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Abstract
Variational quantum eigensolver (VQE) is a promising al-

gorithm suitable for near-term quantum machines. VQE aims
to approximate the lowest eigenvalue of an exponentially sized
matrix in polynomial time. It minimizes quantum resource
requirements both by co-processing with a classical processor
and by structuring computation into many subproblems. Each
quantum subproblem involves a separate state preparation ter-
minated by the measurement of one Pauli string. However, the
number of such Pauli strings scales as N4 for typical problems
of interest—a daunting growth rate that poses a serious limita-
tion for emerging applications such as quantum computational
chemistry. We introduce a systematic technique for minimizing
requisite state preparations by exploiting the simultaneous
measurability of partitions of commuting Pauli strings. Our
work encompasses algorithms for efficiently approximating
a MIN-COMMUTING-PARTITION, as well as a synthesis
tool for compiling simultaneous measurement circuits. For
representative problems, we achieve 8-30x reductions in state
preparations, with minimal overhead in measurement circuit
cost. We demonstrate experimental validation of our tech-
niques by estimating the ground state energy of deuteron on
an IBM Q 20-qubit machine. We also investigate the under-
lying statistics of simultaneous measurement and devise an
adaptive strategy for mitigating harmful covariance terms.

1. Introduction
The present Noisy Intermediate-Scale Quantum (NISQ) era
[1] is distinguished by the advent of quantum computers com-
prising tens of qubits, with hundreds of qubits expected in
the next five years. Although several thousand logical error-
corrected qubits, backed by millions of device-level physical
qubits, are needed to realize the originally-envisioned quan-
tum applications such as factoring [2] and database search [3],
a new generation of variational algorithms have been recently
introduced to match the constraints of NISQ hardware.

∗Corresponding author: pranavgokhale@uchicago.edu

Variational Quantum Eigensolver (VQE) [4] is one such
algorithm that is widely considered a top contender, if not the
top contender, for demonstrating a useful quantum speedup.
VQE is used to approximate the lowest eigenvalue of a ma-
trix that is exponentially sized in the number of qubits. This
is a very generic eigenvalue problem with a wide class of
applications such as molecular ground state estimation [4];
maximum 3-satisfiability, market split, traveling salesperson
[5]; and maximum cut [6]. In this paper, we focus on the
molecular ground state estimation problem which has already
been demonstrated experimentally, though we underscore that
the full range of VQE applications is very broad.

VQE solves a similar problem as Quantum Phase Estima-
tion (QPE) [7, 8], an older algorithm that requires large gate
counts and long qubit coherence times that are untenable for
near-term quantum computers. VQE mitigates these quantum
resource requirements by shifting some computational burden
to a classical co-processor. As a result, VQE achieves low gate
count circuits and error resilience, but at the cost of requiring
many iterations where each iteration measures one of O(N4)
terms.

This is a daunting scaling factor that poses practical limi-
tations. It was observed that this N4 scaling could be partly
mitigated by performing simultaneous measurement: when
two terms correspond to commuting observables, they can be
measured in a single state preparation. Our work starts from
this observation and we seek to exploit this idea to minimize
the total number of state preparations needed.

Our specific contributions include:
1. Efficient approximation algorithms for partitioning the N4

terms into commuting families, i.e. approximating the
MIN-COMMUTING-PARTITION.

2. A circuit synthesis tool for simultaneous measurement.
3. Statistical analysis of simultaneous measurement and a

procedure for guarding against harmful covariance terms.
4. Validation of these techniques through benchmarks, simu-

lations, and experiments.
The rest of this paper is structured as follows. Section 2
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Figure 1: Z-basis (computational basis) measurement of a
qubit yields |0〉 or |1〉 with a probability corresponding to the
latitude of the qubit on the Bloch sphere.

presents relevant background material and Section 3 surveys
prior work. Section 4 analyzes the commutativity of the terms
of interest (Pauli strings) and Section 5 presents a technique for
minimizing the number of state preparations by mapping MIN-
COMMUTING-PARTITION to a MIN-CLIQUE-COVER in-
stance that can be approximated. Section 6 develops an alter-
nate technique that takes advantage of molecular Hamiltonian
structure in order to approximate the MIN-COMMUTING-
PARTITION with minimal classical overhead.

