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Abstract

We present the first implementation of TCP MaxNet, a conges-
tion control algorithm which uses multi-bit explicit congestion sig-
nal. While the theoretical properties of the MaxNet framework have
been studied in depth, we have been lacking an implementation of the
protocol that would confirm or refute what theory predicts; namely,
stability, quick speed of convergence, max-min fairness, short router
queues and low latency. The protocol consists of two components: an
AQM algorithm and a source algorithm. The AQM algorithm resides
in routers and calculates the congestion price. The source algorithm
reacts to the calculated price and adjusts the sending rate accord-
ingly. We provide pseudocode of both algorithms, and implement the
protocol in the Linux kernel by modifying the TCP/IP stack. Imple-
mentation related issues, such as fractional calculations and evaluation
of exponentials in the kernel are described. We show that our imple-
mentation, which uses a 23-bit TCP Option to encode and transmit
the price, scales from 32 bits/sec to 1 Peta-bit/sec rates with sufficient
accuracy. In the initial phase of data transmissions, we use a variant
of the QuickStart algorithm, which allows the sender to start send-
ing almost immediately at the available capacity, and prevents queue
buildup. Using state of the art WAN-in-Lab equipment, we evaluate
the performance of TCP MaxNet and confirm favorable properties of
the protocol. We observe that within a few RTTs the sending rates
converge to their max-min fair shares as dictated by the price. We
show that the latency is much lower than that of the other TCP pro-
tocols, and the protocol operates with nearly empty router queues.
Finally, since the protocol does not treat loss as congestion signal, it
has superior performance under loss.
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1 Introduction

The role of transmission control protocols (TCPs) [1] in computer networks is

twofold. First, they are responsible for reliable and timely transfers of data

in an environment where data may be corrupted or lost and packets may

be received out of order or even duplicated. Second, they manage sharing

of network resources to avoid congestion. Good congestion control provides

high efficiency, fair sharing among competing users, and stable rates that

reduce delay and jitter. While mechanisms that ensure reliable data trans-

fers between the sender and receiver are well known and easy to implement,

the distributed character of the congestion control algorithm, which is natu-

rally imposed by the distributed organization of modern computer networks,

makes congestion control an especially challenging problem.

1.1 Problems of the Current Congestion Control Al-

gorithms

Congestion control algorithms in TCPs adjust the source rates based on a

congestion signal obtained from the network. The congestion signal is ob-

tained either passively by measuring the loss rate or delay, which is known

to correlate with the level of congestion, or is calculated actively by an AQM

(Active Queue Management). If the congestion level increases, the strength

of the congestion signal increases as well. On the other hand, when the

network is underutilized, the signal decreases. We can further distinguish

between a binary and multi-bit congestion signal. A wealth of TCP pro-

tocols using passive, active, binary and multi-bit types of congestion level

signaling has been suggested, analyzed and implemented.

The most widely used congestion control protocol today is TCP Reno [2]

and its improved variant New Reno [3]. The algorithm is an improved version

of TCP Tahoe, which dates to 1988 when it was suggested as a response to a

series of congestion collapses in the Internet. Both algorithms are simple and
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use loss of a packet as a binary congestion signal. The heart of the congestion

control algorithm is AIMD (Additive Increase Multiplicative Decrease). The

sender’s congestion window1 w is first increased exponentially in the slow

start phase, and then adjusted in the congestion avoidance phase as follows:

on ACK : w = w +
1

w
, (1)

on loss : w =
1

2
w. (2)

TCP Reno has performed remarkably well considering the explosive growth

of the Internet in the last two decades.

However, it is well known that the performance of the protocol degrades

as the bandwidth delay product increases [4] [5] [6]. Equation (2) implies that

in ”equilibrium” the window of the sender oscillates between the maximal

value it attains and one half of that value. In order to achieve full utilization,

Reno requires buffer sizes equal to (at least) the bandwidth delay product

of the links, in which case the buffer occupancy oscillates between 100% just

after the packet loss and 0% when the window assumes its average value.

As bandwidth and delay increase, the buffer sizes and the associated delay

become prohibitively expensive.

Another issue is stability. From (1) and (2) the window of the sender

increases by approximately 1/T packets per unit time and decreases by

4

3
w

1

2
q
w

T
(3)

packets per unit time, where q is the probability of packet loss, T is the round

trip time, and w is the window size corresponding to the average sender’s

rate. Notice that 4
3
w represents the maximum size attained by the congestion

window, and w
T

is the number of packets sent per unit time. Therefore, the

1The details of operation and terminology used in connection with TCP protocols are
provided in chapter 2.
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change of the sender’s window can be expressed as

v̇ =
1

T
− 2

3

qw2

T
, (4)

and in equilibrium we have v̇ = 0. We have the following relation between

the equilibrium loss probability q∗ and the equilibrium window w∗, described

in [4] [5] [6]:

q∗ =
3

2

1

w∗2 . (5)

Consider, for example, 1 Gbps link with 50 ms RTT, a link we use in our

experiments in chapter 5, and assuming the packet size is 1500 bytes, we cal-

culate that the average sender’s window is 4,167 packets, the peak window

size in equilibrium is 5,556 packets, and the window is cut to 2,778 packets

after each loss. As a result, it takes 139 seconds for the sender to recover

from a single loss. In practice, the performance of the protocol would be

exacerbated by loss caused by new flows probing the network and/or non-

congestion based loss, making it nearly impossible to sustain full utilization

of the network.

A number of extensions of the original packet loss based scheme, such as

TCP BIC [7], HS [8], H [9], Scalable [10] and Westwood [11], have been sug-

gested. These protocols often dramatically improve the performance of TCP

Reno. However, some fundamental problems remain. Oscillations are a nat-

ural consequence of only one-bit congestion signal, and thus these proposals

do not eliminate the need of large buffers. For example, TCP BIC achieves

higher average throughput in high delay bandwidth product networks by in-

creasing the sender’s window more aggressively2 after loss, but this results in

longer router queues. TCP Vegas [12], and TCP FAST [13] [14] use a new ap-

proach and treat delay as an indicator of congestion. The biggest advantage

2TCP BIC halves its window after loss and then in each subsequent RTT increases its
window by half of the difference of the current window and the window before loss.
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of these delay-based proposals is that they are provably stable [15] [6] [14]

and achieve excellent throughput and responsiveness. However, due to their

delay based design, both protocols still require nonzero router queues, and

thus introduce additional delay that grows with load.

