QURE: THE QUANTUM RESOURCE ESTIMATOR TOOLBOX

Martin Suchara (IBM Research)

In collaboration with: Arvin Faruque, Ching-Yi Lai, Gerardo Paz, Fred Chong, and John Kubiatowicz

October 9, 2013

Why Quantum Computer Resource Estimator?

- Building a practical quantum computer is very difficult
- Goal: investigate impact of design choices on the performance of the computer without building one
 - Hardware: speed vs. reliability tradeoff
 - Error correction: choosing good strategies
 - Algorithms: which are efficient?

This work: flexible configurable estimation tool

Inputs and Outputs of the QuRE Toolbox

Algorithm Specs

- # of logical qubits
- # of logical gates
- Circuit parallelism

- Technology Specs

- Gate times and fidelities
- Memory error rates

– Analysis of Error Correction

• Estimate cost of each logical operation as a function of error correction "strength"

Automated Resource Estimate

- Find out how strong error correction guarantees target success probability
- Estimate number of physical qubits, running time, physical gate and instruction count, etc.

QuRE Analyzes a Variety of Realistic **Scenarios**

□ 7 quantum algorithms

□ 4 quantum error correcting codes

□ 12 physical technologies

This talk

Overview of resource estimation methodology and highlights of our results 4

Overview

- I. Properties of quantum technologies and algorithms
- I. Estimation methodology overhead of concatenated error correction codes
- III. Estimation methodology overhead of topological error correction codes
- IV. Examples of estimates obtained with QuRE

How Quantum Computers Work

- Quantum instead of binary information
 - Quantum state $|\Psi\rangle = \alpha \, |0
 angle + \beta \, |1
 angle$, not just 0 or 1
- Operations and memory storage must be reliable
- Quantum computers must be able to initialize, store, manipulate and measure quantum states

A Number of Competing Candidate Technologies

□ Superconducting qubits

Josephson Junctions between superconducting electrodes

□ Ion traps

Ions trapped in electromagnetic field, gates performed by applying lasers

Neutral atoms

Ultracold atoms trapped by light waves in an optical lattice

Properties of Quantum Technologies: Gate Times and Errors

	Supercond. Qubits		Neutral Atoms	
Average Gate Time (ns)	25	32,000	19,000	
Worst Gate Error	1.00x10 ⁻⁵	3.19x10 ⁻⁹	1.47x10 ⁻³	
Memory Error	1.00x10 ⁻⁵	2.52x10 ⁻¹²	not available	

Ion traps slower but more reliable than superconductors

Neutral atoms slower and error prone

The Best Known Quantum Algorithm

□ Shor's factoring algorithm

- Find prime factors of integer N
- Quantum algorithm runs in polynomial time

- Can be used to break public-key cryptography (RSA)
- Algorithm uses quantum Fourier transform and modular exponentiation

Shor's Factoring Algorithm – Logical Gate Count

- □ Factor a 1024-bit number
- Algorithm needs approximately 1.68 x 10⁸
 Toffoli gates and 6,144 logical qubits
 (*Jones et al., 2012*)

Gate	Occurrences	Parallelization Factor		
CNOT	1.18 x 10 ⁹	1		
Hadamard	3.36 x 10 ⁸	1		
T or T [†]	1.18 x 10 ⁹	2.33		
Other gates	negligible			

More Examples of Studied Quantum Algorithms

□ Ground state estimation algorithm

- Find ground state energy of glycine molecule
- Quantum simulation and phase estimation

Quantum linear systems algorithm

- Find x in the linear system Ax = b
- QFT, amplitude amplification, phase estimation, quantum walk

More Examples of Studied Quantum Algorithms

□ Shortest vector problem algorithm

- Find unique shortest vector in an integer lattice
- QFT and sieving

□ Triangle finding problem

- Find the nodes forming a triangle in a dense graph
 - Quantum random walk and amplitude amplification

Example: Ground State Estimation Algorithm – Logical Gate Count

Gate	Occurrences	Parallelization Factor		
CNOT	7.64 x 10 ¹⁰	1.5		
Hadamard	3.64 x 10 ¹⁰	6		
Prepare 0>	55	55		
Measure Z	5	1		
Z	1.21 x 10 ¹⁰	3		
S	1.21 x 10 ¹⁰	3		
Rotations	6.46 x 10 ⁹	1.5		

Rotations decomposed into more elementary gates (*Bocharov et al., 2012*)

Overview

- I. Properties of quantum technologies and algorithms
- II. Estimation methodology overhead of concatenated error correction codes
- III. Estimation methodology overhead of topological error correction codes
- IV. Examples of estimates obtained with QuRE

Steane [[7,1,3]] Concatenated Error Correction Code

- □ 7 data qubits encode a single logical qubit
- Most operations transversal:

Nontransversal T gate:

Tiled Qubit Layout for Concatenated Codes

Each logical qubit is stored in a separate tile

Tiles arranged in 2-D

- □ Supported operations:
 - Error correct a tile
 - Apply fault-tolerant operation
- Tiles must contain enough data and ancilla qubits

Optimized Layout in Each Tile (Svore et al., 2006)

0	0	0	0	0	0	0	0
0	d6	0	d5	0	d3	0	0
0		v3	a3	 	 0 介	0	
0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	v2	a5	$\overset{\checkmark}{a4}$	a1	0	0
0	∣ ∣ <i>O</i> ∟	$P_z(v1)$	a2	0 <i>⇐</i>	⇒ a7	0	
0	d4	0	d2	0	d1	0	d7

