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Why Quantum Computer Resource 
Estimator? 
o Building a practical quantum computer is very 

difficult

o Goal: investigate impact of design choices on 
the performance of the computer without 
building one
n Hardware: speed vs. reliability tradeoff
n Error correction: choosing good strategies
n Algorithms: which are efficient?

o This work: flexible configurable estimation tool
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Inputs and Outputs of the QuRE Toolbox

Algorithm Specs

Technology Specs

Analysis of Error Correction� # of logical qubits
� # of logical gates
� Circuit parallelism

� Gate times and fidelities
� Memory error rates

� Estimate cost of each logical 
operation as a function of error 
correction “strength”

Automated Resource Estimate
� Find out how strong error correction 

guarantees target success probability
� Estimate number of physical qubits, 

running time, physical gate and 
instruction count, etc.
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QuRE Analyzes a Variety of Realistic 
Scenarios

o 7 quantum algorithms

o 12 physical 
technologies

o 4 quantum error 
correcting codes

o This talk
n Overview of resource estimation methodology 

and highlights of our results



Overview

I. Properties of quantum technologies and 
algorithms

II. Estimation methodology – overhead of 
concatenated error correction codes

IV. Examples of estimates obtained with QuRE
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III. Estimation methodology – overhead of 
topological error correction codes



How Quantum Computers Work

o Quantum instead of binary information
n Quantum state                                  ,        

not just 0 or 1
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o Quantum computers must be able to initialize, 
store, manipulate and measure quantum 
states

o Operations and memory storage must be 
reliable



A Number of Competing Candidate 
Technologies
o Superconducting qubits

n Josephson Junctions between 
superconducting electrodes
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o Ion traps
n Ions trapped in electromagnetic field, 

gates performed by applying lasers

o Neutral atoms
n Ultracold atoms trapped by light 

waves in an optical lattice
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Properties of Quantum Technologies: 
Gate Times and Errors

Supercond. 
Qubits

Ion Traps Neutral Atoms

Average Gate 
Time (ns)

25 32,000 19,000

Worst Gate 
Error

1.00x10-5 3.19x10-9 1.47x10-3

Memory Error 1.00x10-5 2.52x10-12 not available

o Ion traps slower but more reliable than 
superconductors

o Neutral atoms slower and error prone



The Best Known Quantum Algorithm
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o Shor’s factoring algorithm
n Find prime factors of                            

integer N
n Quantum algorithm runs                                

in polynomial time
n Can be used to break public-key 

cryptography (RSA)
n Algorithm uses quantum Fourier transform 

and modular exponentiation
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Shor’s Factoring Algorithm – Logical 
Gate Count

Gate Occurrences Parallelization Factor
CNOT 1.18 x 109 1
Hadamard 3.36 x 108 1
T or T† 1.18 x 109 2.33
Other gates negligible

o Algorithm needs approximately 1.68 x 108

Toffoli gates and 6,144 logical qubits
(Jones et al., 2012)

o Factor a 1024-bit number



More Examples of Studied Quantum 
Algorithms
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o Ground state estimation algorithm
n Find ground state energy of 

glycine molecule
n Quantum simulation and phase 

estimation

o Quantum linear systems algorithm
n Find x in the linear system Ax = b
n QFT, amplitude amplification, 

phase estimation, quantum walk
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More Examples of Studied Quantum 
Algorithms
o Shortest vector problem algorithm

n Find unique shortest vector in an 
integer lattice

n QFT and sieving

o Triangle finding problem
n Find the nodes forming a triangle 

in a dense graph
n Quantum random walk and 

amplitude amplification
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Example: Ground State Estimation 
Algorithm – Logical Gate Count

Gate Occurrences Parallelization Factor
CNOT 7.64 x 1010 1.5
Hadamard 3.64 x 1010 6
Prepare |0> 55 55
Measure Z 5 1
Z 1.21 x 1010 3
S 1.21 x 1010 3
Rotations 6.46 x 109 1.5

o Rotations decomposed into more elementary 
gates (Bocharov et al., 2012)
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Steane [[7,1,3]] Concatenated Error 
Correction Code
o 7 data qubits encode a single logical qubit

o Most operations 
transversal:

o Non-
transversal T 
gate:
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Tiled Qubit Layout for Concatenated 
Codes
o Each logical qubit is stored in a separate tile

o Tiles arranged in 2-D

o Supported operations:
n Error correct a tile
n Apply fault-tolerant 

operation

o Tiles must contain 
enough data and 
ancilla qubits
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Optimized Layout in Each Tile
(Svore et al., 2006)

