, whereas diagrams ii-iv refer to difference frequency schemes. To 

better interpret what these diagrams refer to let’s look at iii.  Reading in a time-ordered manner, 

we can write the correlation function corresponding to this diagram as 

 

  

C2 = Tr µ τ( )ρeqµ 0( )⎡⎣ ⎤⎦

= −1( )1 µbc Ĝcb τ 2( )µca Ĝab τ1( ) ρaa µba
∗

= − paµabµbcµcae
− iωabτ1−Γabτ1e− iωcbτ 2−Γcbτ 2

. (49) 

 Note that a literal interpretation of the final trace in diagram iv would imply 

an absorption event – an upward transition from b to c. What does this have to do 

with radiating a signal? On the one hand it is important to remember that a diagram 

is just mathematical shorthand, and that one can’t distinguish absorption and 

emission in the final action of the dipole operator prior to taking a trace.  The other 

thing to remember is that such a diagram always has a complex conjugate associated 

with it in the response function. The complex conjugate of iv, a   Q2
∗  ket/bra term, 
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shown at right has a downward transition –emission– as the final interaction. 

The combination   Q2 −Q2
∗  ultimately describes the observable. 

 

 Now, consider the wavevector matching conditions for the second order signal iii. 

Remembering that the magnitude of the wavevector is
  
k =ω c = 2π λ , the length of the vectors 

will be scaled by the resonance frequencies. When the two incident fields are crossed as a slight 

angle, the signal would be phase-matched such that the signal is radiated closest to beam 2. Note 

that the most efficient wavevector matching here would be when fields 1 and 2 are collinear. 
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Third-Order Nonlinear Spectroscopy 

Now let’s look at examples of diagrammatic perturbation theory applied to third-order nonlinear 

spectroscopy. Third-order nonlinearities describe the majority of coherent nonlinear experiments 

that are used including pump-probe experiments, transient gratings, photon echoes, coherent 

anti-Stokes Raman spectroscopy (CARS), and degenerate four wave mixing (4WM). These 

experiments are described by some or all of the eight correlation functions contributing to   R
3( ) :  

 
   
R 3( ) = i

!
⎛
⎝⎜

⎞
⎠⎟

3

Rα − Rα
*⎡⎣ ⎤⎦

α=1

4

∑  (50) 

 The diagrams and corresponding response first requires that we specify the system 

eigenstates. The simplest case, which allows us discuss a number of examples of third-order 

spectroscopy is a two-level system. Let’s write out the diagrams and correlation functions for a 

two-level system starting in  ρaa , where the dipole operator couples  b  and  a .   

 

  

R1

ket/ket/ket
 

  

R2

bra/ket/bra
 

  

R3

bra/bra/ket
 

  

R4

ket/bra/bra
 

b a

a a
1E

a a

b a

2E
3E

1τ

2τ

3τ

a b

a a

b b

b a

a b

a a

a a

b a

b a

a a

b b

b a

a

b

 
 
 

 +ω1 −ω 2 +ω3   −ω1 +ω 2 +ω3   −ω1 +ω 2 +ω3   +ω1 −ω 2 +ω3  

  
ksig = +k1 − k2 + k3    −k1 + k2 + k3    −k1 + k2 + k3    +k1 − k2 + k3  
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 As an example, let’s write out the correlation function for   R2 obtained from the diagram 

above. This term is important for understanding photon echo experiments and contributes to 

pump-probe and degenerate four-wave mixing experiments.  

 

  

R2 = −1( )2
pa µba

*( ) e− iωabτ1−Γabτ1⎡⎣ ⎤⎦ µba( ) e − iωbbτ2 −Γbbτ2( ) µab
*( ) e− iωbaτ3−Γbaτ3⎡⎣ ⎤⎦ µab( )

= pa µab

4
exp −iωba τ 3 −τ1( )− Γba τ1 +τ 3( )− Γbb τ 2( )⎡⎣ ⎤⎦

 (51) 

The diagrams show how the input field contributions dictate the signal field frequency and wave-

vector.  Recognizing the dependence of 
  
Esig

3( ) ~ P 3( ) ~ R2 E1E2E3( ) , these are obtained from the 

product of the incident field contributions  

 
  

E1E2E3 = E1
* e

+ iω1t−ik1⋅r( ) E2 e
− iω2t+ik2⋅r( ) E3 e

+ iω3t−ik3⋅r3( )
⇒ E1

*E2 E3 e−ωsigt+iksig ⋅r
 (52) 

 
  

∴ ω sig 2 = −ω1 +ω 2 +ω3

ksig 2 = − k1 + k2 + k3

. (53) 

Now, let’s compare this to the response obtained from  R4 . These we obtain 

 
  
R4 = pa µab

4
exp −iω ba τ 3 +τ1( )− Γba τ1 +τ 3( )− Γbb τ 2( )⎡⎣ ⎤⎦  (54) 

 
  

ω sig 4 = +ω1 −ω 2 +ω3

ksig 4 = + k1 − k2 + k3

 (55) 

Note that   R2 and  R4 terms are identical, except for the phase acquired during the initial period: 

  exp iφ⎡⎣ ⎤⎦ = exp ±iω baτ1⎡⎣ ⎤⎦ . The  R2  term evolves in conjugate coherences during the τ1 and τ3 

periods, whereas the   R4  term evolves in the same coherence state during both periods: 

 Coherences in  τ1  and  τ 3  Phase acquired in  τ1  and  τ 3  

  R4    b a  →  b a     e
− iωba τ1+τ3( )  

  R2  
  a b  →  b a    e

− iωba τ1−τ3( )  

The   R2  term has the property of time-reversal: the phase acquired during τ1 is reversed in τ3. For 

that reason the term is called “rephasing.” Rephasing signals are selected in photon echo 

experiments and are used to distinguish line broadening mechanisms and study spectral 
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diffusion. For   R4 , the phase acquired continuously in τ1 and τ3, and this term is called “non-

rephasing.” Analysis of 1R  and 3R  reveals that these terms are non-rephasing and rephasing, 

respectively. 

1baie ω τ−

3baie ω τ−

3baie ω τ+

ph
as

e 
ac

qu
ire

d

0

φ non-rephasing

rephasing1τ 3τ

1t 2t 3t t

( )P t

 
 

 For the present case of a third-order spectroscopy applied to a two-level system, we 

observe that the two rephasing functions   R2 and  R3  have the same emission frequency and 

wavevector, and would therefore both contribute equally to a given detection geometry. The two 

terms differ in which population state they propagate during the τ2 variable. Similarly, the non-

rephasing functions   R1  and  R4  each have the same emission frequency and wavevector, but 

differ by the τ2 population. For transitions between more than two system states, these terms 

could be separated by frequency or wavevector (see appendix). Since the rephasing pair   R2  

and  R3  both contribute equally to a signal scattered in the   −k1 + k2 + k3  direction, they are also 

referred to as SI. The nonrephasing pair   R1  and  R4  both scatter in the   +k1 − k2 + k3  direction and 

are labeled as SII.  

Our findings for the four independent correlation functions are summarized below.   
   sigω  sigk  τ2 population 

SI rephasing 2R   −ω1 +ω 2 +ω3    −k1 + k2 + k3  excited state 

3R  1 2 3ω ω ω− + +    −k1 + k2 + k3  ground state 

SII non-rephasing 1R  1 2 3ω ω ω+ − +  1 2 3k k k+ − +  ground state 

4 R  1 2 3ω ω ω+ − +  1 2 3k k k+ − +  excited state 
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Frequency Domain Representation3 

A Fourier-Laplace transform of   P
3( ) t( )  with respect to the time intervals allows us to obtain an 

expression for the third order nonlinear susceptibility, χ
3( ) ω1,ω 2 ,ω3( ) :   

 
  
P 3( ) ω sig( ) = χ 3( ) ω sig ;ω1,ω 2 ,ω3( )E1 E2 E3  (56) 

where 
   
χ n( ) = dτ n eiΩnτ n! dτ10

∞

∫ eiΩ1τ1 R n( ) τ1,τ 2 ,…τ n( )
0

∞

∫ . (57) 

Here the Fourier transform conjugate variables  Ωm  to the time-interval  τ m  are the sum over all 

frequencies for the incident field interactions up to the period for which you are evolving:  

 
  
Ωm = ω i

i=1

m

∑  (58) 

For instance, the conjugate variable for the third time-interval of a   +k1 − k2 + k3  experiment is the 

sum over the three preceding incident frequencies  Ω3 =ω1 −ω 2 +ω3 .  

 In general, χ(3) is a sum over many correlation functions and includes a sum over states: 

 
   
χ 3( ) ω1,ω 2 ,ω3( ) = 1

6
 i
!

⎛
⎝⎜

⎞
⎠⎟

3

pa χα − χα
*⎡⎣ ⎤⎦α=1

4
∑

abcd
∑  (59) 

Here a is the initial state and the sum is over all possible intermediate states.  Also, to describe 

frequency domain experiments, we have to permute over all possible time orderings. Most 

generally, the eight terms in   R
3( )  lead to 48 terms for  χ

3( ) , as a result of the 3!=6 permutations of 

the time-ordering of the input fields.4 

 Given a set of diagrams, we can write the nonlinear susceptibility directly as follows: 

1) Read off products of light-matter interaction factors. 

2)  Multiply by resonance denominator terms that describe the propagation under   H0 . In the 

frequency domain, if we apply eq. (57) to response functions that use phenomenological 

time-propagators of the form eq. (41), we obtain 

 
  
Ĝ τ m( )ρab ⇒ 1

Ωm −ω ba( )− iΓba

. (60) 

 Ωm is defined in eq. (58). 

3) As for the time domain, multiply by a factor of   −1( )n  for n bra side interactions. 
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4) The radiated signal will have frequency 
 
ω sig = ω i

i
∑  and wavevector 

 
ksig = ki

i
∑ . 