"empty" qubit data qubit verification qubit ancilla qubit \iff SWAP CNOT

Tiles Have a Hierarchical Structure that Allows Code Concatenation

Sufficient number of concatenations to achieve constant probability of success of computation

Counting the Gates and Computation Time

- □ For each logical operation (CNOT, error correction, Paulis, S, T, measurement, etc.)
 - Count number of elementary gates
 - Count time taking parallelism into account
- Methodology: recursive equations that follow the concatenated structure

$$ops(X_{(m)}) = 7X_{(m-1)} + \mathcal{EC}_{(m)}$$

$$time(X_{(m)}) = X_{(m-1)} + \mathcal{EC}_{(m)}$$

$$ops(\mathcal{EC}_{(m)}) = 14hCNOT_{(m-1)} + 28vCNOT_{(m-1)} + 7H_{(m-1)} + 18hSWAP_{(m-1)} + 15vSWAP_{(m-1)} + 8P_{|+\rangle(m-1)} + 12P_{|0\rangle(m-1)} + 20\mathcal{M}_{X(m-1)}$$

Overview

- I. Properties of quantum technologies and algorithms
- I. Estimation methodology overhead of concatenated error correction codes
- III. Estimation methodology overhead of topological error correction codes

IV. Examples of estimates obtained with QuRE

Topological Quantum Memory – The Surface Error Correction Code

	Z						
Z		Z					
	Z			х	Х		
				X	Х		

- Physical qubits on links in the lattice
- Measuring the shown "check" operators yields error syndromes

Syndromes Caused by Errors

- Guess the most likely error consistent with observed syndromes
- □ Error correction performed continuously

Tiles Represent Logical Qubits

Each logical qubit represented by a pair of holes

CNOT gates performed by moving holes around each other

Code Distance Determines Fault Tolerance and Size of the Tiles

Distance sufficient for high success probability: $\frac{0.5}{N} \ge C_1 \left(C_2 \frac{p}{p_{th}} \right)^{\lfloor \frac{d+1}{2} \rfloor}$ (Jones et al., 2012) ²⁴

Counting the Qubits and Gates

Qubit count: multiply number of tiles and size of tile

Gate count:

- Calculate total running time T
- Calculate number of gates required to error correct the entire surface during interval T
- Estimate the small number of additional gates required by logical operations

Overview

- I. Properties of quantum technologies and algorithms
- I. Estimation methodology overhead of concatenated error correction codes
- III. Estimation methodology overhead of topological error correction codes

IV. Examples of estimates obtained with QuRE

Numerical Results – Shor's Factoring Algorithm, Three Technologies

	e = 1 x 10 ⁻³ t = 19,000 ns	e = 1 x 10 ⁻⁵ t = 25 ns	e = 1 x 10 ⁻⁹ t = 32,000 ns	
	Neutral Atoms	Supercond. Qubits	Ion Traps	
	2.6 years	10.8 hours	2.2 years	Time
Surface Code	5.3 x 10 ⁸	4.6 x 10 ⁷	1.4 x 10 ⁸	Qubits
	1.0 x 10 ²¹	2.6 x 10 ¹⁹	5.1 x 10 ¹⁹	Gates
Steane	-	5.1 years	58 days	Time
Code	-	2.7 x 10 ¹²	4.6 x 10 ⁵	Qubits
	-	1.2 x 10 ³²	4.1 x 10 ¹⁸	Gates

Numerical Results – Ground State Estimation, Three Technologies

	e = 1 x 10 ⁻³ t = 19,000 ns	e = 1 x 10 ⁻⁵ t = 25 ns	e = 1 x 10 ⁻⁹ t = 32,000 ns	
	Neutral Atoms	Supercond. Qubits	Ion Traps	
	6.2 x 10 ²¹	3.6 x 10 ¹⁸	6.0 x 10 ²¹	Time (ns)
Surface	4.2 x 10 ⁸	5.5 x 10 ⁷	2.5 x 10 ⁸	Qubits
0000	6.1 x 10 ²⁵	2.8 x 10 ²⁴	7.5 x 10 ²⁴	Gates
Steane	-	1.5 x 10 ²³	1.6 x 10 ²²	Time (ns)
Code	-	1.4 x 10 ¹⁰	1.3 x 10⁵	Qubits
	-	1.0 x 10 ³⁶	1.5 x 10 ²⁵	Gates

Abstract Technology (1 µs gates) with Varying Physical Error Rate

For low error rates concatenated codes outperform topological codes. Why?

The Topological and Concatenated Code Families are Very Different

- Concatenated codes
 - Lightweight with 1-2 levels of concatenation
 - Exponential overhead with additional concatenations
 - Topological codes
 - Operations highly parallel 1
 - Moderate overhead with increasing code distance

Time Per Logical Operation - Steane Code

Qualitative Difference in Gate Composition

32

Resource Estimates Useful for Identifying Topics for Future Work

- Low parallelism of studied circuits
 - How to exploit parallelism and move some operations off the critical path?
- Decomposition of arbitrary rotations very costly
 - More efficient techniques?
- Costly T and CNOT gates dominate
 - Circuit transformations to avoid these gates?
 - More efficient offline implementation?

Conclusion

- QuRE is an automated tool that quickly estimates the properties of the future quantum computer
- Reports a number of quantities including gate count, execution time, and number of qubits
- Is easily extendable for new technologies and algorithms
- Allows to identify sources of high overhead and quickly asses the effect of suggested improvements

Thank You!