Explicit congestion signal protocols provide yet another interesting method

of congestion control. They calculate the congestion level actively in the

routers, and use additional fields in the packet header to communicate the

congestion level back to the sender. ECN [16], an extension of TCP Reno,

marks a single bit in the header to indicate congestion. The higher the rate

of packet marking, the higher the congestion level is. Even more interesting

are XCP [17] and RCP [18], new protocols that use multi-bit explicit conges-

tion signaling. XCP uses the routers to communicate the sender’s window in

the packet headers, while RCP communicates directly the sending rate. This

multi-bit method of congestion signaling allows the protocols to improve the

stability of the flow control and results in very short router queues, decreas-

ing latency of the flows. However, recent research showed that even these

implementations are not flawless.

XCP was shown to only achieve constrained max-min fairness, and one

of its flows may be assigned an arbitrarily small rate [19]. Moreover, the

protocol’s stability has only been shown for a single link scenario shared

by flows with identical RTTs. RCP faces another problem. It calculates

d0 [18], an estimate of the weighted average RTT of the flows, and performs

rate updates with dynamics equal to this value. This has negative effect on

dynamics of the system in an environment where RTTs of the flows vary.

For example [20], in a router where 90% of the traffic is local LAN traffic

with 1 ms RTT, and the remaining 10% of the bandwidth is used by one

WAN flow with 500 ms RTT, d0 is 50 ms. As a result, the LAN traffic is

forced to operate with slow WAN dynamics. Another issue that pertains to

both XCP and RCP is security. The routers trust the sources to honestly
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advertise their RTTs. The problem is that a malicious source could adver-

tise a very large RTT, and arbitrarily slow down the dynamics of the routers.

TCP MaxNet is a new congestion protocol that attempts to solve the

aforementioned challenges. Namely, MaxNet aims to achieve stability, zero

router queues, max-min fairness and fast dynamic properties in a range of

environments.

1.2 TCP MaxNet

In this document we report on the first successful implementation of TCP

MaxNet. The protocol, first introduced in [21] and [22] by Wydrowski, An-

drew and Zukerman, uses a multi-bit congestion signal, which is actively

calculated by routers. The main difference between MaxNet and other pro-

tocols, with the exception of XCP and RCP, is that the senders in MaxNet

adjust their sending rate in response to the congestion signal from the most

severely congested bottleneck on the end-to-end path they use. Other pro-

tocols use the sum of these signals. The framework provided by MaxNet has

been shown to have many advantages. MaxNet is stable in networks of ar-

bitrary sizes, speeds and topologies [21], and provides max-min fairness [22];

i.e., increase of a transmission rate of a sender does not result in the decrease

of the transmission rate of a competing user that has equal or lower rate.

Moreover, MaxNet has fast convergence properties [23]. Since the MaxNet

sender decreases its sending rate as the price calculated by routers increases,

proper selection of the rate control algorithms allows operation of the proto-

col with empty router queues, which is something other protocols that use

passive congestion signal cannot achieve. Finally, since the protocol does not

need to treat loss as a congestion signal, we show that it is vastly superior

to the other popular protocols in the presence of loss.

In chapter 2 we explain the fundamentals of transmission control proto-

cols. Chapter 3 provides a detailed description of the MaxNet algorithm,
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and chapter 4 describes our implementation in the Linux kernel. In chapter

5, we present the results of our experiments. We summarize our results in

chapter 7 and provide directions for further research in chapter 6.

2 Basic Design and Functionality of Trans-

mission Control Protocols

Rather than providing exhaustive descriptions and specifications of the algo-

rithms, which can be found e.g. in [1], we focus on describing the components

of the protocol that either play an important role in our performance consid-

erations, or that need to be modified. Readers with knowledge of the TCP

algorithm may safely skip this chapter.

Since transmitted data may be corrupted or lost, providing a framework

for reliable and timely transfer of data is one of the most important goals

of TCPs. To achieve this, TCPs assign a 32-bit sequence number to each

octet of data that is being transmitted. The data is then split into packets

(typically of sizes 1522 bytes or less), and transmitted over the network to

the destination. Each packet contains a TCP header that includes the se-

quence number of the first octet of data in the packet. The format of a TCP

header is depicted in Fig. 1. When the receiver receives the packet, it ac-

knowledges its receipt by sending an acknowledgement (ACK) to the sender.

The ACK contains the sequence number of the first octet of data that has

not been received. Whenever the sender transmits a packet to the network,

it places its copy on a retransmission queue, and starts a timer. If the data

is not acknowledged before the timer times out, the data is assumed to be

lost or corrupted, and it is retransmitted. If, on the other hand, the packet

is acknowledged, the data is removed from the queue. This scheme ensures

that all data is delivered to the receiver’s TCP, which then reassembles it

and passes it to the user’s application.
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Figure 1: TCP header format. Sequence number identifies the first octet of
data in the data part of the packet. Checksum is used to verify that the
data has not been corrupted while transmitted. Window is the maximal
number of packets that the sender of the packet is prepared to accept from
the receiver.

To detect corruption of data, a checksum [24] algorithm is used. The

sender calculates a 16-bit checksum for each packet, and places it in the

checksum field of the TCP header. Upon receipt, the receiver validates the

packet by recalculating the checksum of the packet. If the recalculated check-

sum does not match the checksum in the packet, the packet is rejected.

The following algorithm is used to calculate the checksum. A 96-bit pseudo

header containing the source address, the destination address, the protocol,

and TCP length is prepended to the packet depicted in Fig. 1. The checksum

field itself is substituted with zeros while the checksum is calculated. If the

segment contains an odd number of octets, it is padded with one zero octet.

Adjacent octets are paired so that they form 16-bit words. The checksum is

calculated as a 1’s complement sum3 of the 16-bit words, and finally the 1’s

complement of the sum is placed in the checksum field of the TCP header.

In our implementation, routers update price contained in the TCP header.

Whenever the value changes, the checksum needs to be recalculated. An

efficient way of performing an incremental update is described in section 4.2.

