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WHAT IS NEEDED TO MAKE QUANTUM 
COMPUTING RELIABLE
§ Replace imperfect physical qubits by multiple logical ones and incur space and 

time overhead

§ Must be able to correct many new types of errors:

– Partial bit flip:

– Phase flip:

– Small shift:

– Leakage:

§ Must correct errors in a way to allow reliable information storage and 
computation with unreliable qubits
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QUBIT DECOHERENCE TIME IS NOT THE ONLY 
CONSIDERATION

Superconducting qubits:
Josephson Junctions between 
superconducting electrodes

Ion traps:
Ions trapped in electromagnetic field, 
gates performed by applying lasers

Adiabatic quantum computation:
Lattice of superconducting qubits that arrange 
themselves to solve an optimization problem
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HOW QUANTUM ERROR CORRECTION WORKS



HOW QUANTUM ERROR CORRECTION WORKS

§ Must satisfy the following conditions: (i) can’t copy a qubit, (ii) can’t measure a 
qubit without collapsing it, (iii) must correct arbitrarily small errors
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X error: Z error: Any error:

§ Use an entangled state inspired by the repetition code to correct X errors:
!|0⟩ + β|1⟩→ !|000⟩ + β|111⟩ (encoding) 

→ !|000⟩ + β|111⟩ + #|010⟩ + $|100⟩ + … (errors)
→ !|000⟩ + β|111⟩ (decoding)
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ENCODING QUBITS AND USING “PARITY 
CHECKS” ON GROUPS OF QUBITS 
§ What we need: !|0⟩ + β|1⟩ → !|000⟩ + β|111⟩ (encoding) 

→ !|000⟩ + β|111⟩ + #|010⟩ + $|100⟩ + … (errors)
→ !|000⟩ + β|111⟩ (decoding)

X error: Syndrome:

top qubit s1=1, s2=0

middle qubit s1=1, s2=1

bottom qubit s1=0, s2=1

no error s1=0, s2=0

§ Encoding 
circuit:

§ Measure 
syndromes:
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CORRECTING (PARTIAL) BIT FLIP AND PHASE 
FLIP ERRORS SIMULTANEOUSLY
§ Theorem: correcting X errors with the 3-qubit bit flip code and then Z errors with 

the 3-qubit phase flip code corrects any arbitrary error affecting a single qubit

§ The continuum of errors that may occur can be corrected by addressing only a 
discrete subset of these errors, namely the X and Z error on each qubit!  

The encoded state is |ψ⟩ = "|0L⟩ + β|1L⟩
Noise can be described by a trace preserving operation that can be expanded in 
an operator sum: ε(|ψ⟩⟨ψ|) = ∑i Ei|ψ⟩⟨ψ|Ei

†

Ei can be expanded as Ei = ei0I + ei1X1 + ei2Z1 + ei3X1Z1

Measuring the superposition of state Ei|ψ⟩ thus yields one of |ψ⟩, X1|ψ⟩, Z1|ψ⟩, or 
X1Z1 |ψ⟩ and recovery is performed by the error decoder
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NEED THRESHOLD AND FAULT TOLERANCE: 
EXAMPLE – CONCATENATED CODES

§ Steane [[7,1,3]] concatenated code 
– 7 physical qubits encode 1 logical qubit 
– Fault tolerant computing with mostly transversal gates

§ Threshold behavior of the repetition code when p is simple bit error probability:
Encoded 0 becomes 000 001, 010, or 100 110, 101, or 011 111
Probability (1-p)3 3(1-p)2p 3(1-p)p2 p3

§ Errors improve if 3p2 – 3p3 + p3 ≈ 3p2 < p
§ Code threshold p = 1/3
§ Can do arbitrarily well if errors are below this threshold 

by concatenating
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CONCATENATED CODES ARE IMPRACTICAL 
(UNLESS ERROR RATES ARE VERY SMALL)
§ Very expensive concatenations, non-transversal T gates, low threshold ≈ 10-5

Inside each tile: Optimized qubit layout for the Steane code:
K. Svore et al.: Noise Threshold for a Fault-
Tolerant Two-Dimensional Lattice 
Architecture, 2006

“empty” qubit

data qubit

ancilla qubit

SWAP

CNOT

verification qubit
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THE SURFACE ERROR CORRECTING CODE



