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Failure Recovery and Traffic 
Engineering in IP Networks
o Uninterrupted data delivery when links or 

routers fail

o Major goal: re-balance the network load after 
failure

o Failure recovery essential for
n Backbone network operators
n Large datacenters
n Local enterprise networks
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Challenges of Failure Recovery
o Existing solutions reroute traffic to avoid failures

n Can use, e.g., MPLS local or global protection

o Prompt failure detection
n Global path protection is slow

o Balance the traffic after rerouting
n Challenging with local path protection

primary tunnel

backup tunnel

primary tunnel

backup tunnel
local

global
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Architectural Goals

3. Detect and respond to failures quickly

1. Simplify the network
n Allow use of minimalist cheap routers
n Simplify network management

2. Balance the load
n Before, during, and after each failure
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The Architecture – Components

o Management system
n Knows topology, approximate traffic 

demands, potential failures
n Sets up multiple paths and calculates load 

splitting ratios

o Minimal functionality in routers
n Path-level failure notification
n Static configuration
n No coordination with other routers
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The Architecture
• topology design
• list of shared risks
• traffic demands
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The Architecture
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The Architecture: Summary

1. Offline optimizations

2. Load balancing on end-to-end paths

3. Path-level failure detection

How to calculate the paths and 
splitting ratios?
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Goal I: Find Paths Resilient to Failures

o A working path needed for each allowed failure 
state (shared risk link group)

Example of failure states:
S = {e1}, { e2}, { e3}, { e4}, { e5}, {e1, e2}, {e1, e5}

e1 e3e2e4 e5

R1 R2



16

Goal II: Minimize Link Loads

minimize ∑s ws∑eΦ(ue
s)

while routing all traffic

link utilization ue
s

cost
Φ(ue

s)

aggregate congestion cost 
weighted for all failures:

links indexed by e

ue
s =1

Cost function is a penalty for approaching capacity

failure state weight

failure states indexed by s
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Our Three Solutions

capabilities of routers

co
ng

es
tio

n

Suboptimal 
solution

Solution not 
scalable

Good performance 
and practical?

o Too simple solutions do not do well
o Diminishing returns when adding functionality
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1. Optimal Solution: State Per Network 
Failure
o Edge router must learn which links failed

o Custom splitting ratios for each failure

0.4
0.4

0.2

Failure Splitting Ratios
- 0.4, 0.4, 0.2

e4 0.7, 0, 0.3

e1 & e2 0, 0.6, 0.4

… …

configuration:

0.7

0.3

e4e3

e1 e2

e5 e6

one entry 
per failure
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1. Optimal Solution: State Per Network 
Failure
o Solve a classical multicommodity flow for each 

failure case s:
min load balancing objective
s.t. flow conservation

demand satisfaction
edge flow non-negativity

o Decompose edge flow into paths and splitting 
ratios

o Does not scale with number of potential 
failure states
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2. State-Dependent Splitting: 
Per Observable Failure
o Edge router observes which paths failed
o Custom splitting ratios for each observed 

combination of failed paths

0.4
0.4

0.2

Failure Splitting Ratios
- 0.4, 0.4, 0.2

p2 0.6, 0, 0.4

… …

configuration:

0.6

0.4

p1
p2

p3

o NP-hard unless paths are fixed
at most 2#paths

entries
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2. State-Dependent Splitting: 
Per Observable Failure

o If paths fixed, can find optimal splitting ratios:

o Heuristic: use the same paths as the optimal 
solution

min load balancing objective
s.t. flow conservation

demand satisfaction
path flow non-negativity
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3. State-Independent Splitting: 
Across All Failure Scenarios
o Edge router observes which paths failed
o Fixed splitting ratios for all observable failures

0.4
0.4

0.2

p1, p2, p3:
0.4, 0.4, 0.2

configuration:

0.667

0.333

o Non-convex optimization even with fixed paths

p1
p2

p3
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3. State-Independent Splitting: 
Across All Failure Scenarios

o Heuristic to compute splitting ratios
n Use averages of the optimal solution 

weighted by all failure case weights

o Heuristic to compute paths
n The same paths as the optimal solution

ri = ∑s ws ri
s

fraction of traffic 
on the i-th path
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Our Three Solutions 

1. Optimal solution

2. State-dependent splitting

3. State-independent splitting

How well do they work in practice?
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Simulations on a Range of Topologies
Topology Nodes Edges Demands

Tier-1 50 180 625

Abilene 11 28 253

Hierarchical 50 148 - 212 2,450

Random 50 - 100 228 - 403 2,450 – 9,900

Waxman 50 169 - 230 2,450

o Single link failures

o Shared risk failures for the tier-1 topology
n 954 failures, up to 20 links simultaneously
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Congestion Cost – Tier-1 IP 
Backbone with SRLG Failures

increasing load

Additional router capabilities improve 
performance up to a point
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network traffic

State-dependent splitting 
indistinguishable from optimum

State-independent splitting 
not optimal but simple

How do we compare to OSPF? 
Use optimized OSPF link 
weights [Fortz, Thorup ’02].
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Congestion Cost – Tier-1 IP 
Backbone with SRLG Failures

increasing load

OSPF uses equal splitting on shortest paths. 
This restriction makes the performance worse.
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iv

e 
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lu
e

network traffic

OSPF with optimized link 
weights can be suboptimal
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Average Traffic Propagation Delay in 
Tier-1 Backbone
o Service Level Agreements guarantee 37 ms 

mean traffic propagation delay

o Need to ensure mean delay doesn’t increase 
much

Algorithm Delay (ms) Stdev

OSPF (current) 28.49 0.00

Optimum 31.03 0.22

State dep. splitting 30.96 0.17

State indep. splitting 31.11 0.22
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Number of Paths– Tier-1 IP 
Backbone with SRLG Failures

Number of paths almost independent 
of the load

number of paths

cd
f

number of paths

For higher traffic load 
slightly more paths
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Number of Paths – Various Topologies

More paths for larger and more 
diverse topologies

number of pathsnumber of paths

cd
f

Greatest number of paths 
in the tier-1 backbone
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Conclusion
o Simple mechanism combining path protection 

and traffic engineering
o Favorable properties of state-dependent 

splitting algorithm:
(i) Simplifies network design

(ii) Near optimal load balancing

(iii) Small number of paths

(iv) Delay comparable to current OSPF

o Path-level failure information is just as 
good as complete failure information
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Thank You!