3One’s complement addition is a binary addition where the carry-out bit is added to
the least significant bit of the sum.
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TCP options are used for negotiation between the sender and receiver.

The first byte of each option contains the option type, the next byte encodes

its length, and the next bytes are used to communicate multi-bit information

to the receiver of the packet. Our implementation of MaxNet introduces a

new TCP option which is used to communicate congestion price between the

sender and the routers. Another example of a TCP option is SACK [25], an

important and widely adopted extension of TCP Reno.

SACK, an extension of the TCP algorithm allowing selective acknowl-

edgement of received segments of data [2], has been introduced because of

poor performance of the standard algorithm in the presence of multiple packet

losses. Fig. 2 shows a typical receiver queue when multiple packets were lost.

The original TCP algorithm is only able to acknowledge the largest continu-

ous block of data. Consequently, if some packet is missing, the sender must

either wait for 1 RTT (round trip time) to learn that the next packet is miss-

ing, or retransmit all the data beginning with the first missing packet, which

is inefficient. TCP SACK addresses this problem by allowing the sender to

acknowledge a number of continuous blocks of data. TCP option is used to

implement SACK. The SACK option consists of a one byte header field, one

byte length field, followed by sequence numbers of the right and left edge of

each of the acknowledged blocks. The length of the SACK option is 2 + 8n

bytes where n is the number of blocks being acknowledged. Standard imple-

mentations usually allow selective acknowledgement of up to three blocks.

Our implementation acknowledges at most two.

An important role of TCPs is to control the rate of data transmissions.

The sender controls its rate by calculating a congestion window w, i.e., the

maximum number of unacknowledged packets that can be outstanding in the

network. Since RTT denotes the time it takes for a packet to be acknowl-

edged, the sending rate x is
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Figure 2: The shaded boxes represent packets that were received and the
white boxes represent packets that were lost in transmission. Standard TCP
may acknowledge only the largest continuous block of data, while TCP SACK
notifies the sender that 3 more continuous blocks of data were received.

x = w/RTT. (6)

The congestion window is typically calculated as a function of the congestion

signal the sender receives. The main challenge for TCPs, including TCP

MaxNet, is to calculate the window in each sender so that high utilization,

stability, low loss, fair sharing of resources and low latency is achieved.

3 The Congestion Control Strategy of the

MaxNet Algorithm

The MaxNet congestion control algorithm is comprised of two principal com-

ponents - an AQM algorithm residing in the routers, and a rate control

algorithm which is used on the sender side. This chapter describes both al-

gorithms and their interaction.

Fig. 3 depicts the congestion signal feedback loop of MaxNet. For each

link l routers periodically calculate price Pl which represents the most recent

level of congestion. The prices increase with increasing loads of the links. The

source adjusts its sending rate as a function of the maximum price on the

end-to-end path. Section 3.1 describes how the congestion price is calculated.

In addition, section 3.1 extends the basic MaxNet framework by describing

how initial sending rates may be specified by routers. Section 3.2 provides
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Source Link1 Link2 Linkn Destination

Max 
Funcion

P1 P2 P3max{P1, P2, ..., Pn}

Figure 3: The congestion control feedback loop of MaxNet. The sender
uses the maximum of the link prices P1, P2, ..., Pn to adjusts its congestion
window.

the demand function of the source. Since the source only needs to learn the

maximum of the prices on the end-to-end path, we argue in section 3.3 that a

single 23 bit field in a packet suffices to signal the price with sufficient range

and accuracy.

3.1 Router Algorithm

The role of the router code is two-fold. First, routers calculate congestion

price for all links in order to control the sources. Second, routers use a variant

of the QuickStart algorithm [26] to assign a fraction of the available free

capacity to new flows joining the network.

3.1.1 Price Calculation

The congestion price of link l with capacity C is calculated by the AQM as:

pl(t + 1) = pl(t) +
1

C
(yl(t)− µC), (7)

where yl(t) is the amount of traffic which has been enqueued since the last

price update and is destined to leave through link l, 1
C

is a constant controlling

the rate of convergence of the MaxNet algorithm [27], and µ is a constant.

In steady state the price stabilizes and yl(t) = µC. Choosing µ < 1 results

18



1. On SYN arrival:

QSrate← C(µ + ε)− y

dt

if QSrate < QSminrate then
QSrate← QSminrate

end if
QSrateln← −ln

(
QSrate
xmax

)
if QSrateln > pkt.QSrate then
pkt.QSrate← QSrateln

end if

2. Every dt seconds:

y ← y
dt

p← p +
(
y

C
− µ

)
dt

if p < 0 then
p← 0

end if
y← 0

3. On packet arrival:

y← y + pkt.size

if p > pkt.price then
pkt.price← p

end if

Variables and parameters:
QSrate calculated QuickSrart rate

QSminrate minimal rate assigned to new flows
µ target utilization, typically ≈0.95
ε new flow allocation overshot
C link capacity
y data arrival rate

dt price update interval
pkt.price, pkt.QSrate price and QuickStart rate advertised in packets

Figure 4: Pseudocode of the router algorithm
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in less than 100% utilization of the link and prevents queue buildup. Our

implementation of the price calculation is described in step 2 of Fig 5. To

avoid interrupts, routers perform calculation (7) every dt seconds, where dt is

typically smaller than the smallest expected RTT. The resulting calculation

is efficient even at high speeds, as only one simple addition - increment of

yl(t) - per packet is required. The resulting price pl is saved in the price

option of a packet that uses link l only if the price contained therein is lower

than pl.

3.1.2 QuickStart Rate Calculation

The router side implementation of the QuickStart algorithm is described in

step 1 of Fig 5. The available capacity at link l is C − y
dt

where y
dt

is the

capacity used up by the background traffic. The initial target rate QSrate

is given by C(µ + ε) − y
dt

, where ε guarantees that the link will be slightly

overutilized after the new flow joins. Since the available rate may be zero

or even negative, we always assign at least QSminrate to each new flow.

QSrate is encoded in a passing packet only if it is the first packet of a

joining flow, i.e., SYN packet, and if the QSrate contained in the packet is

either uninitialized or larger than the calculated value.