SURFACE CODE – SYNDROME EXTRACTION

§ Smallest [[13,1,3]] code encodes 1 qubit into 13 qubits and has distance 3
§ The distance is the minimum weight of a logical operator
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§ n qubits on edges, here n=61, L=6

Plaquette 
operator detects 
parity of X errors

Star operator 
detects parity of 
Z errors
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FEATURES OF THE SURFACE CODE
§ Plaquette and star operators all commute and have eigenvalues ±1

12

Z Z
X

X X
X

Plaquette 
operator Ap

Star 
operator Bq

§ Plaquette and star operators generate an Abelian group S, the stabilizer group

§ The code space # = ⟩& : () ⟩& = ⟩& , +, ⟩& = ⟩& , ∀., / . Codespace is +1 
eigenspace of group S.

§ Dimension of code space for n qubits is 2123 where k is the number of linearly 
independent  generators in S

§ For surface code n-k=1, for toric code n-k=2 logical X logical Z



SURFACE CODE – LOGICAL OPERATORS

§ Logical operators commute with all elements in the stabilizer group S but are not 
in S. If they are in S they act trivially.

§ If they don’t commute with S they map the codeword out of the codespace.
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§ n qubits on edges, here n=61, L=6
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EXAMPLES OF LOGICAL OPERATORS

§ Trivial loop made from plaquette operators. 
§ Logical X is a non-trivial loop which cannot be made from plaquette operators, 

i.e. this operator is not in S, but commutes with S
§ Deformations: For ! in codespace, "# != ! and $% != ! so action of 

plaquette and star operator is trivial on codespace. Thus &' $% != &' ! and we 
can deform a logical operator by multiplying with "# and "#.
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Logical X operator:Logical Z operator:
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ERRORS

§ Sufficient to consider Pauli errors and treat X and Z errors independently
§ Pauli errors by definition anti-commute with at least one element of the 

stabilizer group
§ If error E anti-commutes with some ! ∈ #, then !(% ⟩'( = −% ⟩'( ) or codestate 

with error has -1 eigenvalue with respect to s.
§ By measuring generators of S (plaquette & star operators), we get information 

about what errors occurred
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Plaquette operator anti-
commutes with X errors

Star operator anti-commutes 
with Z errors

Z

X X error

Z error

Z Z
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ENCODING MORE QUBITS IN SURFACE CODE
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§ Similarly, one can make a rough hole by removing a 

cluster of star operators. It will have a rough 

boundary.

§ Distance is minimum of distance to boundary or 

circumference of hole

!"
#"

Smooth hole:

Rough hole:

§ What happens when we remove one plaquette from the 

stabilizer S? 

§ This plaquette becomes the logical operator !" of a new 

encoded qubit. Corresponding #" is the orange X-string

which connects the hole to the boundary.

§ New qubit has distance 4, bad... make big hole



THE CNOT GATE IN THE SURFACE CODE
§ Data qubits are encoded into smooth / rough qubits of 

sufficiently large area and sufficiently far apart
§ CNOTs can be done between smooth and rough qubits
§ The smooth qubit is the control and the rough qubit the 

target
§ We move one of the holes of the smooth qubit around a 

rough hole causing a deformation of the logical operators 
of the two qubits

§ The CNOT gate acts on the Pauli’s !"!# = "% as follows:!" #"

#$ !$
&'⨂)* → &'⨂&*
)'⨂&* → )'⨂&*
,'⨂)* → ,'⨂)*
)'⨂,* → ,'⨂,*

After some work can show 
deformation causes this 
action 



UNDERSTANDING PERFORMANCE OF THE 
SURFACE CODE WITH NUMERICAL SIMULATIONS



THE ERROR MODEL AND PERFORMANCE OF 
THE DECODER
§ Typically use depolarizing noise model is simulation and estimation of noise 

thresholds: ! → 1 − % ! + '
( )!) +

'
( *!* +

'
( +!+

α 0 +β 1

α 1 +β 0

α 0 −β 1

α 1 −β 0

α 0 +β 1

Pauli Errors:

X

I Perfect transmission

Bit flip

Y

Z Phase flip

Bit and phase flip

X

I

Y

Z

ψ

Quantum state

encoding E error f decoding D ψ
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NUMERICAL SIMULATION – STEP 1: 
INJECT ERRORS AND MEASURE SYNDROMES

§ Plaquette syndromes indicate presence of odd weight X errors in the vicinity
§ Only illustrate X errors here, Z errors are corrected similarly with site syndromes

