Greening Backbone Networks Shutting Off Cables in Bundled Links

Will Fisher, <u>Martin Suchara</u>, and Jennifer Rexford

Princeton University

Why Focus on Networks?

□ Saving energy in servers vs. networks

- Potential for savings in wired networks
 - \$2 billion annual power bill in USA alone
 - Over-engineering and diurnal patterns
 - Power draw does not scale with load

Power Consumption of Network Hardware

- Router may consume 200 400W plus 100 W per line card
 - Power draw does not scale with load

Turn Off Unneeded Routers / Links?

Turning off links has drawbacks

Increased RTT, fragility, etc.

Links in Large Backbone Networks

□ Links come in bundles

Gradual upgrades, hardware costs, etc.

City B

City A

Links in Large Backbone Networks

- Links come in bundles
 - Gradual upgrades, hardware costs, etc.

- Bundled link behaves as a single logical link
- □ In large networks
 - Majority of links bundled
 - Bundle sizes 2 20 cables per link

The Problem...

Powering all cables is wasteful

Proposed Solution

Only power up cables that are needed

Transparent to routing protocols

80%

utilization

City B

Overview

- I. Optimization problem formulation & solution
- I. Experimental evaluation of energy savings
- III. Conclusion

The Problem

□ Algorithm used by network operators

- Input: network configuration and load
- Output: list of powered cables
- □ Integer linear program:
 - **min** # powered cables
 - s.t. link loads ≤ capacities
 flow conservation
 carries all traffic demands

 \Box NP-hard in general \rightarrow need heuristics

Related Tractable Problem

- How would the solution look like if energy consumption was proportional to link load
- Minimize sum of link loads rather than the number of powered cables
 - Fractional vs. integer linear program
- Benefits: tractable, provides upper and lower bound on potential power saving, starting point for heuristics

First Attempt – Naïve Solution

□ Always round up:

I In to n times worse performance where n

12

Three Increasingly Sophisticated Heuristics

- Start with the naïve solution and perform local search
- 1. Fast Greedy Heuristic (FGH)
- 2. Exhaustive Greedy Heuristic (EGH)
- 3. Bi-level Greedy Heuristic (BGH)

The Fast Greedy Heuristic (FGH)

- 1. solve the fractional linear program
 and round up
- 2. identify link with greatest
 rounding up

Overview

- I. Optimization problem formulation & solution
- II. Experimental evaluation of energy savings
- III. Conclusion

Experimental Setup

Determine energy savings and ability to run algorithms in real time

Solve the simple linear program using AMPL / CPLEX

Experiments repeated for bundle sizes 1 to 12

- □ Abilene with real measured traffic demands
- Waxman and hierarchical topologies

Energy Savings-Abilene Topology

Energy savings depend on the bundle size.

Waxman and Hierarchical Graphs

19

Execution Time

Topology	FGH	EGH	BGH
Abilene	8 sec	50 sec	5 min
Large synthetic	minutes	minutes to hours	

FGH is well suited for real-time execution

Overview

- I. Optimization problem formulation & solution
- II. Experimental evaluation of energy savings
- III. Conclusion

Conclusion

- Powering all links in a bundle usually not needed
- Design and evaluation of simple heuristics
 - Significant energy savings
 - Low computational complexity
 - Can choose the simplest heuristic (FGH)

Thank You!