3.2 Source Algorithm

A simplified pseudocode of the source algorithm is provided in Fig. 5. The

goal of the source algorithm is to calculate new congestion window estWnd

based on the price and initial sending rate, which are obtained from incoming

ACKs. The congestion window needs to be calculated so that all the favorable

properties of the protocol we desire are achieved.

3.2.1 QuickStart Rate Control Mode

The source operates in two modes: QuickStart mode and price controlled

mode. The sender enters the QuickStart mode at the beginning of the trans-
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mission after the first ACK with the QuickStart rate is received, and immedi-

ately starts sending at this rate. The window size corresponding to this rate

is saved in QSWnd. QSWnd is exponentially increased over time. The con-

sequent incoming ACKs contain prices which are saved in q, and the sender

periodically calculates the sending rate based on this price. The window

corresponding to this rate is saved in PriceWnd, but this value is not used

yet to control the transmission rate. Only when the price-calculated rate is

smaller than the QuickStart rate do we exit the QuickStart mode and enter

the price controlled mode. The reason for using the QuickStart mode in the

initial phase is twofold. First, it allows the sender to start transmissions at as

high a sending rate as can be immediately accommodated. Second, entering

directly in the price controlled mode is not convenient because the initial

price obtained from the routers shortly after a flow joins is not close enough

to the equilibrium. For example, after a single flow joins the network, the

price converges to some value p. When a second flow joins, it receives p in

the second packet. This price would result in too high a sending rate of the

second flow because p does not take into account the additional traffic of the

second flow. The following paragraphs describe the window calculation in

the two modes in greater detail.

After arrival of the first ACK, the sender decodes the QuickStart rate.

This is described in step 1 of the pseudocode. QSfinished = false indicates

that we entered the QuickStart rate control mode. As long as we are in

the QuickStart mode, QSrate contains the target sending rate. Since the

conditions in the network may change with time, e.g., a flow may leave

the network, the QSrate may become too small, and the price q may stop

increasing. Since the price controlled mode needs to be reached, QSrate is

increased. It is increased by factor rateinc every RTT whenever q is not

increasing quickly enough. This is described in step 4 of the algorithm.
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1. On first ACK arrival obtain QuickStart rate:

QSrate← xmax × exp (-pkt.QSrate)
QSfinished← false

2. On second ACK arrival estimate ξ:

ξ ← q
(

α
baseRTT

− 1
T

)
3. Every dt seconds update ξ and calculate estWnd:

ξnew ← ξ + η×dt
baseRTT2

((
T×α

baseRTT
− 1

)
× q − T × ξ

)
if ξ < q

(
α

baseRTT
− 1

T

)
< ξnew or ξnew < q

(
α

baseRTT
− 1

T

)
< ξ then

ξ ← q
(

α
baseRTT

− 1
T

)
else

ξ ← ξnew

end if

PriceWnd ← baseRTT× xmax × exp
(
ξ − q×α

baseRTT

)
if QSfinished then
estWnd← PriceWnd

else
QSWnd← QSrate× baseRTT

estWnd← QSWnd

if QSWnd > PriceWnd then
QSfinished← true

end if
end if

4. Every baseRTT seconds:

if QSWnd < cwnd then
deltaq← q−lastq

baseRTT

lastq← q

if q = 0 or deltaq < mindeltaq then
QSrate← QSrate × rateinc

end if
end if
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Variables and parameters:
cwnd current value of congestion window

dt window update interval
estWnd new calculated congestion window

xmax maximal supported transmission rate
ξ state variable used in window calculation
q price received in the most recent packet
α convergence parameter
η convergence parameter
T parameter that determines speed of convergence

baseRTT minimum RTT measurement of the flow
QSrate QuickStart rate obtained from first ACK
QSWnd window corresponding to QSrate

PriceWnd window corresponding to q

QSfinished true after exit from QuickStart mode
mindeltaq determines that price does not increase

rateinc factor for rate increase

Figure 5: Pseudocode of the source algorithm

3.2.2 Price Rate Control Mode

The window in the price controlled mode is given by the following demand

function:

PriceWnd = baseRTT × xmax × exp(ξ − q × α

baseRTT
), (8)

where ξ is a state variable. This rate control law ensures that the sender

achieves the maximum rate xmax when q = 0, and the rate is inversely

proportional to q. ξ counterbalances the dependence of the window on RTT

so that multiple senders with different RTTs achieve the same throughput.

ξ is calculated according to the following update rule [20]:

ξ = ξ +
η × dt

baseRTT2

((
T × α

baseRTT
− 1

)
× q − T × ξ

)
. (9)
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The window calculation and update of ξ is described in step 3 of the algo-

rithm. ξ is updated every dt seconds, which is typically much smaller than

baseRTT . This ensures sufficient dynamics of the control system. Andrew

et al. show in [20] that for fixed q the value of ξ converges to

ξ = q(
α

baseRTT
− 1

T
). (10)

In order to speed up the convergence of ξ in the initial phase, we initialize

ξ according to (10) as soon as q is available. When dt is too large due to

a delay of the call of the update rule (9), the value of ξ may be adjusted

incorrectly because the control system overreacts. We solve this problem by

not allowing ξ to exceed the value given by (10).

The algorithm presented here is especially attractive because the only

per packet operation required is update of q. ξ and the congestion window

estWnd is updated at most every dt seconds, and the calculations do not

severely burden the sender as its sending rate increases. Implementing an

interrupt that performs step 3 every dt seconds is not required either. Since

no new information is conveyed to the source unless a new packet is received,

step 3 is performed only when a new packet is received and more than dt

seconds have elapsed from the last update.

3.3 Price and QSrate Encoding

This section describes how price and QSrate is encoded in the packets so

that the MaxNet algorithm achieves sufficient range and accuracy of rate

control. We start by analyzing the price encoding.

Since price is quantized, rates are also quantized. If the sender receives

prices qA and qB, the corresponding congestion windows are D(qA) and D(qB)

where D(q) is the demand function in (8). We require that the increase of the

rate from one quantization level to another is small, i.e., D(qA) < αD(qB)
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where α is a small constant. This requirement ensures that accurate rate

control can be achieved. For the demand function (8) which can be rewrit-

ten as D(q) = c1×exp(c2−c3×q) where c3 < 1 the requirement simplifies to

qB−qA = ∆q < ln(α). In order to achieve the desired rate accuracy between

the minimum supported sending rate xmin and maximum supported sending

rate xmax, we need an encoding with fixed fractional part and fixed integer

part. The integer part of the encoding must be long enough to accommodate

D−1(xmax), and the fractional part must be long enough so that the rounding

error is less than ln(α).

