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Why Study Traffic Management?
o Traffic management is important

n Determines traffic rates and divides resources
n Integrates routing, congestion control, traffic 

engineering, …

o Motivated by recent advancements in 
optimization theory research

o The architecture has shortcomings
n Suboptimal interactions of components

important

shortcomings
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Traffic Management Today

User:
Congestion Control

Operator: 
Traffic Engineering

Routers:
Routing Protocols 

Evolved organically without conscious design
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Shortcomings of Today’s 
Architecture

o Protocol interactions ignored
n Congestion control assumes routing is fixed
n TE  assumes the traffic is inelastic

What would a clean-slate redesign look like?

o Inefficiency of traffic engineering
n Link-weight tuning problem is NP-hard
n TE at the timescale of hours or days
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Contributions of This Talk

1. Case study of a design process
n Based on optimization decompositions
n Evaluations using simulation also needed

2. The new design
n Of network traffic management

The next steps:
n Towards virtualized networks
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Top-down Redesign

Problem Formulation

Distributed Solutions

TRUMP Algorithm

Optimization decomposition

Compare using simulations

TRUMP Protocol

Translate into packet version
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Congestion Control Implicitly
Maximizes Aggregate User Utility

max.∑i Ui(xi)
s.t.    ∑i Rlixi ≤ cl
var. x

aggregate utility

Source rate xi

User
utility
Ui(xi)

Source-destination pair indexed by i

source rate

Utility represents user satisfaction and elasticity of 
traffic

routing matrix

Fair rate allocation amongst greedy users
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Traffic Engineering Explicitly
Minimizes Network Congestion

min. ∑l  f(ul)
s.t. ul =∑i Rlixi /cl
var. R

Link Utilization ul

Cost
f(ul)

aggregate congestion costLinks are indexed by l

ul =1

Cost function is a penalty for approaching capacity

Avoids bottlenecks in the network

link utilization
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A Balanced Objective

max. ∑i Ui(xi) - w∑l f(ul)

Network users:
Maximize throughput 
Generate bottlenecks 

Network operators:
Minimize delay

Avoid bottlenecks

Penalty weight
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Top-down Redesign

Problem Formulation

Distributed Solutions

TRUMP Algorithm

Optimization decomposition

Compare using simulations

TRUMP Protocol

Translate into packet version

Optimization decomposition requires convexity
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Convex Problems are Easier to Solve

Convex Non-convex

o Convex problems have a global minimum
o Distributed solutions that converge to global 

minima can be derived using decompositions
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i source-destination pair, j path number

How to Make our Problem Convex?

max. ∑i Ui(∑j zj
i) – w∑l f(ul)

s.t.     link load≤ cl
var. path rates z

z11

z21

z31

o Single path routing is non convex
o Multipath routing + flexible splitting is convex

Path rate captures source rates and routing
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Overview of Distributed Solutions

Edge node: 
Update path rates z
Rate limit incoming traffic

Operator: Tune w, U, f
Other parameters

Routers: 
Set up multiple paths
Measure link load
Update link prices s

s
s

s
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Role of Optimization Decompositions

o Derive price and path rate updates
n Prices: penalties for violating a constraint
n Path rates: updates driven by penalties

o Example: TCP congestion control
n Link prices: level of packet loss or delay
n Source rates: adjust window based on prices

o Our problem is more complicated
n More complex objective, multiple paths
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o Rewrite capacity constraint:

Key Principles I: Effective Capacity

link load ≤ cl
link load = yl
effective capacity yl≤ cl

o Effective capacity keeps system robust

o Effective capacity yl
n Dynamically updated
n Advance warning of impending congestion
n Simulates the link running at lower capacity 

and give feedback on that
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Key Principles II: Consistency Price and 
Subgradient Updates

o Consistency price pl
n Relax constraint yl≤ cl but penalize violation 

with price pl
n Allow packet loss to converge faster

o Subgradient feedback price update:

n Stepsize controls the granularity of reaction
n Stepsize is a tunable parameter

pl(t+1) = [pl(t) – stepsize*(cl – yl (t))]+
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Four Decompositions – Differences

Iterative updates contain stepsizes:
They affect the dynamics of the distributed algorithms

Differ in how link & source variables are updated
Algorithm Features Parameters

Partial-dual Effective capacity 1
Primal-dual Effective capacity 3
Full-dual Effective capacity,

Allows packet loss
2

Primal-driven Direct price update 1
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Top-down Redesign

Problem Formulation

Distributed Solutions

TRUMP Algorithm

Optimization decomposition

Compare using simulations

Final Protocol

Optimization doesn’t answer all the questions

Translate into packet version
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o Theoretical results and limitations:
n All proven to converge to global optimum 

for well-chosen parameters
n No guidance for choosing parameters
n Only loose bounds for rate of convergence