 

As an example, consider the term for   R2  applied to a two-level system that we wrote in 

the time domain in eq. (51) 

 

  

χ2 = µba

4 −1( )
ω ab − −ω1( )− iΓab

⋅ 1
ω bb − ω 2 −ω1( )− iΓbb

⋅
−1( )

ω ba − ω3 +ω 2 −ω1( )− iΓba

= µba

4 1
ω1 −ω ba − iΓba

⋅ 1
− ω 2 −ω1( )− iΓbb

⋅ 1
− ω3 +ω 2 −ω1 −ω ba( )− iΓba

 (61) 

The terms are written from a diagram with each interaction and propagation adding a resonant 

denominator term (here reading left to right). The full frequency domain response is a sum over 

multiple terms like these.   
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Appendix: Third-order diagrams for a four-level system 
The third order response function can describe interaction with up to four eigenstates of the 

system Hamiltonian. These are examples of correlation functions within R(3) for a four-level 

system representative of vibronic transitions accompanying an electronic excitation, as relevant 

to resonance Raman spectroscopy. Note that these diagrams present only one example of 

multiple permutations that must be considered given a particular time-sequence of incident fields 

that may have variable frequency. 

b a

a a
1E

c a

d a

2E
3E

1τ

2τ

3τ

a b

a a

d b

d c

a b

a a

a c

d c

b a

a a

b b

b a

Third-order diagrams for a four level system
...as relevant to Resonance Raman experiments

a

b
c

d

a

b
c

d

a

b
c

d

a

b
c

d

ba cb dc adµ µ µ µ * *
ba da cb cdµ µ µ µ * *

ba cb da cdµ µ µ µ * *
ba da cd cbµ µ µ µ

1 2 3sig

ba cb dc da

ω ω ω ω
ω ω ω ω

= + − +

= + + =
1 2 3

ba da cb dc

ω ω ω
ω ω ω ω

− + +
− + − =

1

/ /
R

ket ket ket
2R

bra/ket/bra
3R

bra/bra/ket
4R

ket/bra/bra

1 2 3

ba cb da dc

ω ω ω
ω ω ω ω
− + +
− − + =

1 2 3

ba da cd bc

ω ω ω
ω ω ω ω
+ − +

− − =
 

 
The signal frequency comes from summing all incident resonance frequencies accounting for the 

sign of the excitation. The products of transition matrix elements are written in a time-ordered 

fashion without the projection onto the incident field polarization needed to properly account for 

orientational effects. The R1 term is more properly written
  
µba ⋅ ε̂1( ) µcb ⋅ ε̂2( ) µdc ⋅ ε̂3( ) µad ⋅ ε̂an( ) . 

Note that the product of transition dipole matrix elements obtained from the sequence of 

interactions can always be re-written in the cyclically invariant form  µabµbcµcdµda s. This is one 

further manifestation of closed loops formed by the sequence of interactions. 
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 Appendix: Third-order diagrams for a vibration 
The third-order nonlinear response functions for infrared vibrational spectroscopy are often 

applied to a weakly anharmonic vibration. For high frequency vibrations in which only the v = 0 

state is initially populated, when the incident fields are resonant with the fundamental vibrational 

transition, we generally consider diagrams involving the system eigenstates v = 0, 1 and 2, and 

which include v=0-1 and v=1-2 resonances.  Then, there are three distinct signal contributions: 

Signal sigk  Diagrams and Transition Dipole Scaling R/NR 

SI 1 2 3k k k− + +  

 

 4
10µ  4

10µ  2 2
10 21µ µ  

rephasing 

SII 1 2 3k k k+ − +  

 

 4
10µ  4

10µ  2 2
10 21µ µ  

non-rephasing 

SIII 1 2 3k k k+ + −  

 

 2 2
10 21µ µ   2 2

10 21µ µ  

non-rephasing 
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Note that for the SI and SII signals there are two types of contributions: two diagrams in which all 
interactions are with the v=0-1 transition (fundamental) and one diagram in which there are two 
interactions with v=0-1 and two with v=1-2 (the overtone).  These two types of contributions 
have opposite signs, which can be seen by counting the number of bra side interactions, and have 
emission frequencies of ω10 or ω21.  Therefore, for harmonic oscillators, which have ω10 = ω21  
and  2µ10 = µ21 , we can see that the signal contributions should destructively interfere and 
vanish.  This is a manifestation of the finding that harmonic systems display no nonlinear 
response. Some deviation from harmonic behavior is required to observe a signal, such as 
vibrational anharmonicity ω10 ≠ ω21, electrical anharmonicity  2µ10 ≠ µ21 , or level-dependent 
damping Γ10 ≠ Γ21 or Γ00 ≠ Γ11 .
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4.  Third-Order Nonlinear Spectroscopies  
 
Third-order nonlinear spectroscopies are the most widely used class of nonlinear methods, 

including the common pump-probe experiment. This section will discuss a number of these 

methods. The approach here is meant to be practical, with the emphasis on trying to connect the 

particular signals with their microscopic origin. This approach can be used for describing any 

experiment in terms of the wave-vector, frequency and time-ordering of the input fields, and the 

frequency and wavevector of the signal.  

Selecting signals by wavevector 

The question is how to select particular contributions to the signal. It won’t be possible to 

uniquely select particular diagrams. However, you can use the properties of the incident and 

detected fields to help with selectivity. Here is a strategy for describing a particular experiment: 

1) Start with the wavevector and frequency of the signal field of interest.   

2) (a) Time-domain: Define a time-ordering along the incident wavevectors or 

(b) Frequency domain: Define the frequencies along the incident wavevectors. 

3) Sum up diagrams for correlation functions that will scatter into the wave-vector matched 

direction, keeping only resonant terms (rotating wave approximation).  In the frequency 

domain, use ladder diagrams to determine which correlation functions yield signals that 

pass through your filter/monochromator.   

Let’s start by discussing how one can distinguish a rephasing signal from a non-rephasing signal. 

Consider two degenerate third-order experiments (ω1 = ω2 = ω3 = ωsig) distinguished by the 

signal wave-vector for a particular 

time-ordering. We choose a box 

geometry, where the three incident 

fields (a,b,c) are crossed in the 

sample, incident from three corners 

of the box, as shown. (Colors in 

these figures are not meant to 

represent the frequency of the 

incident fields–which are all the 

sample

ab

c

sig a b ck k k k  = + − +

ak bk

ck

ak+
bk−

ck+sigk

top-down view

sigk
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same–but rather is just there to distinguish them for the picture). Since the frequencies are the 

same, the length of the wavevector   k = 2πn λ  is equal for each field, only its direction varies. 

Vector addition of the contributing terms from the incident fields indicates that the signal 

  
ksig = +ka − kb + kc will be radiated in the direction of the last corner of the box when observed 

after the sample. (Colors in the figure don’t represent frequency, but serve to distinguish beams). 

 Comparing the wavevector matching condition for this signal with those predicted by the 

third-order Feynman diagrams, we see that we can select non-rephasing signals 1R  and 4R  by 

setting the time ordering of pulses such that a = 1, b = 2, and c = 3.  The rephasing signals 

2R and 3R  are selected with the time-ordering a = 2, b = 1, and c = 3.  

 Alternatively, we can recognize that both signals can be observed by simultaneously 

detecting signals in two different directions. If we set the time ordering to be a = 1, b = 2, and    c 

= 3, then the rephasing and non-rephasing signals will be radiated as shown below: 

1k+
2k−

3k+sigk

NR

1k−2k+

3k+
sigk

R

12

3
R NR

1 2 3
R

sigk k k k  = − + + 1 2 3
NR

sigk k k k  = + − +

2E 1E

3E
sample

 
Here the wave-vector matching for the rephasing signal is imperfect. The vector sum of the 

incident fields sigk dictates the direction of propagation of the radiated signal (momentum 

conservation), whereas the magnitude of the signal wavevector sigk′ is dictated by the radiated 

frequency (energy conservation). The efficiency of radiating the signal field falls of with the 

wave-vector mismatch  
Δk = ksig − ′ksig , as 

  
Esig t( ) ∝ P t( )sinc Δkl 2( )  where l is the path length 

(see eq. 1.10).
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Photon Echo 

The photon echo experiment is most commonly used to distinguish static and dynamic line-

broadening, and time-scales for energy gap fluctuations.  The rephasing character of R2 and R3 

allows you to separate homogeneous and inhomogeneous broadening.  To demonstrate this let’s 

describe a photon echo experiment for an inhomogeneous 

lineshape, that is a convolution of a homogeneous line shape 

with width Γ with a static inhomogeneous distribution of 

width Δ. Remember that linear spectroscopy cannot 

distinguish the two:   

 ( ) ( )2  . .ab
abi gR c ce ω τ ττ µ − −= −  (62) 

For an inhomogeneous distribution, we could average the homogeneous response, ( )  bag t t=Γ , 

with an inhomogeneous distribution 

 
  
R = dω ab∫  G ω ab( )R ω ab( )  (63) 

which we take to be Gaussian   

 

  

G ω ba( ) = exp −
ω ba − ω ba( )2

2Δ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (64) 

Equivalently, since a convolution in the frequency domain is a product in the time domain, we 

can set  

   g t( ) = Γbat+ 1
2 Δ

2 t2 . (65) 

So for the case that Δ > Γ , the absorption spectrum is a broad Gaussian lineshape centered at the 

mean frequency baω  which just reflects the static distribution Δ rather than the dynamics in Γ. 

 Now look at the experiment in which two pulses are crossed to generate a signal in the 

direction 

 
  
ksig  = 2k2 − k1  (66) 

This signal is a special case of the signal ( )3 2 1k k k+ −  where the second and third interactions 

are both derived from the same beam. Both non-rephasing diagrams contribute here, but since 

both second and third interactions are coincident, 2 0τ = and R2 = R3. The nonlinear signal can be 

obtained by integrating the homogeneous response,  
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Two-pulse photon echo 

 

   R
3( ) ω ab( ) = µab

4
pa e− iωab τ1−τ3( )e−Γab τ1+τ3( )  (67) 

over the inhomogeneous distribution as in eq. (63). This leads to  

   R
3( ) = µab

4
pa e− i ωab τ1−τ3( ) e−Γab τ1+τ3( ) e− τ1−τ3( )2Δ2 /2  (68) 

For  Δ >> Γab , ( )3R  is sharply peaked at 1 3τ τ= , i.e.   e
− τ1−τ3( )2Δ2 /2 ≈ δ τ1 −τ 3( ) . The broad 

distribution of frequencies rapidly dephases 

during τ1, but is rephased (or refocused) 

during τ3, leading to a large constructive 

enhancement of the polarization at 

τ1=τ3.  This rephasing enhancement is called an echo.     