Let Bint denote the bit width of the integer part and Bfrac denote the

bit width of the fractional part. We have Bint = log2(D
−1(xmin)) and

Bfrac = −log2(ln(α)). Choosing xmax = 1e15 bits/sec, xmin = 32 bits/sec

and α = 1.00001, we have Bint = 5 and Bfrac = 17. We conclude that a

fixed point encoding with 5 bit integer and 17 bit fractional part allows for

huge dynamic range of the protocol, yet is compact enough. In our imple-

mentation the price could be encoded in many different ways. We decided

to encode the price in a MaxNet TCP Option. Chapter 4 describes in detail

how this is done.

QSrate is encoded in the packets as −ln
(

QSrate
xmax

)
. This allows us to

represent sending rates in the xmin to xmax range. This would not be possible

if the rate was encoded directly as it would require up to 50 bits.

4 Implementation in the Linux Kernel

There are several ways of assessing the performance of a new TCP proto-

col, ranging from simulation to implementation and testing in an operating

system. We chose to implement the protocol in the Linux kernel on top of

the existing TCP/IP framework. On the one hand, using the existing kernel

codebase speeds up the development of the protocol, and the results repre-
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sent the actual performance of the protocol very accurately. On the other

hand, implementing a rather complicated TCP protocol, such as MaxNet, in

the kernel is very challenging. The kernel only supports simple integral arith-

metic operations, and thus much care has to be taken to perform calculations

with sufficient accuracy and range. This chapter describes our implementa-

tion in the kernel, all parameters and their values, as well as some challenges

we had to overcome. First, we explain how non-integral calculations were

performed. Next, we describe implementation of the router and sender code,

and all parameters. We conclude by justifying some implementation specific

changes we had to make in order to achieve good performance.

4.1 Non-integral Calculations in the Kernel

Performing non-integral calculations in the kernel is simple, albeit tedious.

Our approach is best illustrated by an example. During the initialization

phase the source calculates ξ = q( α
baseRTT

− 1
T
) where, e.g., α = 0.3, baseRTT

= 0.028 sec, T = 0.05 and q = 181,000. Since we may only use integral vari-

ables, our encoding multiplies α, baseRTT and T by a factor of 1,000, i.e.,

the variables initially contain α = 300, baseRTT = 28, T = 50 and q =

181,000. The desired calculation is then relatively straightforward:

xi=( s64)q*alpha;

do div(xi, baseRTT); // xi now contains q×alpha
baseRTT

temp = 1000*( s64)q; // temp now contains 1000× q

do div(temp, T); // temp now contains q
T

xi -= temp; // xi finally contains q( α
baseRTT

− 1
T
)

Other calculations are performed in a similar fashion.

4.2 Router Code

The router code, described in section 3.1., is implemented as iproute2 dy-

namically loadable module. The module is loaded using the tc program and
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it accepts several parameters. Typical values of these parameters, assuming

capacity of the link 1 Gbit/sec, are: C = 1 Gbit/sec, µ = 0.94, dt = 1000

µs, QSminrate = C
128

, ε = 0, msgdt = 100,000 µs and p min = 181,083
218 . If

the capacity of the output link is different, the value of C and p min has to

be adjusted accordingly. The value dt was chosen small enough so that we

can guarantee favorable convergence properties for flows with short RTTs,

yet the value is large enough so that small bursts are averaged, and the cal-

culations are not too frequent. The last two parameters, msgdt and p min,

are specific to our implementation, and deserve detailed description.

Parameter msgdt specifies the maximum frequency with which our code

reports statistical information, such as price or y. The code reports this infor-

mation using printk, and the output is then readily collected in /var/log/

messages. If the prints occurred too frequently the performance of the router

would suffer.

Parameter p min specifies the minimal price the router attempts to sig-

nal when its links are underutilized. The rate of the sender is given by the

demand function D(q) in (8), and D(0) = xmax, where in our case xmax =

1e15 bits/sec. When the router signals zero price, the sender will send data

at a speed of up to 1e15 bits/sec. If the link has a lower capacity than xmax,

signaling such a low price is undesirable. A valid price should never drop

below the value corresponding to the maximal capacity of the link C. The

value p min is given by:

p min = −T × ln(
x

xmax

). (11)

When the router code changes the price contained in a packet, the TCP

checksum needs to be updated. We implement an efficient incremental pro-

cedure that accepts the old checksum c, old price p, and new price p′, and

outputs the updated checksum c′. The new checksum is calculated according

to [24] and [28] as c′ =∼ (∼c + ∼p + p′).
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4.3 Sender Code

Implementation of the source algorithm, described in section 3.2., involves in-

tegrating the new TCP protocol in the existing TCP code. Newly introduced

system control variables allow us to switch between TCP MaxNet and other

congestion control algorithms as well as pass parameters to the MaxNet code

at runtime. The following table summarizes the new system control variables

we introduced, and provides typical values.

Variable Value Purpose
tcp maxnet 1 Switches TCP MaxNet on /

off.
tcp maxnet debug mode 0 Allows printing debug mes-

sages, but degrades perfor-
mance.

tcp maxnet alpha 0.3 α from section 3.2.
tcp maxnet eta 0.14 η from section 3.2.
tcp maxnet wnd update freq 1 The congestion window is re-

calculated after receiving this
number of ACKs.

tcp maxnet QS enabled 1 Switches QuickStart on / off.
When switched off only price
rate control mode is used.

tcp maxnet max wnd 65535 Maximum allowed size of the
window in packets.

tcp maxnet dpdt threshold 16000 dpdt from section 3.2.
tcp maxnet message dt 40000 µs How often experimental data

is printed. Too frequent prints
degrade performance.

tcp maxnet T 0.05 T from section 3.2.

The main part of the algorithm serves to calculate the congestion win-

dow, and is called from tcp ack(), a function that processes incoming ACKs.