Failed parity 
checks for X errors

Actual X errorsX

X
X

X X
X

X
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NUMERICAL SIMULATION – STEP 2: 
GUESS ERRORS AND DETERMINE OUTCOME

§ Minimum Weight Matching heuristic corrects errors on chains between matched 
syndromes or syndromes and the boundary

Failed parity 
checks for X errors

Actual X errorsX

X
X

X X
X

X

X

Corrected X errorsX

X

X

X
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NUMERICAL SIMULATION – STEP 2: 
GUESS ERRORS AND DETERMINE OUTCOME

§ Minimum Weight Matching heuristic corrects errors on chains between matched 
syndromes or syndromes and the boundary

Failed parity 
checks for X errors

Actual X errorsX

X
X

X X
X

X

X

Corrected X errorsX

X

X

X

Success!

Failure!
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WHAT IF SOME SYNDROME MEASUREMENTS 
FAIL? REPEAT SYNDROME MEASUREMENTS!

X

X
X

X

measurement
error

measurement
error Change in syndrome 

measurement parity

Correcting predicted 
qubit memory error

Predicted syndrome 
measurement error

§ Syndromes are measured repeatedly, parity changes are marked as defects
§ Decoder matches pairs of defects and corrects errors in 2D on the physical 

qubits
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SIMULATIONS WITH THREE DIFFERENT ERROR 
MODELS

§ Monte Carlo simulation in C++
– Repeatedly generate and correct random errors
– Ability to simulate memory errors, quantum gate errors, and propagation of X, 

Y, and Z errors in syndrome extraction circuits 

Error model: Data qubit 
errors:

Measurement 
gate errors:

Syndrome 
extraction circuit 
errors:

Code capacity yes no no
Phenomenological yes yes no

Circuit yes yes yes
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threshold
~ 10%

Ø Data qubit 
errors only

CODE CAPACITY ERROR MODEL:
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Ø Data qubit
errors

PHENOMENOLOGICAL ERROR MODEL:

Ø Measurement 
gate errors

threshold
~ 4.5%
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Ø Data qubit
errors

CIRCUIT ERROR MODEL:

Ø Measurement 
gate errors

Ø Syndrome 
extraction 
circuit errors

threshold
~ 0.7%
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CAN WE DO BETTER?

§ Minimum Weight Matching ignores 
error degeneracy (multiple errors with 
same syndrome) and does not 
consider correlations of X and Z 
errors in the depolarizing noise model

§ Approximate maximum likelihood 
decoding guesses the most likely 
error:
– Thresholds improve slightly
– Decoding error rate improves 

significantly
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ADDITIONAL TYPES OF ERRORS – CORRECTING 
QUBIT LEAKAGE



WHAT IS QUBIT LEAKAGE?

§ Physical qubits are not ideal two-level systems and 
may leak out of the computational space

§ With standard error correction techniques leaked 
qubits accumulate and spread errors

§ Leakage reduction units based on quantum 
teleportation were suggested by Aliferis and Terhal.

§ Threshold theorem for concatenated codes in the 
presence of leakage still holds

Bit flip

Leakage
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BEHAVIOR OF QUANTUM GATES IN THE 
PRESENCE OF LEAKAGE

Gate Possible Errors Leakage Errors
Identity

X, Y, Z if leaked relaxes w/ prob. pd, 
doesn’t increase leakage

CNOT
IX, XX, XZ, etc.

if leaked, applies random Pauli 
to the other qubit; leaks w/ prob. 

pu and relaxes w/ prob. pd

Preparation
orthogonal state leaks w/ prob. pu

Measurement
Incorrect outcome

if leaked, always measures 1
(also consider possibility of 

leakage detection)
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SEVERAL OPTIONS HOW TO DESIGN AN 
EFFECTIVE LEAKAGE REDUCTION CIRCUIT

1. Full-LRU:
(resource heavy)

3. ‘Quick’ circuit:
(swap data and ancilla)

2. Partial-LRU:
(fewer gates)
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DESIGNING A DECODER THAT USES LEAKAGE 
DETECTION AND THE ‘QUICK’ CIRCUIT
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SEVERAL OPTIONS HOW TO DESIGN AN 
EFFECTIVE LEAKAGE REDUCTION CIRCUIT

Threshold comparison: Decoding failure rates:

§ More complicated circuits have lower threshold
§ Measurement that detects leakage (HL) boosts performance
§ Full-LRU performs well at low error rates
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THANK YOU!