 In practice, the signal is observed with a integrating intensity-level detector placed into 

the signal scattering direction. For a given pulse separation τ (setting τ1=τ), we calculated the 

integrated signal intensity radiated from the sample during τ3 as 

 
  
Isig τ( ) = Esig

2
 ∝ dτ 3 P 3( ) τ ,τ 3( ) 2

−∞

∞

∫  (69) 

In the inhomogeneous limit ( Δ >> Γab ), we find 

 
  
Isig τ( )  ∝   µab

8
e−4Γabτ . (70) 

In this case, the only source of relaxation of the polarization amplitude at τ1 = τ3 is  Γab . At this 

point inhomogeneity is removed and only the homogeneous dephasing is measured. The factor of 

four in the decay rate reflects the fact that damping of the initial coherence evolves over two 

periods τ1 + τ3 = 2τ, and that an intensity level measurement doubles the decay rate of the 

polarization.
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Transient Grating 

The transient grating is a third-order technique used for characterizing numerous relaxation 

processes, but is uniquely suited for looking at optical excitations with well-defined spatial 

period. The first two pulses are set time-coincident, so you cannot distinguish which field 

interacts first. Therefore, the 

signal will have contributions 

both from 
  
ksig = k1 − k2 + k3  

and 
  
ksig = −k1 + k2 + k3 . That 

is the signal depends on 

R1+R2+R3+R4.  

 Consider the terms contributing to the polarization that arise from the first two 

interactions. For two time-coincident pulses of the same frequency, the first two fields have an 

excitation profile in the sample  

 
  
 Ea Eb = Ea Eb exp −i ω a −ω b( )t + i ka − kb( ) ⋅ r⎡⎣ ⎤⎦ + c.c.  (71) 

If the beams are crossed at an angle 2θ    

 
  

ka = ka ẑcosθ + x̂sinθ( )
kb = kb ẑcosθ − x̂sinθ( )  (72) 

with 

 
  
ka = kb = 2πn

λ
, (73) 

the excitation of the sample is a spatial varying interference pattern along the transverse direction  
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 Ea Eb = Ea Eb exp iβ ⋅ x⎡⎣ ⎤⎦ + c.c.  (74) 

The grating wavevector is 

 

  

β = k1 − k2 

β = 4πn
λ

sinθ = 2π
η

. (75) 

This spatially varying field pattern is called a grating, and has a fringe spacing 

 
  
η = λ

2nsinθ
. (76) 

Absorption images this pattern into the sample, creating a spatial pattern of excited and ground 

state molecules. A time-delayed probe beam can scatter off this grating, where the wavevector 

matching conditions are equivalent to the constructive interference of scattered waves at the 

Bragg angle off a diffraction grating. For   
ω1 =ω 2 =ω3 =ω sig  this the diffraction condition is 

incidence of   k3  at an angle θ, leading to scattering of a signal out of the sample at an angle −θ. 

Most commonly, we measure the intensity of the scattered light, as given in eq. (69). 

 More generally, we should think of excitation with this pulse pair leading to a periodic 

spatial variation of the complex index of refraction of the medium. Absorption can create an 

excited state grating, whereas subsequent relaxation can lead to heating a periodic temperature 

profile (a thermal grating).  Nonresonant scattering processes (Raleigh and Brillouin scattering) 

can create a spatial modulation in the real index or refraction. Thus, the transient grating signal 

will be sensitive to any processes which act to wash out the spatial modulation of the grating 

pattern: 

• Population relaxation leads to a decrease in the grating amplitude, observed as a decrease 

in diffraction efficiency. 

 
  
Isig τ( ) ∝exp −2Γbbτ⎡⎣ ⎤⎦  (77) 
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• Thermal or mass diffusion along x̂  acts to wash out the fringe pattern.  For a diffusion 

constant D the decay of diffraction efficiency is 

 
  
Isig τ( ) ∝exp −2β 2Dτ⎡⎣ ⎤⎦  (78) 

 

 
 

• Rapid heating by the excitation pulses can launch counter propagating acoustic waves 

along x̂ , which can modulate the diffracted beam at a frequency dictated by the period 

for which sound propagates over the fringe spacing in the sample. 

 

 
 



 38 

Pump-Probe 
The pump-probe or transient absorption experiment is perhaps the most widely used third-order 

nonlinear experiment. It can be used to follow many types of time-dependent relaxation 

processes and chemical dynamics, and is most commonly used to follow population relaxation, 

chemical kinetics, or wavepacket dynamics and quantum beats.  

 The principle is quite simple, and the using the theoretical formalism of nonlinear 

spectroscopy often unnecessary to interpret the experiment. Two pulses separated by a delay τ 

are crossed in a sample: a pump pulse and a time-delayed probe pulse. The pump pulse  
Epu  

creates a non-equilibrium state, and the time-dependent changes in the sample are characterized 

by the probe-pulse 
Epr  through the pump-induced intensity change on the transmitted probe, ΔI.   

 
 Described as a third-order coherent nonlinear spectroscopy, the signal is radiated 

collinear to the transmitted probe field, so the wavevector matching condition is 

 
ksig = +kpu − kpu + kpr = kpr . There are two interactions with the pump field and the third 

interaction is with the probe. Similar to the transient grating, the time-ordering of pump-

interactions cannot be distinguished, so terms that contribute to scattering along the probe are 

   
ksig = ±k1 ∓ k2 + k3  (i.e., all correlation functions 1R  to 4R ). In fact, the pump-probe can be 

thought of as the limit of the transient grating experiment in the limit of zero grating wavevector 

(θ and β → 0). 

 The detector observes the intensity of the transmitted probe and nonlinear signal 

 
  
I = nc

4π
′Epr + Esig

2
. (79) 
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 ′Epr  is the transmitted probe field corrected for linear propagation through the sample. The 

measured signal is typically the differential intensity on the probe field with and without the 

pump field present: 

 
  
ΔI(τ ) = nc

4π
′Epr + Esig (τ )

2
− ′Epr

2{ } . (80) 

If we work under conditions of a weak signal relative to the transmitted probe 
 

′Epr >> Esig , then 

the differential intensity in eq. (80) is dominated by the cross term 

 

  

ΔI(τ ) ≈ nc
4π

′Epr Esig
∗ (τ )+ c.c.⎡⎣ ⎤⎦

= nc
2π

Re ′Epr Esig
∗ (τ )⎡⎣ ⎤⎦

. (81) 

So the pump-probe signal is directly proportional to the nonlinear response. Since the signal field 

is related to the nonlinear polarization through a π/2 phase shift, 

 
   
Esig (τ ) = i

2πω sigℓ

nc
P(3)(τ ) . (82) 

the measured pump-probe signal is proportional to the imaginary part of the polarization 

 
   
ΔI(τ ) = 2ω sigℓ Im ′Epr P 3( ) τ( )⎡

⎣
⎤
⎦ , (83) 

which is also proportional to the correlation functions derived from the resonant diagrams we 

considered earlier.  

Dichroic and Birefringent Response 

In analogy to what we observed earlier for linear spectroscopy, the nonlinear changes in 

absorption of the transmitted probe field are related to the imaginary part of the susceptibility, or 

the imaginary part of the index of refraction. In addition to the fully resonant processes, it is also 

possible for the pump field to induce nonresonant changes to the polarization that modulate the 

real part of the index of refraction. These can be described through a variety of nonresonant 

interactions, such as nonresonant Raman, the optical Kerr effect, coherent Raleigh or Brillouin 

scattering, or the second hyperpolarizability of the sample. In this case, we can describe the time-

development of the polarization and radiated signal field as  
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P(3) (τ ,τ 3) = P(3) (τ ,τ 3)e− iωsigτ3 + P(3) (τ ,τ 3)⎡⎣ ⎤⎦
∗

eiωsigτ3

= 2Re P(3) (τ ,τ 3)⎡⎣ ⎤⎦cos(ω sigτ 3)+ 2Im P(3) (τ ,τ 3)⎡⎣ ⎤⎦sin(ω sigτ 3)
 (84) 

 

   

Esig (τ 3) =
4πω sigℓ

nc
Re P 3( )(τ ,τ 3)⎡

⎣
⎤
⎦sin(ω sigτ 3)+ Im P 3( )(τ ,τ 3)⎡

⎣
⎤
⎦cos(ω sigτ 3)( )

= Ebir (τ ,τ 3)sin(ω sigτ 3)+ Edic(τ ,τ 3)cos(ω sigτ 3)
 (85) 

Here the signal is expressed as a sum of two contributions, referred to as the birefringent (Ebir) 

and dichroic (Edic) responses. As before the imaginary part, or dichroic response, describes the 

sample-induced amplitude variation in the signal field, whereas the birefringent response 

corresponds to the real part of the nonlinear polarization and represents the phase-shift or 

retardance of the signal field induced by the sample.  

 In this scheme, the transmitted probe is 

 
  ′Epr (τ 3) = ′Epr (τ 3)cos(ω prτ 3) , (86) 

So that the 

 
  
ΔI(τ ) ≈ nc

2π
′Epr (τ )Edic(τ )⎡⎣ ⎤⎦  (87) 

Because the signal is in-quadrature with the polarization (π/2 phase shift), the absorptive or 

dichroic response is in-phase with the transmitted probe, whereas the birefringent part is not 

observed. If we allow for the phase of the probe field to be controlled, for instance through a 

quarter-wave plate before the sample, then we can write  

 
  ′Epr (τ 3,ϕ ) = ′Epr (τ 3)cos(ω prτ 3 +ϕ ) , (88) 

 
  
I(τ ,ϕ ) ≈ nc

2π
′Epr (τ )Ebir (τ )sin(ϕ )+ ′Epr (τ )Edic(τ )cos(ϕ )⎡⎣ ⎤⎦  (89) 

The birefringent and dichroic response of the molecular system can now be observed for phases 

of φ = π/2, 3π/2… and φ = 0, π… , respectively.  