“empty” qubit

data qubit

ancilla qubit

SWAP

CNOT

verification qubit
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Tiles Have a Hierarchical Structure that 
Allows Code Concatenation

Level 1

Level 2

o Sufficient number of concatenations to achieve 
constant probability of success of computation
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Counting the Gates and Computation 
Time
o For each logical operation (CNOT, error 

correction, Paulis, S, T, measurement, etc.)
n Count number of elementary gates
n Count time taking parallelism into account

o Methodology: recursive equations that follow 
the concatenated structure
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Topological Quantum Memory – The 
Surface Error Correction Code

o Physical qubits on links in the lattice

o Measuring the shown “check” operators yields 
error syndromes
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Syndromes Caused by Errors

o Guess the most likely error consistent with 
observed syndromes

o Error correction performed continuously
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Tiles Represent Logical Qubits

o Each logical qubit represented by a pair of holes

o CNOT gates performed by moving holes around 
each other

additional space for 
CNOTs and magic 
state distillation
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Code Distance Determines Fault 
Tolerance and Size of the Tiles

o Distance sufficient for high success probability:

(Jones et al., 2012)

N: number of gates

p: physical error rate

Pth≈0.1: error correction
threshold

C1, C2: constants



25

Counting the Qubits and Gates
o Qubit count: multiply number of tiles and size 

of tile

o Gate count:
n Calculate total running time T
n Calculate number of gates required to error  

correct the entire surface during interval T
n Estimate the small number of additional 

gates required by logical operations
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Numerical Results – Shor’s Factoring 
Algorithm, Three Technologies

Neutral 

Atoms

Supercond. 

Qubits Ion Traps

Surface 

Code

2.6 years 10.8 hours 2.2 years Time

5.3 x 108 4.6 x 107 1.4 x 108 Qubits

1.0 x 1021 2.6 x 1019 5.1 x 1019 Gates

Steane

Code

- 5.1 years 58 days Time

- 2.7 x 1012 4.6 x 105 Qubits

- 1.2 x 1032 4.1 x 1018 Gates

e = 1 x 10-3

t = 19,000 ns

e = 1 x 10-5

t = 25 ns

e = 1 x 10-9

t = 32,000 ns
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Numerical Results – Ground State 
Estimation, Three Technologies

Neutral 

Atoms

Supercond. 

Qubits Ion Traps

Surface 

Code

6.2 x 1021 3.6 x 1018 6.0 x 1021 Time (ns)

4.2 x 108 5.5 x 107 2.5 x 108 Qubits

6.1 x 1025 2.8 x 1024 7.5 x 1024 Gates

Steane

Code

- 1.5 x 1023 1.6 x 1022 Time (ns)

- 1.4 x 1010 1.3 x 105 Qubits

- 1.0 x 1036 1.5 x 1025 Gates

e = 1 x 10-3

t = 19,000 ns

e = 1 x 10-5

t = 25 ns

e = 1 x 10-9

t = 32,000 ns
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Abstract Technology (1 µs gates) with 
Varying Physical Error Rate 
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For low error rates concatenated codes 
outperform topological codes. Why?



The Topological and Concatenated Code 
Families are Very Different
o Concatenated codes

n Lightweight with 1-2                   
levels of concatenation

n Exponential overhead with 
additional concatenations
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o Topological codes
n Operations highly parallel
n Moderate overhead with 

increasing code distance
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Qualitative Difference in Gate 
Composition

Steane code: Surface code:

Logical circuit:
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Resource Estimates Useful for 
Identifying Topics for Future Work
o Low parallelism of studied circuits

Ø How to exploit parallelism and move some 
operations off the critical path?

o Costly T and CNOT gates dominate
Ø Circuit transformations to avoid these gates?
Ø More efficient offline implementation?

o Decomposition of arbitrary rotations very costly
Ø More efficient techniques?
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Conclusion

o Reports a number of quantities including gate 
count, execution time, and number of qubits

o QuRE is an automated tool that quickly 
estimates the properties of the future quantum 
computer

o Is easily extendable for new technologies and 
algorithms

o Allows to identify sources of high overhead and 
quickly asses the effect of suggested 
improvements



Thank You!
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