Evaluating Four Decompositions

o Sweep large parameter space in MATLAB
n Effect of w on convergence
n Compare rate of convergence 
n Compare sensitivity of parameters



Simple Topologies Used in MATLAB
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Effect of Penalty Weight w

Can achieve high aggregate utility for a range of w

Topology dependent

User utility                  w            Operator penalty
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Convergence Properties: Partial Dual in 
Access Core Topology

Tunable parameters impact convergence time

● average value
x actual values

Parameter sensitivity

Best convergence
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Convergence Properties (MATLAB)

Parameter sensitivity correlated to rate of convergence
Algorithms Convergence Properties

All Converges slower for small w
Partial-dual vs.
Primal-dual

Extra parameters do not improve 
convergence

Partial-dual vs.
Full-dual

Allowing some packet loss may 
improve convergence

Partial-dual vs.
Primal-driven

Direct updates converge faster than 
iterative updates
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o Insights from simulations:
n Have as few tunable parameters as 

possible
n Use direct update when possible
n Allow some packet loss

TRUMP: TRaffic-management
UsingMultipath Protocol

o Cherry-pick different parts of previous 
algorithms to construct TRUMP

o One tunable parameter
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TRUMP Algorithm

Source i: 
Path rate zj

i(t+1) = max. (Ui(∑kzk
i) – zj

i *path price)

Link l:  loss pl(t+1) = [pl(t) + stepsize*(link load - cl )]+

queuing delay ql(t+1) = wf’(ul)

Price for path j  = ∑ l on path j (pl+ql)
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o TRUMP is not another decomposition
n We can prove convergence, but only

under more restrictive conditions

TRUMP Versus Other Algorithms

o From MATLAB:
n Faster rate of convergence
n Easy to tune parameter



Top-down Redesign
Problem Formulation

Distributed Solutions

TRUMP Algorithm

Optimization decomposition

Compare using simulations

TRUMP Protocol

So far, assumed fluid model, constant 
feedback delay, greedy traffic sources

Translate into packet version

27
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TRUMP: Packet-based Version

Link l: link load = (bytes in period T) / (clT)
Update link prices every T

Source i: Update path rates at maxj {RTTji}

Arrivals and departures of flows are 
reflected in price changes
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o Set-up:
n Synthetic topologies + realistic topologies 

and delays of large ISPs
n Multiple paths with 1ms to 400ms of delay
n Realistic ON-OFF traffic model

Packet-level Experiments in NS-2

o Questions:
n Do MATLAB results still hold?
n Does TRUMP react quickly to link 

dynamics? Can it handle ON-OFF flows?
n Number of paths needed?
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TRUMP Versus Partial Dual in Sprint 

TRUMP trumps partial dual for w ≤ 1/3

TRUMP Partial dual

Aggregate throughput 
stabilizes for a range of w’s

No stepsize allows 
satisfactory convergence
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TRUMP Link Dynamics

TRUMP reacts quickly to link dynamics

Link connecting NJ and 
IN in the Sprint network 
fails and recovers
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TRUMP Versus File Size

TRUMP’s performance is independent of variance

Worse for smaller files but 
still faster than TCP
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TRUMP: A Few Paths Suffice

Sources benefit the most when they learn a few paths

Worse for smaller files but 
still faster than TCP

Diminishing returns when 
providing more than 2 paths
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Summary of TRUMP Properties

Property TRUMP
Tuning 
Parameters

One easy to tune parameter
Only needs to be tuned for small w

Robustness to 
link dynamics

Reacts quickly to link failures and 
recoveries

Robustness to 
flow dynamics

Independent of variance of file sizes, 
more efficient for larger files

General Trumps other algorithms
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Division of Functionality

o Sources: end hosts or edge routers?
o Feedback: implicit or explicit?

Mathematics leaves open architecture questions

Today TRUMP
Operators Tune link weights

Set penalty function
Set-up multipath
Tune w & stepsize

Sources Adapt source rates Adapt path rates
Routers Shortest path routing Compute prices
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The Next Steps
o So far the utility function maximizes utility of 

throughput sensitive traffic

o However, not all traffic throughput sensitive:
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The Next Steps: Virtualization
o Need to support multiple types of applications

n Throughput-sensitive: file transfers
n Delay-sensitive: VoIP and gaming

o Questions
n What should the utility for each application 

look like?
n How to share network resources 

dynamically?
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Conclusions

o Traffic engineering
n Started with multiple decompositions
n Designed TRUMP: new traffic-

management protocol

o What to do next?
n Support of different traffic classes
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Thank You!
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Related Work

o Advancements in optimization theory
n Protocol reverse engineering (Kelly98, Low03)

n Design of new protocols (Low06)

n Multiple decompositions (Chiang06)

o Traffic management protocols consider 
congestion control or traffic engineering 
n Congestion control alone (FAST TCP, RCP, 

XCP, etc.)
n Use of multiple paths without adjusting 

source rates (MATE, REPLEX, etc.)