 

Incoherent pump-probe experiments 

 What information does the pump-probe experiment contain? Since the time delay we 

control is the second time interval τ2, the diagrams for a two level system indicate that these 

measure population relaxation: 
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   ΔI τ( ) ∝ µab

4
 e−Γbbτ  (90) 

In fact measuring population changes and relaxation are the most common use of this 

experiment.  When dephasing is very rapid, the pump-probe can be interpreted as an incoherent 

experiment, and the differential intensity (or absorption) change is proportional to the change of 

population of the states observed by the probe field. The pump-induced population changes in 

the probe states can be described by rate equations that describe the population relaxation, 

redistribution, or chemical kinetics.   

 For the case where the pump and probe frequencies are the same, the signal decays as a 

results of population relaxation of the initially excited state. The two-level system diagrams 

indicate that the evolution in τ2 is differentiated by evolution in the ground or excited state. 

These diagrams reflect the equal signal contributions from the ground state bleach (loss of 

ground state population) and stimulated emission from the excited state. For direct relaxation 

from excited to ground state the loss of population in the excited state Γbb is the same as the 

refilling of the hole in the ground state Γaa, so that Γaa = Γbb. If population relaxation from the 

excited state is through an intermediate, then the pump-probe decay will reflect equal 

contributions from both processes, which can be described by coupled first-order rate equations.  

 When the resonance frequencies of the pump and probe fields are different, then the 

incoherent pump-probe signal is related to the joint probability of exciting the system at pu ω  

and detecting at prω  after waiting a time τ, 
  
P ω pr ,τ ;ω pu( ) . 

 
Coherent pump-probe experiments 

 Ultrafast pump-probe measurements on the time-

scale of vibrational dephasing operate in a coherent 

regime where wavepackets prepared by the pump-pulse 

modulate the probe intensity. This provides a mechanism 

for studying the dynamics of excited electronic states with 

coupled vibrations and photoinitiated chemical reaction 

dynamics. If we consider the case of pump-probe 
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experiments on electronic states where  
ω pu =ω pr , our description of the pump-probe from 

Feynmann diagrams indicates that the pump-pulse creates excitations both on the excited state 

and ground state.  Both wavepackets will contribute to the signal. 

 There are two equivalent ways of describing the experiment, which mirror our earlier 

description of electronic spectroscopy for an electronic transition coupled to nuclear motion. The 

first is to describe the spectroscopy in terms of the eigenstates of H0,   e,n . The second draws on 

the energy gap Hamiltonian to describe the spectroscopy as two electronic levels HS that interact 

with the vibrational degrees of freedom HB, and the wavepacket dynamics are captured by HSB. 

 For the eigenstate description, a two level system is inadequate to capture the wavepacket 

dynamics. Instead, describe the spectroscopy in terms of the four-level system diagrams given 

earlier. In addition to the population relaxation terms, we see that the R2 and R4 terms describe 

the evolution of coherences in the excited electronic state, whereas the R1 and R3 terms describe 

the ground state wave packet. For an underdamped wavepacket these coherences are observed as 

quantum beats on the pump-probe signal. 
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CARS (Coherent Anti-Stokes Raman Scattering) 
 
Used to drive ground state vibrations with optical pulses or cw fields. 

• Two fields, with a frequency difference equal to a vibrational transition energy, are used 

to excite the vibration.   

• The first field is the “pump” and the second is the “Stokes” field.   

• A second interaction with the pump frequency lead to a signal that radiates at the anti-

Stokes frequency: 
  
ω sig = 2ω P −ω S  and the signal is observed background-free next to the 

transmitted pump field:   
ksig = 2kP − kS . 

 
The experiment is described by R1 to R4, and the polarization is 
 

 

  

R 3( ) = µe ′v µ ′v g e−iωegτ−Γegτµgvµve + c.c.

=α ege
−iωegτ−Γegτα ge + c.c.

 

 
The CARS experiment is similar to a linear experiment in which the lineshape is determined by 

the Fourier transform of 
  
C τ( ) = α τ( )α 0( ) . 

The same processes contribute to Optical Kerr Effect Experiments and Impulsive Stimulated 

Raman Scattering. 
  



 44 

5. Characterizing Fluctuations  

Eigenstate vs. system/bath perspectives 
From our earlier work on electronic spectroscopy, we found that there are two equivalent ways 

of describing spectroscopic problems, which can be classified as the eigenstate and system/bath 

perspectives. Let’s summarize these before turning back to nonlinear spectroscopy, using 

electronic spectroscopy as the example: 

1) Eigenstate:  The interaction of light and matter is treated with the interaction picture 

Hamiltonian   H = H0 +V t( ) . 0H  is the full material Hamiltonian, expressed as a function 

of nuclear and electronic coordinates, and is characterized by eigenstates which are the 

solution to   H0 n = En n . In the electronic case    n = e,n1,n2…  represent labels for a 

particular vibronic state. The dipole operator in ( )V t  couples these states. Given that we 

have such detailed knowledge of the matter, we can obtain an absorption spectrum in two 

ways.  In the time domain, we know 

  
  
Cµµ t( ) = pn n µ t( )µ 0( ) n

n
∑ = pn µnm

2

n,m
∑ e− iωmnt  (91) 

 The absorption lineshape is then related to the Fourier transform of ( )C t , 

  
  
σ ω( ) = pn µnm

2

n,m
∑ 1

ω −ω nm − iΓnm

 (92) 

 where the phenomenological damping constant nmΓ  was first added into eq. (91).  This 

approach works well if you have an intimate knowledge of the Hamiltonian if your 

spectrum is highly structured and if irreversible relaxation processes are of minor 

importance.   

2) System/Bath: In condensed phases, irreversible dynamics and featureless lineshapes 

suggest a different approach. In the system/bath or energy gap representation, we separate 

our Hamiltonian into two parts: the system sH  contains a few degrees of freedom Q 

which we treat in detail, and the remaining degrees of freedom (q) are in the bath  HB .  

Ideally, the interaction between the two sets  HSB qQ( )  is weak. 

    H0 = HS + HB + HSB . (93) 
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 Spectroscopically we usually think of the dipole operator as acting on the system state, 

i.e. the dipole operator is a function of Q. If we then know the eigenstates of  HS , 

 HS n = En n  where  n = g  or  e  for the electronic case, the dipole correlation 

function is 

  
  
Cµµ t( ) = µeg

2
e− i ωeg t

exp −i HSB ′t( )d ′t
0

t

∫⎡
⎣⎢

⎤
⎦⎥

 (94) 

 The influence of the dark states in BH  is to modulate or change the spectroscopic energy 

gap egω  in a form dictated by the time-dependent system-bath interaction. The system-

bath approach is a natural way of treating condensed phase problems where you can’t 

treat all of the nuclear motions (liquid/lattice) explicitly. Also, you can imagine hybrid 

approaches if there are several system states that you wish to investigate 

spectroscopically.   

 
 
Energy Gap Fluctuations 
 
How do transition energy gap fluctuations enter into the nonlinear response? As we did in the 

case of linear experiments, we will make use of the second cumulants approximation to relate 

dipole correlation functions to the energy gap correlation function ( )egC τ . Remembering that for 

the case of a system-bath interaction that that linearly couples the system and bath nuclear 

coordinates, the cumulant expansion allows the linear spectroscopy to be expressed in terms of 

the lineshape function ( )g t   

 
  
Cµµ t( ) = µeg

2
e− iωegt e−g t( )  (95) 

 

   

g t( ) = d ′′t d ′t
1
!2 δ Heg ′t( )δ Heg 0( )

Ceg ′t( )
" #$$$$ %$$$$0

′′t

∫0

t

∫  (96) 

 
  
Ceg τ( ) = δω eg τ( )δω eg 0( )  (97) 

( )g t  is a complex function for which the imaginary components describe nuclear motion 

modulating or shifting the energy gap, whereas the real part describes the fluctuations and 
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damping that lead to line broadening. When  
Ceg τ( )  takes on an undamped oscillatory form 

  
Ceg τ( ) = Deiω0τ , as we might expect for coupling of the electronic transition to a nuclear mode 

with frequency ω0, we recover the expressions that we originally derived for the electronic 

absorption lineshape in which D is the coupling strength and related to the Frank-Condon factor.   

 Here we are interested in discerning line-broadening mechanisms, and the time scale of 

random fluctuations that influence the transition energy gap. Summarizing our earlier results, we 

can express the lineshape functions for energy gap fluctuations in the homogeneous and 

imhomogeneous limit as  

1) Homogeneous. The bath fluctuations are infinitely fast, and only characterized by a 

magnitude: 

 
  
Ceg τ( ) = Γδ τ( ) . (98) 

In this limit, we obtain the phenomenological damping result 

   g t( ) = Γ t  (99) 

Which leads to homogeneous Lorentzian lineshapes with width Γ. 

2) Inhomogeneous. The bath fluctuations are infinitely slow, and again characterized by a 

magnitude, but there is no decay of the correlations 

 
  
Ceg τ( ) = Δ2 . (100) 

This limit recovers the Gaussian static limit, and the Gaussian inhomogeneous lineshape 

where Δ is the distribution of frequencies. 

   g t( ) = 1
2 Δ

2 t2 . (101) 

3) The intermediate regime is when the energy gap fluctuates on the same time scale as the 

experiment. The simplest description is the stochastic model which describes the loss of 

correlation with a time scale τc 

 
  
Ceg τ( ) = Δ2 exp −t / τ c( )  (102) 

which leads to  

 
  
g t( ) = Δ2τ c

2 exp −t / τ c( ) + t / τ c −1⎡⎣ ⎤⎦  (103) 
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 For an arbitrary form of the dynamics of the bath, we can construct ( )g t  as a sum over 

independent modes 
  
g t( ) = gi t( )i∑ .  Or for a continuous distribution for modes, we can describe 

the bath in terms of the spectral density ρ ω( )  that describes the coupled nuclear motions 

 
   
ρ ω( ) = 1

2πω 2 Im !Ceg ω( )⎡⎣ ⎤⎦  (104) 

 

   

g t( ) = dω 1
2πω 2

!Ceg ω( ) exp −iωt( ) + iωt −1⎡⎣ ⎤⎦−∞

+∞

∫

= dω
−∞

+∞

∫ ρ ω( ) coth
β"ω

2
⎛
⎝⎜

⎞
⎠⎟

1− cosωt( ) + i sinωt −ωt( )⎛
⎝⎜

⎞
⎠⎟

 (105) 

To construct an arbitrary form of the bath, the phenomenological Brownian oscillator model 

allows us to construct a bath of i damped oscillators,  

 

   

′′Ceg ω( ) = ξiCi
′′

i
∑ ω( )

Ci
′′ ω( ) = !

mi

ω Γ i

ω i
2 −ω 2( )2

+ 4ω 2Γ i
2

 (106) 

Here ξi is the coupling coefficient for oscillator i.   
 