The algorithm retains values of the per connection variables, such as ξ and

q, between the calls in struct str maxnet, which is declared within struct
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tcp sock. The main challenge of the algorithm is accurate calculation of

an exponential with a real parameter. Since the kernel only allows simple

integer calculations, we solved this problem by hard-coding a lookup table.

Our lookup table consists of approximately 64,000 records, and the individ-

ual elements of the table are addressed by the value of the exponent. Such

an implementation allows both sufficient range and accuracy, and is more

efficient than approximating the exponential by an iterative method.

Once the target congestion window is calculated, MaxNet provides this

value to the operating system by overwriting the snd cwnd variable in the

tcp sock structure. It is important to notice that the standard TCP frame-

work in Linux only implements loss based congestion control algorithms and

the congestion window is halved after each loss event. This decrease is not

necessary with TCP MaxNet, because MaxNet decreases its sending rate

as soon as the congestion price increases, and thus the loss the MaxNet

sender experiences is not caused by congestion. For this reason, our algo-

rithm overrides the standard behavior of the operating system, and enforces

its calculated congestion window even after loss. This behavior enables the

protocol to achieve excellent performance under loss. We report on this in

the experimental section.

4.4 The MaxNet TCP Option

We introduce a new TCP option [29] that uses 6 bytes in each packet header

to carry information about the price or QuickStart rate. The option format

is depicted in Fig. 6. The purpose of the first byte is to advertise that this

is TCP MaxNet option and the second byte advertises the length of the re-

maining fields. We suggest that, for performance reasons, the length of the

option does not exceed 8 bytes (including the 2 leading bytes), which leaves

6 bytes divided between forward and echo field. Both the echo and forward

fields carry either price or QuickStart rate whose length does not exceed 23

bits. This is a sufficient bit width as explained in section 3.3. The 24-th
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bit in the forward and echo field is used to distinguish between packets that

carry price and QuickStart rate.

The communication of the price and QucikStart rate is organized as fol-

lows. When a packet is sent, the forward field is initialized. The routers

modify the forward field of the packet according to our algorithm, and when

the packet is received, the receiver places the value from the forward field in

the echo field. The TCP Option is then placed in an ACK, and when the

original sender of the packet receives the ACK, it finds the price correspond-

ing to the forward path in the echo field. This scheme also works with duplex

connections.

The maximum total length of the TCP Options in the Linux kernel is

limited to 60 bytes. 20 bytes are used for the TCP header, 12 bytes are used

for the timestamp option and 28 bytes remain for selective acknowledgements

(SACKs) and TCP MaxNet options. In standard TCP implementations,

one can have up to 3 SACK blocks per header. They use 4 bytes plus 8

bytes per block, requiring up to 28 bytes and not leaving any space for TCP

MaxNet options. Therefore, we are forced to change the standard SACK

implementation and allow at most 2 blocks per SACK. This leaves 8 bytes for

TCP MaxNet options. It is important that the MaxNet option does not use

up more than 8 bytes, as availability of at least 2 blocks per SACK is crucial

for the protocol’s performance under loss. The reduction of the number of

blocks per SACK did not have any negative impact on our experiments.

opt optsize

42 6 echo price

(1 byte) (1 byte) (3 bytes) (3 bytes)

Figure 6: MaxNet option format.
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4.5 Robustness and Error Resilience

The MaxNet algorithm described in chapter 3 is based on a fluid traffic

model. However, this model does not reflect reality accurately. Real traf-

fic is packetized, packets may be reordered, lost, and may arrive in bursts.

The senders, routers and receivers have limited memory and computational

power, and thus the operations they perform are sometimes delayed or fail.

In this section, we will discuss these limitations and suggest solutions.

Packetization and burstiness of traffic is the main challenge the fluid

model faces. In chapter 3 we explained that the price update interval in the

router code must be small so that the price reflects the immediate load of

the links. However, when traffic arrives in bursts, the immediate load fluc-

tuates, and the congestion signal is not stable. We solved this problem by

averaging the incoming price at the sender side. Since the periodicity of any

bursts must be lower or equal than one RTT, the source code was modified

to average the incoming price over one RTT period, and the algorithm was

modified to take into account the additional feedback delay.

The following experiment was conducted to demonstrate the qualitative

difference between the immediate and averaged price. Our sender and re-

ceiver were connected by 1 Gbit/sec link controlled by a router. We used

a token bucket filter which capped the transmission at 500 Mbit/sec at the

router, but it allowed small bursts through. While the transmission was un-

stable when no price averaging was used, the throughput stabilized at 460

Mbit/sec when the price was averaged. Fig. 7(a) shows samples of the imme-

diate price calculated by the router (red color), and the averaged value used

by the source (green color). The sending rate of the sender when averaging

was used is depicted in Fig. 7(b).

Another source of instabilities is change of base RTT estimate during

runtime. Since the demand function (8) depends exponentially on 1
baseRTT

,
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(a) Price calculated by the router (red), and
averaged value (green).

(b) Throughput with 500 Mbit/sec bottle-
neck when averaging is used.

Figure 7: Price averaging over one RTT period at the sender side is required
to stabilize the sending rates.

even a small change of base RTT causes a huge change of the congestion

window. The size of the congestion window is later readjusted as ξ converges

to its proper value. However, the initial mismatch of the window size is often

so large so that it results in a temporary instability and oscillations. This

instability can be avoided by changing the value of ξ to counterbalance the

change in base RTT. When the base RTT estimate changes from baseRTTold

to baseRTTnew, we need to change the value of ξ as follows:

ξ = ξ + qα(
1

baseRTTnew

− 1

baseRTTold

). (12)

We performed an experiment to compare the behavior of the system be-

fore and after the suggested change. We performed a simple 20 second data

transfer and decreased the RTT estimate 10 seconds after the start of the

experiment by 1 ms . Behavior of the system before the change is depicted in

Fig. 8(a), 8(c) and 8(e). Fig. 8(a) depicts the throughput, Fig. 8(c) the base

RTT estimate and the actual RTT, and Fig. 8(e) depicts the convergence of

ξ to its target value. Results of the same experiment after the change was

incorporated are depicted in Fig. 8(b), 8(d) and 8(f).

Minimizing processing overhead is an important issue in high speed net-
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(a) Throughput before change. (b) Throughput after change.

(c) Base RTT and RTT before change. We
simulated a drop of the base RTT value at
time 10 seconds.

