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Uninterrupted data delivery when links or
routers falil

Failure recovery for
Backbone network operators
Large datacenters
Local enterprise networks

Major goal: after
failure




Architecture: goals and proposed design

Optimizations: of routing and load balancing

Evaluation: using synthetic and realistic topologies

Conclusion




Existing solutions reroute traffic to avoid failures
Can use, e.g., MPLS local or global protection

primary tunnel primary tunnel
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- local

Balance the traffic after rerouting
Challenging with local path protection

Prompt failure detection
Global path protection is slow 5
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the network
Allow use of minimalist cheap routers
Simplify network management

the load
Before, during, and after each failure

and respond to failures quickly




In routers
Path-level failure notification
Static configuration
No coordination with other routers

Knows topology, approximate traffic
demands, potential failures

Sets up multiple paths and calculates load
splitting ratios




* topology design
e list of shared risks
e traffic demands

v

* fixed paths
* splitting ratios




* fixed paths
* splitting ratios




* fixed paths
* splitting ratios




* fixed paths
* splitting ratios




How to calculate the paths and
splitting ratios”?
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needed for each allowed failure
state (shared risk link group)

éel“

R1 . eg\@ R2
€4 ﬁ/

=

Example of failure states:
5= {el}/ { ez}/ { 63}, { 64}, { 65}, {ell ez}/ {ell 65}15




links indexed by ¢ failure states indexed by s

4 aggregate congestion cost

cost weighted for all failures:

D(u,’)
u,’=1 minimize ) ,w*) , D(u,’)
/ while rou’cingT all traffic

> \

link utilization u,° failure state weight
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Suboptimal
solution

Good performance
and practical?

congestion

Solution not
scalable

| | |
| | | >
capabilities of routers

solutions do not do well
when adding functionality
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Edge router must learn

Custom splitting ratios

Configuration: Failure Splitting Ratios

0.4, 0.4, 0.2 one entry
ey 0.7,0, 0.3 _ e
e;&e, |0,0.6,0.4 per railure
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Solve a classical multicommodity flow for each
failure case s:

min load balancing objective
s.t.  flow conservation
demand satisfaction

edge flow non-negativity

Decompose edge flow into paths and splitting
ratios
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Edge router observes
Custom splitting ratios for each observed

NP-hard unless paths are fixed

configuration: | Failure Splitting Ratios at most 2#paths
- 0.4,0.4, 0.2 u t .
p2 0.6, 0, 0.4 entries
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2. State-Dependent Splitting:
Per Observable Failure

Heuristic: use the same paths as the optimal
solution

If paths fixed, can find optimal splitting ratios:

min load balancing objective
s.t.  flow conservation
demand satisfaction

path flow non-negativity
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Edge router observes
Fixed splitting ratios for all observable failures
Non-convex optimization even with fixed paths

configuration: [p1, p2, pa:

0.4, 0.4, 0.2
&S
%4 pzﬁ)
&S &S 22
0.2 Ty
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Heuristic to compute
The same paths as the optimal solution

Heuristic to compute

Use averages of the optimal solution
weighted by all failure case weights
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AN

fraction of traffic
on the i-th path
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How well do they work in practice?
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Simulations on a Range of Topologies

Tier-1 50

Hierarchical 50 148 - 212

Waxman 169 - 230

2,450

Shared risk failures for the tier-1 topology
W 954 failures, up to 20 links simultaneously

Single link failures 26
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network traffic
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objective value

1.2e+07

1e+07

OSPF with optimized link
| weights can be suboptimal
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Average Traffic Propagation Delay 1n
Tier-1 Backbone

Service Level Agreements guarantee 37 ms
mean traffic propagation delay

Need to ensure mean delay doesn’t increase
much

Algorithm Delay (ms)

OSPF (current) 28.49

State dep. splitting 30.96

0.00

0.17
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04 > For higher traffic load .
yd slightly more paths
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Greatest number of paths
S in the tier-1 backbone
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Simple mechanism combining path protection

and traffic engineering

Favorable properties of
algorithm:

(i) Simplifies network design
(i) Near optimal load balancing
(i) Small number of paths

(iv) Delay comparable to current OSPF
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