 
Nonlinear Response with the Energy Gap Hamiltonian 
 
In a manner that parallels our description of the linear response from a system coupled to a bath, 

the nonlinear response can also be partitioned into a system, bath and energy gap Hamiltonian, 

leading to similar averages over the fluctuations of the energy gap. In the general case, the four 

correlations functions contributing to the third order response that emerge from eq. (37) are 

 

  

R1 = pa µab τ 3 +τ 2 +τ1( )µbc τ 2 +τ1( )µcd τ1( )µda 0( )Fabcd
(1)

abcd
∑

R2 = pa µab τ1( )µbc τ 2 +τ1( )µcd τ 3 +τ 2 +τ1( )µda 0( )Fabcd
(2)

abcd
∑

R3 = pa µda 0( )µab τ 2 +τ1( )µbc τ 3 +τ 2 +τ1( )µcd τ1( )Fabcd
(3)

abcd
∑

R4 = pa µda τ1( )µab t1( )µbc τ 3 +τ 2 +τ1( )µcd τ 2 +τ1( )Fabcd
(4)

abcd
∑

 (107) 
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Here a,b,c, and d are indices for system eigenstates, and the dephasing functions are  

 

  

Fabcd
(1) = exp −i ω ba τ( )dτ

τ 2+τ1

τ3+τ 2+τ1

∫ − i ω ca τ( )dτ
τ1

τ 2+τ1

∫ − i ω da τ( )dτ
0

τ1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fabcd
(2) = exp −i ω dc τ( )dτ

τ 2+τ1

τ3+τ 2+τ1

∫ − i ω db τ( )dτ
τ1

τ 2+τ1

∫ − i ω da τ( )dτ
0

τ1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fabcd
(3) = exp −i ω bc τ( )dτ

τ 2+τ1

τ3+τ 2+τ1

∫ + i ω ca τ( )dτ
τ1

τ 2+τ1

∫ + i ω da τ( )dτ
0

τ1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Fabcd
(4) = exp −i ω bc τ( )dτ

τ 2+τ1

τ3+τ 2+τ1

∫ + i ω db τ( )dτ
τ1

τ 2+τ1

∫ + i ω da τ( )dτ
0

τ1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (108) 

As before    ω ab = Hab ! .   These expressions describe the correlated dynamics of the dipole 

operator acting between multiple resonant transitions, in which the amplitude, frequency, and 

orientation of the dipole operator may vary with time.  

 As a further simplification, let’s consider the specific form of the nonlinear response for a 

fluctuating two-level system.  If we allow only for two states e and g, and apply the Condon 

approximation, eq. (108) gives  

 
  
R1 τ1,τ 2 ,τ 3( ) = pg µeg

4
eiωeg τ1+τ3( ) exp −i dτ ω eg τ( )

0

τ1∫ − i dτ ω eg τ( )
τ1+τ 2

τ1+τ 2+τ3∫⎛
⎝

⎞
⎠  (109) 

 
  
R2 τ1,τ 2 ,τ 3( ) = pg µeg

4
e− iωeg τ1−τ3( ) exp i dτ ω eg τ( )

0

τ1∫ − i dτ ω eg τ( )
τ1+τ 2

τ1+τ 2+τ3∫⎛
⎝

⎞
⎠  (110) 

These are the rephasing (R2) and non-rephasing (R1) functions, written for a two-level system. 

These expressions only account for the correlation of fluctuating frequencies while the system 

evolves during the coherence periods τ1 and τ3. Since they neglect any difference in relaxation on 

the ground or excited state during the population period τ2, R2= R3 and R1= R4.  They also ignore 

reorientational relaxation of the dipole.  

 In the case that the fluctuations of those two states follow Gaussian statistics, we can also 

apply the cumulant expansion to the third order response function. In this case, for a two-level 

system, the four correlation functions are expressed in terms of the lineshape function as: 
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R1 = e− iωegτ1−iωegτ3 i
!

⎛
⎝⎜

⎞
⎠⎟

3

pg µeg

4

× exp −g* τ 3( )− g τ1( )− g* τ 2( ) + g* τ 2 +τ 3( ) + g τ1 +τ 2( )− g τ1 +τ 2 +τ 3( )⎡⎣ ⎤⎦

 (111) 

 

   

R2 = 
i
!

⎛
⎝⎜

⎞
⎠⎟

3

pg µeg

4
eiωegτ1−iωegτ3

× exp −g* τ 3( )− g* τ1( ) + g τ 2( )− g τ 2 +τ 3( )− g* τ1 +τ 2( ) + g* τ1 +τ 2 +τ 3( )⎡⎣ ⎤⎦

 (112) 

 

   

R3 = 
i
!

⎛
⎝⎜

⎞
⎠⎟

3

pg µeg

4
eiωegτ1−iωegτ3

× exp −g τ 3( )− g* τ1( ) + g* τ 2( )− g* τ 2 +τ 3( )− g* τ1 +τ 2( ) + g* τ1 +τ 2 +τ 3( )⎡⎣ ⎤⎦

 (113) 

 

   

R4 = 
i
!

⎛
⎝⎜

⎞
⎠⎟

3

pg µeg

4
e− iωegτ1−iωegτ3

× exp −g τ 3( )− g τ1( )− g τ 2( ) + g τ 2 +τ 3( ) + g τ1 +τ 2( )− g τ1 +τ 2 +τ 3( )⎡⎣ ⎤⎦

 (114) 

 
These expressions provide the most direct way of accounting for fluctuations or periodic 

modulation of the spectroscopic energy gap in nonlinear spectroscopies.   

 
Example:  For the two-pulse photon echo experiment on a system with inhomogeneous 

broadening:  

• Set 
  
g t( ) = Γegt+ 1

2 Δ
2 t2 .  For this simple model g(t) is real. 

• Set τ2 = 0, giving 

   
R2 = R3 = 

i
!

⎛
⎝⎜

⎞
⎠⎟

3

pg µeg

4
eiωegτ1−iωegτ3 exp −2g τ 3( )− 2g τ1( ) + g τ1 +τ 3( )⎡⎣ ⎤⎦ . 

• Substituting g(t) into this expression gives the same result as before. 

   R
3( ) ∝ e− iωeg τ1−τ3( ) e−Γeg τ1+τ3( ) e− τ1−τ3( )2Δ2 /2  (115) 

 
Similar expressions can also be derived for an arbitrary number of eigenstates of the 

system Hamiltonian.8  In that case,  eqs. (107) become 
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R1 = pa µabµbcµcdµda exp −i ω ba τ 3−i ω ca τ 2 − i ω da τ1
⎡⎣ ⎤⎦Fabcd

1( ) τ 3,τ 2 ,τ1( )
abcd
∑

R2 = pa µabµbcµcdµda exp −i ω dc τ 3−i ω db τ 2 − i ω da τ1
⎡⎣ ⎤⎦Fabcd

2( ) τ 3,τ 2 ,τ1( )
abcd
∑

R3 = pa µabµbcµcdµda exp −i ω bc τ 3+i ω ca τ 2 + i ω da τ1
⎡⎣ ⎤⎦Fabcd

3( ) τ 3,τ 2 ,τ1( )
abcd
∑

R4 = pa µabµbcµcdµda exp −i ω bc τ 3+i ω db τ 2 + i ω da τ1
⎡⎣ ⎤⎦Fabcd

4( ) τ 3,τ 2 ,τ1( )
abcd
∑

 (116) 

The dephasing functions are written in terms of lineshape functions with a somewhat different 

form:  

 

  

− ln Fabcd
1( ) τ 3,τ 2 ,τ1( )⎡

⎣
⎤
⎦ = hbb τ 3( ) + hcc τ 2( ) + hdd τ1( ) + hbc

+ τ 3,τ 2( )
                                  + hcd

+ τ 3,τ 2( ) + fbd
+ τ 3,τ1;τ 2( )

− ln Fabcd
2( ) τ 3,τ 2 ,τ1( )⎡

⎣
⎤
⎦ = hcc τ 3( )⎡⎣ ⎤⎦

*
+ hbb τ 2( )⎡⎣ ⎤⎦

*
+ hdd τ1 +τ 2 +τ 3( ) + hbc

+ τ 3,τ 2( )⎡⎣ ⎤⎦
*

                                  + hcd
− τ1 +τ 2 +τ 3,τ 3( ) + fbd

− τ 2 ,τ1 +τ 2 +τ 3;τ 3( )⎡⎣ ⎤⎦
*

− ln Fabcd
3( ) τ 3,τ 2 ,τ1( )⎡

⎣
⎤
⎦

*
= hbb τ 3( )⎡⎣ ⎤⎦

*
+ hcc τ 2 +τ 3( ) + hdd τ1( ) + hcd

+ τ 2 +τ 3,τ1( )
                                   − fbc

− τ 3,τ 2 +τ 3;τ 2( )− fbd
+ τ 3,τ1;τ 2( )

− ln Fabcd
4( ) τ 3,τ 2 ,τ1( )⎡

⎣
⎤
⎦

*
= hcc τ 3( ) + hdd τ1 +τ 2( ) + hbb τ 2 +τ 3( )⎡⎣ ⎤⎦

*
− hbc

− τ 3,τ 2 +τ 3( )
                                   + hcd

+ τ1 +τ 2 ,τ 3( )− fbd
− τ1 +τ 2 ,τ 2 +τ 3;τ 3( )

 (117) 

where: 

 

  

hnm τ( ) = d ′τ 2
0

τ

∫ d ′τ1Cnm ′τ 2 − ′τ1( )
0

τ 2

∫

hnm
± τ 2 ,τ1( ) = d ′τ 2

0

τ 2

∫ d ′τ1Cnm ′τ 2 ± ′τ1( )
0

τ1

∫

fnm
± τ 2 ,τ1;τ 3( ) = d ′τ 2

0

τ 2

∫ d ′τ1Cnm ′τ 2 ± ′τ1 +τ 3( )
0

τ1

∫ .