(d) This is the same measurement as in c
after the change.

(e) Convergence of ξ before the change. (f) Convergence of ξ after the change is im-
mediate.

Figure 8: Performance of the protocol when RTT drops. The figures on the
left were obtained using the protocol as described in chapter 3. The figures
on the right were obtained using a version that performs calculation given
by equation (12) when RTT drops.
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works. We optimized the source code and tested the protocol successfully at

speeds up to 1 Gbit/sec. Input/output operations, such as printing debug-

ging or status messages are the most time consuming operations. Thus, we

only allowed message prints at fixed time intervals. Chapter 6 provides some

suggestions how the computational overhead of the protocol could be further

reduced.

5 Experimental Results

Performance evaluation of TCP MaxNet was conducted on a WAN network

using WAN-in-Lab [30]. WAN-in-Lab is a wide area network consisting of

an array of reconfigurable routers, servers and clients. The backbone of the

network is connected by a 1600 km OC-48 link introducing 14 ms of one-way

propagation delay. Our experimental setup consisting of two Linux routers

and four Linux end hosts is depicted in Fig. 9.

Figure 9: The topology of the Wan-in-Lab.
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A dummynet [31] machine resides on the link between Goldenrod and

Yellow. This allows to introduce propagation delays between Goldenrod and

Yellow in both directions, simulating a real link. TCP MaxNet router code

is installed on the routers (labeled Ember and Goldenrod) and the client side

code is installed on the end hosts (labeled Red, Green, Blue and Yellow).

This configuration allows us to test the protocol under various conditions,

ranging from low delay low speed to high delay high speed environments.

The capacity of the links in low speed tests is reduced by a token bucket

filter, which is installed on the routers. The buffer sizes of the routers equal

approximately one bandwidth delay product. Traffic in our experiments was

generated by netperf.

5.1 Simple Data Transfer

In the first experiment, we observe the behavior of the system with only

one sender. Traffic is sent from Red to Blue over the 1 Gbit/sec link with

a 14 ms one-way propagation delay. During the experiment, we record the

immediate raw throughput of the protocol as measured by Red and Em-

ber, window size, RTT, drop rate, queue length at Ember, and price and

ξ at Red in periodic intervals. The raw throughput is calculated by Red

as the number of packets in flight divided by the RTT, and the other vari-

ables are obtained directly from the kernels. Fig. 10 depicts results of the

experiment. Fig. 10(a) shows the throughput measured by the sender, and

Fig. 10(b) shows the corresponding RTT. While the protocol achieves nearly

full utilization of the link, the RTT stays very close to the two-way prop-

agation delay of the link, the theoretical minimum. We show in [29] that

this is something that other loss or delay based protocols, such as BIC and

FAST, cannot achieve. Both loss and delay based protocols need to keep the

buffers at least partially filled, which results in much higher latency. Our

measurements of router queues confirmed that queues do not build up, and

no packets are dropped. Fig. 10(c) and Fig. 10(d) depict price and ξ. Both

price and ξ quickly converge to their theoretical values corresponding to a
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(a) Transfer rate of the sender. (b) RTT of the flow stays around the two-
way propagation delay of the link.

(c) Price calculated by the bottleneck router
and averaged price used by the sender to ad-
just its congestion window.

(d) ξ calculated by the sender.

Figure 10: Simple data transfer at 1 Gbit/sec between two endhosts.

1 Gbit/sec transmission over a link with 28 ms base RTT.

5.2 Multiple Flows

In this experiment we study the dynamic properties of the protocol when a

flow enters and leaves the system. Traffic is sent for 40 seconds from Red

to Blue over a 1 Gbit/sec link with 14 ms one-way propagation delay. 13

seconds after the start of the experiment a second flow from Green to Blue

joins the network. The second flow leaves the network at time 27 seconds

after the start of the experiment. We measure the same observables as in

the simple data transfer experiment. The results are depicted in Fig. 11. We
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(a) Throughput of the two flows. (b) Base RTT stays around the theoretical
minimum.

(c) Price calculated by the router and re-
ceived by the sources.

(d) ξ used by the senders.

Figure 11: 1 Gbit/sec link shared by two flows. The second flow joins the
network at time 13 sec and leaves at time 27 sec.

observe that the second flow acquires half of the available bandwidth quickly

after joining, and the first flow promptly reduces its sending rate. After the

second flow leaves, the first flow almost immediately claims the remaining

free capacity. Besides fair sharing, this experiment demonstrates several cru-

cial properties of TCP MaxNet.

First, the operation of the QuickStart algorithm is demonstrated. When

the second flow joins the network, the router communicates the maximum of

the available capacity and QSminrate to the source of the second flow. The

source then exponentially increases this rate. In the meantime, the rate of

the first flow decreases, and when the sending rates equalize, the source of
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the second flow switches to the price controlled mode.

Second, the experiment demonstrates excellent behavior of the protocol

in the price rate control mode. When the second flow ramps up, the price

calculated by the router increases. We observe that the first sender, which is

in the price rate controlled mode, promptly decreases its sending rate. It is

important to notice that the RTTs of both flows stay around the base RTT

value throughout the duration of the experiment, and virtually no queues

build up in the routers. The dynamics of the price controlled mode is also

tested when the second flow leaves the network. In this case, the price sig-

naled by the router sharply drops, and the source of the first flow converges to

the target 1 Gbit/sec utilization within a few RTTs. Again, the price control

mode handles the situation properly and the rate stabilizes at 1 Gbit/sec,

and no queues build up.

The absence of router queues is a significant advantage over the other

available TCP protocols. In [29] we show that while other commonly used

protocols are usually able to share bandwidth among two flows between end

hosts with identical propagation delay fairly, they require long router queues

which introduce additional delay.

5.3 Testing Fairness

It is well known that stability requirements of commonly used congestion

avoidance algorithms impose dependence of the target throughput on RTT

[29]. Therefore, TCP protocols usually do not share bottleneck capacity

fairly among flows with different RTTs. In this experiment we show that

MaxNet is able to share bottleneck capacity fairly even when the RTTs of

the participating flows vary.

This experiment uses three flows. The first two flows connect Red to

Yellow and Green to Yellow respectively. The dummynet is set to provide
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(a) The sending rates of the three flows. (b) All RTTs stay around the theoretical
minimum.

