Topological Subsystem Codes with Local Gauge Group Generators

Martin Suchara

in collaboration with: Sergey Bravyi and Barbara Terhal

December 08, 2010

Quantum Error Correction (QEC)

- Need error correction to build a practical quantum computer
- Reliable quantum information storage and computation with unreliable components
- Much more challenging than classically
 - Analog nature of quantum operations
 - New kinds of errors: partial bit flips, phase flips, small shifts

 $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Some Milestones in QEC Research

- Quantum block error correcting codes (Shor, 1995)
- Threshold theorem (Knill et al., 1998)
- Topological quantum codes (Kitaev, 1997)
- Subsystem codes (Poulin, 2005 and Bacon, 2006)

Example – Topological Quantum Memory

- Qubits on links (or sites) in the lattice
- Measuring these "check" operators yields error syndromes

Example – Topological Quantum Memory

□ Logical operators

Advantages of Topological Stabilizer Codes

- Qubits laid on two-dimensional grid
- □ Local syndrome measurements
- Can increase lattice size rather than concatenate smaller blocks
- □ High threshold
- Permit encoding of multiple qubits and implementation of some gates by code deformation

Error Correction with 2-Body Measurements (*Bombin 2010*)

- Earlier codes: measurements of at least four neighboring qubits
- Our code: only local two-qubit measurements
- □ Simplifies physical implementation
- □ Main questions
 - How should the lattice look like?
 - How should the decoding algorithm work?
 - Numerical value of the threshold?

Overview

- I. Construction of topological subsystem codes
- I. The five-squares code
- III. Experimental evaluation of the thresholdIV. Conclusion

Error Correcting Codes

- Codespace is a subspace of a larger Hilbert space that encodes logical information
- □ Syndrome measurements diagnose errors
- Decoding algorithm returns system to the original logical state
 - Threshold: below some noise level error correction succeeds w. h. p.

Stabilizer Subsystem Codes

- Stabilizer codes characterized by the stabilizer group generated by $S_1, S_2, \ldots S_{n-k}$
 - Have 2^k dimensional codespace: $S_j |\psi\rangle = |\psi\rangle$
 - $\blacksquare 2k$ logical operators
- In subsystem codes some "logical" qubits do not encode any information
 - Can simplify decoding
 - Characterized by gauge group: stabilizers + logicals acting on gauge qubits

Desired Code Properties

 Syndromes can be extracted by measuring two-qubit gauge operators

2. Topological properties of the code: stabilizer group has spatially local generators

3. At least one logical qubit encoded

Kitaev's Honeycomb Model on a Torus

- Link operators XX, YY, and ZZ xx-lir
 - Anticommute iff share one endpoint
- Has spatially local stabilizer
 generators (loop operators)

- Two-qubit measurements determine syndromes
- □ All loop operators commute
 - Does not encode any logical qubits!

Generalizing the 3-Valent Lattice

- □ Links connecting three sites "triangles"
 - Loop has an even number of incident links at each site
 - Loop operators anticommute iff they share odd number of triangles

Generalizing the 3-Valent Lattice

- Links connecting three sites "triangles"
 - Loop has an even number of incident links at each site
 - Loop operators anticommute iff they share odd number of triangles

Generalizing the 3-Valent Lattice

- Links connecting three sites "triangles"
 - Loop has an even number of incident links at each site
 - Loop operators anticommute iff they share odd number of triangles

V ZZZ-link XY-link ZZ-link 15

The Square-Octagonal Lattice The Logical Operators

The Square-Octagonal Lattice The Stabilizers

The Gauge Group Generators

□ Link operators of weight two:

□ Each triangle gives rise to a triple of generators:

Overview

- I. Construction of topological subsystem codes
- II. The five-squares code
- III. Experimental evaluation of the thresholdIV. Conclusion

The Five-Squares Lattice The Logical Operators

20

Examples of Lattices (with Stabilizers) Five-Squares Lattice

The Gauge Group Generators

Solid XY-links in squares, and ZZ-links connecting squares:

□ Triangles:

The Stabilizers

□ How to measure them?

Measuring the Stabilizers

□ To measure syndromes A, B, C, D need to take 8, 10, 40, and 4 two-qubit measurements

The Stabilizers

How to use them to correct errors? Correct X and Z errors separately.

Correcting X Errors

Consider an arbitrary X error:

Only need to correct errors X_1 , X_5 , X_9 , X_{13} , and X_{17} .

Easy to do with syndrome ^z

Correcting Z Errors

Similarly, only need to consider Z_1 , Z_2 , Z_4 , Z_{19} , and Z_{20} .

And Z₄ is corrected using stabilizer B

How do the remaining stabilizers act on the errors?

Correcting Z Errors

Two non-overlapping sublattices

Correcting Z Errors

- □ Find the smallest possible weight error
- Minimum weight matching algorithm
 - Match pairs of non-trivial syndromes
 - Minimize total weight of the matching
 - Correct Z errors on lines connecting matched syndromes
- Error correction fails if E_{actual}E_{guessed} is a logical operator

Overview

- Construction of topological subsystem codes
- I. The five-squares code
- III. Experimental evaluation of the threshold
- V. Conclusion

Assumptions and Experimental Setup

- Depolarizing error model
 - X, Y and Z errors with probability p/3
- Noiseless syndrome measurements
- Monte Carlo simulation in C++
 - 640 to 40,960 qubits
 - Generate and correct random error
 - Repeat 1,000 times

Threshold – Simple Decoding Algorithm

Transition sharper for larger lattice size

Improving the Threshold

In the first two correction steps guess the smallest weight error!

Threshold – Improved Decoding

Noticeable improvement of threshold

Overview

- Construction of topological subsystem codes
- I. The five-squares code
- III. Experimental evaluation of the thresholdIV. Conclusion

Conclusion

- □ Construction of new codes that only require two-qubit measurements for error correction
- Decoder for the five-squares code achieves 2% storage threshold
- Price to pay: threshold value and number of measurements needed for syndrome calculation
- Open question: how to encode multiple logical qubits by creating holes?

Thank You!