 (118)              

                                                                

 

                                                
8 J. Sung and R. J. Silbey, "Four-wave mixing spectroscopy for a multi-level system," J. Chem. 
Phys. 115, 9266 (2001). 
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How can you characterize fluctuations and spectral diffusion? 
The rephasing ability of the photon echo experiment provides a way of characterizing memory of 

the energy gap transition frequency initially excited by the first pulse. For a static 

inhomogeneous lineshape, perfect memory of transition frequencies is retained through the 

experiment, whereas homogeneous broadening implies extremely rapid dephasing.  So, let’s first 

examine the polarization for a two-pulse photon echo experiment on a system with homogeneous 

and inhomogeneous broadening by varying   Δ / Γeg . Plotting the polarization as proportional to 

the response in eq. (115): 

1τ 3τ 3τ1τ=

1τ 3τ 3τ1τ=

1τ 3τ 3τ1τ=

3ege τ−Γ

( )1 3P ,τ τ

egΔ ≈ Γ

egΔ >> Γ

egΔ << Γ

1 Δ:

 
We see that following the third pulse, the polarization (red line) is damped during τ3 through 

homogeneous dephasing at a rate egΓ , regardless of Δ. However in the inhomogeneous case 

 
Δ >> Γeg , any inhomogeneity is rephased at  τ1 = τ 3 .  The shape of this echo is a Gaussian with 

width ~  1/ Δ . The shape of the echo polarization is a competition between the homogeneous 

damping and the inhomogeneous rephasing.  
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 Normally, one detects the integrated intensity of the radiated echo field.  Setting the pulse 

delay τ1 = τ,  

 
  
S τ( ) ∝ dτ 30

∞

∫ P(3) τ ,τ 3( ) 2
 (119) 

 
  
S τ( ) = exp −4Γegτ −

Γeg
2

Δ2

⎛

⎝
⎜

⎞

⎠
⎟ ⋅erfc −Δτ +

Γeg

Δ
⎛

⎝⎜
⎞

⎠⎟
, (120) 

where erfc(x) = 1−erf(x) is the complementary error function. For the homogeneous and 

inhomogeneous limits of this expression we find 

 
  
Δ << Γeg  ⇒  S τ( ) ∝ e−2Γegτ  (121) 

 ( ) 4      eg
eg S e ττ − ΓΔ >> Γ ⇒ ∝  (122) 

In either limit, the inhomogeneity is removed from the measured decay. 

 In the intermediate case, we observe 

that the leading term in eq. (120) decays 

whereas the second term rises with time. 

This reflects the competition between 

homogeneous damping and the 

inhomogeneous rephasing. As a result, for 

the intermediate case ( Δ ≈ Γab ) we find 

that the integrated signal S(τ) has a 

maximum signal for  τ > 0 .  
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The delay of maximum signal, τ*, is known as the peak shift. The observation of a peak shift is 

an indication that there is imperfect ability to rephrase. Homogenous dephasing, i.e. fluctuations 

fast on the time scale of τ, are acting to scramble memory of the phase of the coherence initially 

created by the first pulse.  

 In the same way, spectral diffusion (processes which randomly modulate the energy gap 

on time scales equal or longer than τ) randomizes phase. It destroys the ability for an echo to 

form by rephasing. To characterize these processes through an energy gap correlation function, 

we can perform a three-pulse photon echo experiment. The three pulse experiment introduces a 

waiting time τ2 between the two coherence periods, which acts to define a variable shutter speed 

for the experiment. The system evolves as a population during this period, and therefore there is 

nominally no phase acquired. We can illustrate this through a lens analogy: 

 
Lens Analogy:  For an inhomogeneous distribution of oscillators with different frequencies, 
we define the phase acquired during a time period through   eiφ  = ei δω it( ) . 
 

Two-Pulse Photon Echo: 

 1τ 3τ

0

φ

 

Rephasing 
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Three-Pulse Photon Echo: 

 1τ 3τ

0

φ

2τ  
 
Since we are in a population state during τ2, there is no evolution of phase. Now to this picture 

we can add spectral diffusion as a slower random modulation of the phase acquired during all 

time periods. If the system can spectrally diffuse during τ2, this degrades the ability of the system 

to rephase and echo formation is diminished.   

Three-Pulse Photon Echo with Spectral Diffusion: 
  

  1τ 3τ

0

φ

2τ  
 
Since spectral diffusion destroys the rephasing, the system appears more and more 

“homogeneous” as τ2 is incremented. Experimentally, one observes how the peak shift of the 

integrated echo changes with the waiting time τ2.  It will be observed to shift toward * 0τ =   as a 

function of τ2.  
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 In fact, one can show that the peak shift with τ2 decays with a form given by the the 

correlation function for system-bath interactions:   

 
  
τ * τ 2( ) ∝ Ceg τ( )  (123) 

Using the lineshape function for the stochastic model 
  
g t( ) = Δ2τ c

2 exp −t / τ c( ) + t / τ c −1⎡⎣ ⎤⎦ , you 

can see that for times τ2 > τc,  

 
  
τ * τ 2( ) ∝ exp −τ 2 / τ c( )⇒ δω eg τ( )δω eg 0( )  (124) 

Thus echo peak shift measurements are a general method to determine the form to  
Ceg τ( )  or 

 ′′Ceg ω( )  or ρ ω( ) . The measurement time scale is limited only by the population lifetime. 



 

Andrei Tokmakoff, 5/31/2011 
 

1 

TWO-DIMENSIONAL SPECTROSCOPY 

Correlation spectroscopy 
What is two-dimensional spectroscopy? This is a method that will describe the underlying 

correlations between two spectral features. Our examination of pump-probe experiments 

indicates that the third-order response reports on the correlation between different spectral 

features. Let’s look at this in more detail using a system with two excited states as an example, 

for which the absorption spectrum shows two spectral features at baω  and caω .   

 
Imagine a double resonance (pump-probe) experiment in which we choose a tunable excitation 

frequency pumpω , and for each pump frequency we measure changes in the absorption spectrum 

as a function of probeω .  Generally speaking, we expect resonant excitation to induce a change of 

absorbance.   

 The question is: what do we observe if we pump at baω  and probe at caω ?  If nothing 

happens, then we can conclude that microscopically, there is no interaction between the degrees 

of freedom that give rise to the ba and ca transitions.  However, a change of absorbance at caω  

indicates that in some manner the excitation of baω  is correlated with caω .  Microscopically, 

there is a coupling or chemical conversion that allows deposited energy to flow between the 

coordinates. Alternatively, we can say that the observed transitions occur between eigenstates 

whose character and energy encode molecular interactions between the coupled degrees of 

freedom (here β and χ): 
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 Now imagine that you perform this double resonance experiment measuring the change 

in absorption for all possible values of  
ω pump  and 

 
ω probe , and plot these as a two-dimensional 

contour plot:1 

 

This is a two-dimensional spectrum that reports on the correlation of spectral features observed 

in the absorption spectrum.  Diagonal peaks reflect the case where the same resonance is pumped 

and probed. Cross peaks indicate a cross-correlation that arises from pumping one feature and 

observing a change in the other. The principles of correlation spectroscopy in this form were 

initially developed in the area of magnetic resonance, but are finding increasing use in the areas 

of optical and infrared spectroscopy. 

 Double resonance analogies such as these illustrate the power of a two-dimensional 

spectrum to visualize the molecular interactions in a complex system with many degrees of 

freedom. Similarly, we can see how a 2D spectrum can separate components of a mixture 

through the presence or absence of cross peaks. 
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 Also, it becomes clear how an inhomogeneous lineshape can be decomposed into the 

distribution of configurations, and the underlying dynamics within the ensemble. Take an 

inhomogeneous lineshape with width Δ and mean frequency  ω ab , which is composed of a 

distribution of homogeneous transitions of width Γ. We will now subject the system to the same 

narrow band excitation followed by probing the differential absorption ΔA at all probe 

frequencies.   

 
Here we observe that the contours of a two-dimensional lineshape report on the inhomogeneous 

broadening. We observe that the lineshape is elongated along the diagonal axis (ω1=ω3). The 

diagonal linewidth is related to the inhomogeneous width Δ  whereas the antidiagonal width 

  
ω1 +ω3 = ω ab / 2⎡⎣ ⎤⎦  is determined by the homogeneous linewidth Γ .   
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2D Spectroscopy from Third Order Response 
These examples indicate that narrow band pump-probe experiments can be used to construct 2D 

spectra, so in fact the third-order nonlinear response should describe 2D spectra. To describe 

these spectra, we can think of the excitation as a third-order process arising from a sequence of 

interactions with the system eigenstates. For instance, taking our initial example with three 

levels, one of the contributing factors is of the form R2:   

 
Setting 2τ  = 0 and neglecting damping, the response function is 

   R2 τ1,τ 3( ) = pa µab

2
µac

2 e− iωbaτ1−iωcaτ3  (1) 

The time domain behavior describes the evolution from one coherent state to another—driven by 

the light fields:   

 
 A more intuitive description is in the frequency domain, which we obtained by Fourier 

transforming eq. (1):   

 

   

!R2 ω1,ω3( ) = eiω1τ1+iω3τ3 R2 τ1,τ 3( ) dτ1 dτ 3−∞

∞

∫−∞

∞

∫
= pa µab

2
µac

2
δ ω3 −ω ca( )δ ω1 −ω ba( )

≡ pa µab

2
µac

2
Ρ ω3,τ 2;ω1( )

 (2) 

The function P looks just like the covariance xy  that describes the correlation of two variables 

x  and y . In fact P is a joint probability function that describes the probability of exciting the 
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system at baω  and observing the system at caω  (after waiting a time 2τ ).  In particular, this 

diagram describes the cross peak in the upper left of the initial example we discussed.  