(c) Prices calculated by the routers. (d) Values of ξ in the senders.

Figure 12: The three flows share the bottleneck capacity fairly despite the
fact that the RTT of the third flow is lower than the RTT of the first two
flows.

14 ms of one way propagation delay. Thus, the two-way propagation delay

on the links that the two flows use is about 56 ms. The third flow connects

Blue and Yellow, and has a two-way propagation delay of about 28 ms.

Since dummynet is not able to run at 1 Gbit/sec with our hardware, this

experiment was performed at 400 Mbits/sec. The result is depicted in Fig. 12.

We observe that when the third flow joins the network the rates are equalized

and fair sharing is achieved.

5.4 Sharing Bandwidth with a UDP Flow

This experiment demonstrates the dynamic properties of the price rate con-

trolled mode of MaxNet. The experiment is essentially the same as the one
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(a) Sending rates of the MaxNet and UDP
flows.

(b) RTT of the MaxNet flow.

(c) Price in the router and in the MaxNet
sender.

(d) ξ of the MaxNet flow.

Figure 13: TCP MaxNet and UDP share a 1 Gbit/sec link.

in section 5.2, but the second flow is substituted by a UDP connection with a

fixed bandwidth of 470 Mbit/sec. The first flow is a MaxNet flow connecting

Red to Blue and the second flow, which joins at time 13 seconds and leaves

at time 27 seconds, connects Green and Blue. The results of the experi-

ment are depicted in Fig. 13. Although the UDP flow starts its transmission

much more aggressively than a TCP connection would, we observe that the

MaxNet source is able to reduce its sending rate almost immediately in order

to accommodate the UDP flow. Although the RTT of the first flow increases

briefly after the second flow joins, the queue length quickly decreases to zero.

After the UDP flow leaves the network, we again observe that the MaxNet

price control handles the situation as desired and increases the sending rate

of the flow to 1 Gbit/sec.

40



5.5 Performance under Loss

Performance of TCP MaxNet under loss is evaluated by measuring the raw

throughput of a TCP flow between Red and Blue. Loss between 0% and

0.25% is introduced in Ember on all its interfaces. This simulates loss in

both directions on the backbone link between Ember and Goldenrod. Aver-

age throughput of the protocol for each loss level is measured with five con-

secutive iperf flows, each running for 20 seconds. Fig. 14 shows the average

throughput of TCP MaxNet, TCP Reno, TCP BIC and TCP Westwood.

TCP MaxNet outperforms the other protocols because it does not reduce its

congestion window when loss occurs. The standard protocols assume that

loss is a symptom of congestion, and thus they decrease the sending rate

severely when non-congestion loss is introduced.

Figure 14: TCP MaxNet
achieves much better
throughput than other pro-
tocols when non-congestion
based loss is present. Loss
level as low as 0.1% has
devastating consequence for
the standard protocols.

6 Future Research

Our experiments show that TCP MaxNet achieves excellent performance.

However, we would like to point out the limitations of our work, and suggest

further improvements, some of which will be necessary before the protocol is

adopted.
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The main problem which will need to be addressed is fair sharing of band-

width with other TCP protocols and UDP. Since the sending rate of TCP

MaxNet depends on the available spare capacity in the routers, TCP MaxNet

is penalized in systems where other protocols, such as the ubiquitous TCP

Reno, try to aggressively push data through the network, and disobey the

price signal. We suggest separating the MaxNet queue in the routers, and

using a variant of selective packet dropping method, such as CHOKE [32], to

enforce approximate fairness. Separating the MaxNet queue from the stan-

dard queue seems to be advantageous for the following two reasons. First,

the separate queue allows MaxNet to enjoy low latency and other favorable

properties. Second, the selective dropping algorithm would be able to ac-

curately adjust the aggregate sending rate of the MaxNet flows simply by

changing the target utilization constant µ of the MaxNet queue in runtime.

Although the issue of fair sharing in heterogeneous environments has not re-

ceived much attention in connection with other recent TCP implementations,

we believe that this challenge can be overcome by using the approximate fair

sharing schemes presented e.g. in [32], [33] and [34].

Although our implementation could theoretically scale up to 1 Petabit/sec,

increasing CPU utilization will become a performance bottleneck at higher

speeds. In order to save CPU cycles, we suggest reducing the frequency of

packet marking at higher speeds. For example, one could mark every tenth

packet at speeds exceeding 100 Mbits/sec, and every hundredth packet at

speeds exceeding 1 Gbit/sec. This would reduce the load of both the senders

and the routers. We believe that speeds exceeding 10 Gbits/sec should be

achievable with minimal changes of the code.

7 Conclusion

We are the first to provide working implementation of TCP MaxNet and eval-

uate its performance. Our contribution is twofold. First, we provide solutions
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to the implementation related challenges. We show how to use a variant of

the QuickStart algorithm to accommodate new flows that join the network,

and we demonstrate at 1 Gbit/sec speeds that it only takes a fraction of a

second for the algorithm to bring the system to equilibrium. We improve

the price rate controlled algorithm to be more robust. We provide detailed

pseudocode of the MaxNet algorithms that are readily implementable. We

show that the algorithms we use scale with speeds and delays with desired

accuracy. We provide a method of evaluating exponential and carry out

fractional operations in the Linux kernel, and we point out changes imposed

by the implementation, such as price averaging, that are needed to achieve

good performance. Our second contribution is performance evaluation of

the protocol. Our results confirm previous theoretical predictions and show

that TCP MaxNet is for many reasons an attractive protocol. The dynamic

properties of the protocol are excellent. For example, when a UDP flow at

470 Mbits/sec joins a 1 Gbit/sec MaxNet flow, the speed of the MaxNet flow

decreases by 470 Mbits/sec within a few RTTs, while the router queues stay

empty. Next, we demonstrate that TCP MaxNet is capable of fair sharing

of bottleneck capacity even when the propagation delays of the competing

flows vary. Moreover, we demonstrate that TCP MaxNet achieves extraordi-

nary performance in lossy environments. Finally, we observe that the router

queues stayed empty during all of our experiments, and we conclude that

MaxNet has very low latency and high responsiveness.
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