Fourier transform spectroscopy 
The last example underscores the close relationship between time and frequency domain 

representations of the data. Similar information to the frequency-domain double resonance 

experiment is obtained by Fourier transformation of the coherent evolution periods in a time 

domain experiment with short broadband pulses.   

 In practice, the use of Fourier transforms 

requires a phase-sensitive measure of the radiated 

signal field, rather than the intensity measured by 

photodetectors. This can be obtained by beating 

the signal against a reference pulse (or local 

oscillator) on a photodetector. If we measure the 

cross term between a weak signal and strong local 

oscillator: 

 

  

δ ILO τ LO( ) = Esig + ELO

2
− ELO

2

≈ 2Re dτ 3 Esig τ 3( ) ELO τ 3 −τ LO( )
−∞

+∞

∫
. (3) 

For a short pulse LOE ,  
δ I τ LO( )∝ Esig τ LO( ) .  By acquiring the signal as a function of 1τ  and LOτ  

we can obtain the time domain signal and numerically Fourier transform to obtain a 2D 

spectrum.   

 Alternatively, we can perform these operations in reverse order, using a grating or other 

dispersive optic to spatially disperse the frequency components of the signal. This is in essence 

an analog Fourier Transform. The interference between the spatially dispersed Fourier 

components of the signal and LO are subsequently detected.   

 

 

 

( ) ( ) ( ) ( )2 2
3 3 3 3LO sig LOI E E Eδ ω ω ω ω= + −∫
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Characterizing Couplings in 2D Spectra2 
One of the unique characteristics of 2D spectroscopy is the ability to characterize molecular 

couplings. This allows one to understand microscopic relationships between different objects, 

and with knowledge of the interaction mechanism, determine the structure or reveal the 

dynamics of the system. To understand how 2D spectra report on molecular interactions, we will 

discuss the spectroscopy using a model for two coupled electronic or vibrational degrees of 

freedom. Since the 2D spectrum reports on the eigenstates of the coupled system, understanding 

the coupling between microscopic states requires a model for the eigenstates in the basis of the 

interacting coordinates of interest. Traditional linear spectroscopy does not provide enough 

constraints to uniquely determine these variables, but 2D spectroscopy provides this information 

through a characterization of two-quantum eigenstates. Since it takes less energy to excite one 

coordinate if a coupled 

coordinate already has energy in 

it, a characterization of the 

energy of the combination mode 

with one quantum of excitation in 

each coordinate provides a route 

to obtaining the coupling.  This 

principle lies behind the use of 

overtone and combination band 

molecular spectroscopy to 

unravel anharmonic couplings.  

The language for the different variables for the Hamiltonian of two coupled coordinates 

varies considerably by discipline. A variety of terms that are used are summarized below. We 

will use the underlined terms. 

System Hamiltonian SH  Local or site 
basis (i,j) 

Eigenbasis 
(a,b) 

One-Quantum 
Eigenstates Two-Quantum Eigenstates 

Local mode Hamiltonian  
Exciton Hamiltonian 

Frenkel Exciton Hamiltonian  
Coupled oscillators 

Sites 
Local modes 
Oscillators 

Chromophores 

Eigenstates 
Exciton states 

Delocalized states  
 

Fundamental 
v=0-1 

One-exciton states 
Exciton band 

Combination mode or band 
Overtone  

Doubly excited states 
Biexciton  

Two-exciton states 
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The model for two coupled coordinates can take many forms. We will pay particular 

attention to a Hamiltonian that describes the coupling between two local vibrational modes i and 

j coupled through a bilinear interaction of strength J: 

 

  

Hvib = Hi + H j +Vi, j

=
pi

2

2mi

+V qi( ) + pj
2

2mj

+V qj( ) + Jqiq j

 (4) 

An alternate form cast in the ladder operators for vibrational or electronic states is the Frenkel 

exciton Hamiltonian 

 
   
Hvib,harmonic ≈ !ω i ai

†ai( ) + !ω j a j
†aj( ) + J ai

†aj + aia j
†( ) . (5) 

 
  
Helec = Eiai

†ai + E ja j
†aj + Jijai

†aj + c.c( )  (6) 

The bi-linear interaction is the simplest form by which the energy of one state depends on the 

other. One can think of it as the leading term in the expansion of the coupling between the two 

local states.  Higher order expansion terms are used in another common form, the cubic 

anharmonic coupling between normal modes of vibration  

 
  
Hvib =

pi
2

2mi

+ 1
2

kiqi
2 + 1

6
giiiqi

2⎛

⎝⎜
⎞

⎠⎟
+

pj
2

2mj

+ 1
2

k jq j
2 + 1

6
g jjjq j

2
⎛

⎝
⎜

⎞

⎠
⎟ +

1
2

giijqi
2qj +

1
2

gijjqi q j
2⎛

⎝⎜
⎞
⎠⎟

. (7) 

 In the case of eq. (5), the eigenstates and energy eigenvalues for the one-quantum states 

are obtained by diagonalizing the 2x2 matrix 

 

  

HS
(1) =

Ei=1 J

J E j=1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (8) 

1iE = and 1jE = are the one-quantum energies for the local modes iq  and jq . These give the system 

energy eigenvalues 

 
  
Ea/b = ΔE ± ΔE2 + J 2( )1/2

 (9) 

 
  
ΔE = 1

2
Ei=1 − E j=1( ) . (10) 

aE  and bE  can be observed in the linear spectrum, but are not sufficient to unravel the three 

variables (site energies i jE E and coupling J) relevant to the Hamiltonian; more information is 

needed.  
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For the purposes of 2D spectroscopy, the coupling is encoded in the two-quantum 

eigenstates. Since it takes less energy to excite a vibration  i  if a coupled mode  j  already has 

energy, we can characterized the strength of interaction from the system eigenstates by 

determining the energy of the combination mode abE  relative to the sum of the fundamentals: 

  Δab = Ea + Eb − Eab . (11) 

In essence, with a characterization of   Eab , Ea , Eb  one has three variables that constrain , ,i jE E J . 

The relationship between  Δab  and J depends on the model.  

Working specifically with the vibrational Hamiltonian eq. (4), there are three two-

quantum states that must be considered. Expressed as product states in the two local modes these 

are ,i j = 20 , 02 , and 11 . The two-quantum energy eigenvalues of the system are obtained 

by diagonalizing the 3x3 matrix 

 

  

HS
(2) =

Ei=2 0 2J

0 E j=2 2J

2J 2J Ei=1 + E j=1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (12) 

Here 2iE = and 2jE =  are the two-quantum energies for the local modes iq  and jq . These are 

commonly expressed in terms of  δ Ei , the anharmonic shift of the i=1-2 energy gap relative to 

the i=0-1 one-quantum energy: 

 
  

δ Ei = Ei=1 − Ei=0( )− Ei=2 − Ei=1( )
δω i =ω10

i −ω 21
i

 (13) 

 Although there are analytical solutions to eq. (12), it is more informative to examine 

solutions in two limits. In the strong coupling limit (J >> ΔE), one finds  

  Δab = J . (14) 

For vibrations with the same anharmonicity Eδ  with weak coupling between them (J << ΔE), 

perturbation theory yields 

 
  
Δab = δ E J 2

ΔE2 . (15) 
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This result is similar to the perturbative solution for weakly coupled oscillators of the form given 

by eq. (7) 

 
  
Δab = giij

2 4Ei

E j
2 − 4Ei

2

⎛

⎝
⎜

⎞

⎠
⎟ + gijj

2 4E j

Ei
2 − 4E j

2

⎛

⎝
⎜

⎞

⎠
⎟ . (16) 

 

EXAMPLE 
So, how do these variables present themselves in 2D spectra?  Here it is helpful to use a 

specific example: the strongly coupled carbonyl vibrations of Rh(CO)2(acac) or RDC.  For the 

purpose of 2D spectroscopy with infrared fields resonant with the carbonyl 

transitions, there are six quantum states (counting the ground state) that 

must be considered. Coupling between the two degenerate CO stretches 

leads to symmetric and anti-symmetric one-quantum eigenstates, which are 

more commonly referred to by their normal mode designations: the 

symmetric and asymmetric stretching vibrations. For n=2 coupled 

vibrations, there are n(n−1)/2 = 3 two-quantum eigenstates.  In the normal 

mode designation, these are the first overtones of the symmetric and 

asymmetric modes and the combination band. This leads to a six level 

system for the system eigenstates, which we designate by the number of 

quanta in the symmetric and asymmetric stretch:  00 ,  s = 10 ,  a = 01 ,   2s = 20 , 

  2a = 02 , and   sa = 11 . For a model electronic system, there are four essential levels that 

need to be considered, since Fermi statistics does not allow two electrons in the same state:  

 00 , 10 , 01 , and  11 . 

We now calculate the nonlinear third-order 

response for this six-level system, assuming that all of 

the population is initially in the ground state. To 

describe a double-resonance or Fourier transform 2D 

correlation spectrum in the variables ω1 and ω3, include 

all terms relevant to pump-probe experiments: 

  -k1+k2+k3  ( IS , rephasing) and   k1 - k2+k3  ( SII , non-
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rephasing). After summing over many interaction permutations using the phenomenological 

propagator, keeping only dipole allowed transitions with ±1 quantum, we find that we expect 

eight resonances in a 2D spectrum.  For the case of the rephasing spectrum IS  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 4
0 0

2 2 2 2
0 0 0 0

2 2
0 2

s , a ,
I 1 3

1 s,0 s,0 3 s,0 s,0 1 a,0 a,0 3 a,0 a,0

a , s , a , s ,

1 s,0 s,0 3 a,0 a,0 1 a,0 a,0 3 s,0 b,0

s , s ,s

1 s,

2 µ 2 µ
S ,

i ω Γ i ω Γ i ω Γ i ω Γ

2 µ µ 2 µ µ
i ω Γ i ω Γ i ω Γ i ω Γ

µ µ
i ω

ω ω = +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + ω + + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + ω + + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−
ω +( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
0 2

2 2 2 2
0 0

a , a ,a

0 s,0 3 s,0 s 2s,s 1 a,0 a,0 3 a,0 a 2a,a

s , as ,s 0,s a,0 as,a s,as a , as ,a 0,a s,0 as,s a,as

1 s,0 s,0 3 a,0 as as,s 1 a,0 a,0

µ µ
Γ i ω Δ Γ i ω Γ i ω Δ Γ

µ µ µ µ µ µ µ µ µ µ µ µ
i ω Γ i ω Δ Γ i ω Γ i

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ω − + + ω + + ω − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + + ω + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( )3 s,0 as as,aω Δ Γ⎡ ⎤ω − + +⎣ ⎦

′ ′ ′ ′≡ 1+1 + 2+ 2 + 3+ 3 + 4+ 4

(17) 

To discuss these peaks we examine how they appear in the experimental Fourier 

transform 2D IR spectrum of RDC, here plotted both as in differential absorption mode and 

absolute value mode. We note that there are eight peaks, labeled according to the terms i eq. (17) 

from which they arise. Each peak specifies a sequence of interactions with the system 

eigenstates, with excitation at a particular ω1 and detection at given ω3. Notice that in the 

excitation dimension ω1 all of the peaks lie on one of the fundamental frequencies. Along the 

detection axis ω3 resonances are seen at all six one-quantum transitions present in our system. 

More precisely, 

there are four features: two 

diagonal and two cross 

peaks each of which are 

split into a pair. The 

positive diagonal and cross 

peak features represent 

evolution on the 

fundamental transitions, 

while the split negative 
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features arise from propagation in the two-quantum manifold. The diagonal peaks represent a 

sequence of interactions with the field that leaves the coherence on the same transition during 

both periods, where as the split peak represents promotion from the fundamental to the overtone 

during detection. The overtone is anharmonically shifted, and therefore the splitting between the 

peaks, ,a sΔ Δ , gives the diagonal anharmonicity. The cross peaks arise from the transfer of 

excitation from one fundamental to the other, while the shifted peak represents promotion to the 

combination band for detection. The combination band is shifted in frequency due to coupling 

between the two modes, and therefore the splitting between the peaks in the off-diagonal features 

asΔ  gives the off-diagonal anharmonicity.   

Notice for each split pair of peaks, that in the limit that the anharmonicity vanishes, the 

two peaks in each feature would overlap. Given that they have opposite sign, the peaks would 

destructively interfere and vanish for a harmonic system.  This is a manifestation of the rule that 

a nonlinear response vanishes for a harmonic system. So, in fact, a 2D spectrum will have 

signatures of whatever types of vibrational interactions lead to imperfect interference between 

these two contributions. Nonlinearity of the transition dipole moment will lead to imperfect 

cancellation of the peaks at the amplitude level, and nonlinear coupling with a bath will lead to 

different lineshapes for the two features. 

With an assignment of the peaks in the spectrum, one has mapped out the energies of the 

one- and two-quantum system eigenstates.  These eigenvalues act to constrain any model that 

will be used to interpret the system. One can now evaluate how models for the coupled 

vibrations match the data.  For instance, when fitting the RDC spectrum to the Hamiltonian in 

eq. (4) for two coupled anharmonic local modes with a potential of the form 

  V qi( ) = 1
2 kiqi

2 + 1
6 giiiqi

3 , we obtain    !ω10
i = !ω10

j = 2074 cm-1, ijJ = 35 cm-1,  and  
giii = g jjj = 172 

cm-1.  Alternatively, we can describe the spectrum through eq. (7) as symmetric and asymmetric 

normal modes with diagonal and off-diagonal anharmonicity.  This leads to    !ω10
a = 2038 cm-1, 

   !ω10
s = 2108 cm-1, aaa sssg g= = 32 cm-1, and  gssa = gaas = 22 cm-1. Provided that one knows the 

origin of the coupling and its spatial or angular dependence, one can use these parameters to 

obtain a structure.
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Appendix: Third Order Diagrams Corresponding to Peaks in a 2D Spectrum of Coupled Vibrations 

 

 
 
*Diagrams that do not contribute to double-resonance experiments, but do contribute to Fourier-transform measurements. 

Rephasing diagrams correspond to the terms in eq. (17). 
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Using a phenomenological propagator, the SII non-rephasing diagrams lead to the following expressions for the eight peaks in the 2D 

spectrum. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 2 2 4 2 2
0 0 0 0 0 0

2 2 2 2
0 0 0 0

s , a , s , a , a , s ,
II 1 3

1 s,0 s,0 3 s,0 s,0 1 a,0 a,0 3 a,0 a,0

a , s , a , s ,

1 s,0 s,0 3 a,0 a,0 1 a,0 a,0 3 s,0 b

2 µ µ µ 2 µ µ µ
S ,

i ω Γ i ω Γ i ω Γ i ω Γ

µ µ µ µ
i ω Γ i ω Γ i ω Γ i ω Γ

+ +
ω ω = +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + − ω − + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + − ω − + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
0 0

2 2
0

,0

s , 2s,s s , 0,a as,s a,as a,0 2a,a a,0 0,s as,a s,as

1 s,0 s,0 3 s,0 s 2s,s 1 a,0 a,0 3 a,0 a 2a,a

s , as,s

1 s,0 s,0 3 a,0 as as,s

µ µ µ µ µ µ µ µ +µ µ µ µ
i ω Γ i ω Δ Γ i ω Γ i ω Δ Γ

µ µ µ
i ω Γ i ω Δ Γ

⎡ ⎤⎣ ⎦

+
− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + + − ω − + ω − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −
⎡ ⎤ ⎡ ⎤− ω − + ω − + +⎣ ⎦ ⎣ ⎦ ( ) ( )

2 2
0a , as,a

1 a,0 a,0 3 s,0 as as,a

µ
i ω Γ i ω Δ Γ⎡ ⎤ ⎡ ⎤− ω − + ω − + +⎣ ⎦ ⎣ ⎦

′ ′ ′ ′≡ 1+1 + 2+ 2 + 3+ 3 + 4+ 4

 (18) 
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Two-dimensional spectroscopy to characterize spectral diffusion 

A more intuitive, albeit difficult, approach to characterizing spectral diffusion is with a two-

dimensional correlation technique. Returning to our example of a double resonance experiment, 

let’s describe the response from an inhomogeneous lineshape with width Δ and mean frequency 

abω , which is composed of a distribution of homogeneous transitions of width Γ. We will now 

subject the system to excitation by a narrow band pump field, and probe the differential 

absorption ΔA at all probe frequencies. We then repeat this for all pump frequencies: 

ΔA

b

a
ab

A

A

ΔA
Δ

Δ

Γ

~ 2Γ

abω

abω

pumpω

probeω

pumpω

abω

probeω

probeω

probeω

 
In constructing a two-dimensional representation of this correlation spectrum, we observe that 

the observed lineshape is elongated along the diagonal axis (ω1=ω3). The diagonal linewidth is 

related to the inhomogeneous width Δ  whereas the antidiagonal width 
  
ω1 +ω3 = ω ab / 2⎡⎣ ⎤⎦  is 

determined by the homogeneous linewidth Γ .   

 For the system exhibiting spectral diffusion, we recognize that we can introduce a waiting 

time 2τ  between excitation and detection, which provides a controlled period over which the 
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system can evolve. One can see that when 2τ  varies from much less to much greater than the 

correlation time, cτ , that the lineshape will gradually become symmetric.   

 
This reflects the fact that at long times the system excited at any one frequency can be observed 

at any other with equilibrium probability. That is, the correlation between excitation and 

detection frequencies vanishes.   

 

  

δ ω1 −ω eg
( i)( )δ ω3 −ω eg

j( )( )
ij
∑

→ δ ω1 −ω eg
i( )( )

ij
∑ δ ω3 −ω eg

j( )( )
 (19) 

To characterize the energy gap correlation function, we choose a metric 

that describes the change as a function of 2τ .  For instance, the 

ellipticity  

 
  
E τ 2( ) = a2 − b2

a2 + b2  (20) 

is directly proportional to  
Ceg τ( ) .   

 The photon echo experiment is the time domain version of this double-resonance or hole 

burning experiment. If we examine 2R  in the inhomogeneous and homogeneous limits, we can 

plot the polarization envelope as a function of 1τ  and 3τ .   
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In the inhomogeneous limit, an echo ridge decaying as te−Γ  extends along 1 3τ τ= . It decays with 

the inhomogeneous distribution in the perpendicular direction. In the homogeneous limit, the 

response is symmetric in the two time variables. Fourier transformation allows these envelopes 

to be expressed as the lineshapes above. Here again 2τ  is a control variable to allow us to 

characterize  
Ceg τ( )  through the change in echo profile or lineshape.   

 

                                                
1  Here we use the right-hand rule convention for the frequency axes, in which the pump or 

excitation frequency is on the horizontal axis and the probe or detection frequency is on the 
vertical axis.  Different conventions are being used, which does lead to confusion.  We note 
that the first presentations of two-dimensional spectra in the case of 2D Raman and 2D IR 
spectra used a RHR convention, whereas the first 2D NMR and 2D electronic measurements 
used the LHR convention. 

2  Khalil M, Tokmakoff A. “Signatures of vibrational interactions in coherent two-dimensional 
infrared spectroscopy.” Chem Phys. 2001;266(2-3):213-30; Khalil M, Demirdöven N, 
Tokmakoff A. “Coherent 2D IR Spectroscopy: Molecular structure and dynamics in 
solution.” J Phys Chem A. 2003;107(27):5258-79; Woutersen S, Hamm P. Nonlinear two-
dimensional vibrational spectroscopy of peptides. J Phys: Condens Mat. 2002;14:1035-62. 
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