Section 7 shows and analyzes the circuit synthesis procedure
that allows simultaneous measurements between commuting
Pauli strings. Section 8 presents results for our techniques on
benchmark molecules and Section 9 demonstrates experimen-
tal validation. Section 10 studies the underlying statistics and
discusses a strategy for detecting and correcting course if a
partition is harmed by covariance terms. We make concluding
remarks and propose future work in Section 11.

2. Background

We assume an introductory-level knowledge of quantum com-
puting. We refer newer readers to one of many excellent
resources such as [9], [10], or [11].

2.1. Quantum Measurement

A standard procedure in quantum algorithms is to measure
a qubit. In hardware, the standard measurement that can be
performed is a measurement in the Z-basis, or computational
basis. Figure 1 depicts such a measurement. The qubit’s
state is a point on the surface of the Bloch sphere—states
with northern latitudes are close to the |0〉 state and southern
latitudes are close to the |1〉 state. Measurement, or readout,
causes the qubit to collapse to either the |0〉 or |1〉 state, with
a probability dependent on the latitude.

At a more mathematical level, the deeper meaning of mea-
suring a qubit in the

Z =

(
1 0
0 −1

)
basis is to project the qubit’s state onto the eigenvectors of
the Z operator, which are |0〉 and |1〉. In the same sense, we
can measure other observables, such as the other two Pauli

Figure 2: Measurement of the X or Y Pauli matrices requires
us to first apply a unitary rotation operation that rotates the X
or Y axis to align with the Z axis. Subsequently, a standard
Z-basis measurement yields the outcome of the X or Y mea-
surement.

matrices:

X =

(
0 1
1 0

)
and Y =

(
0 −i
i 0

)
The eigenvectors of X are termed |+〉 and |−〉, and they are
antipodal points along X-axis of the Bloch sphere. Similarly,
Y ’s eigenvectors, |i〉 and |−i〉, are antipodal along the Y -axis.
Since hardware cannot directly measure along these axes, mea-
surements of X (Y ) are performed by first rotating the Bloch
sphere with a unitary matrix so that the X (Y ) -axis becomes
aligned with the Z-axis. These rotations are depicted in Fig-
ure 2. Subsequently, a standard Z-basis measurement can be
performed, whose outcome can then be mapped to an effective
X (Y ) measurement.

The specific rotation that accomplishes the X-to-Z axis
change is the Ry(−π/2) transformation, which is typically
captured in quantum circuits by the similar H gate/matrix.
The Y -to-Z axis change is accomplished by the Rx(π/2) trans-
formation, which is typically captured [12] in quantum circuits
by the HS† gates/matrix.

The same general principle applies towards measuring ob-
servables across multiple qubits: measurement is accom-
plished by applying a quantum circuit that rotates the eigen-
vectors of the target observable onto the computational basis
vectors. The unitary matrix for such a transformation is simply
the one that has the orthonormal eigenvectors of the observ-
able as column vectors. In our study, we will be interested in
measuring Pauli strings, which are tensor products of Pauli
matrices across multiple qubits.

2.2. Simultaneous Measurement and Commutativity

From the preceding discussion, we can see that two observ-
ables can be measured simultaneously if they share a common
eigenbasis, i.e. they are simultaneously diagonalizable. In this
case, they can be measured simultaneously by applying the
unitary transformation that rotates their shared eigenbasis onto
the computational basis. In the case of Hermitian operators,
such as the Pauli strings of interest to us, two observables
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share an eigenbasis if and only if they commute [13, Chapter
1], i.e. the order of their product is interchangeable.

Moreover, this relationship extends beyond simple pairs:
given a family of pairwise commuting observables, there exists
a shared eigenbasis that simultaneously diagonalizes all of the
observables (rather than it merely being a situation in which
each pair has a separate shared eigenbasis) [14, Theorem
1.3.21].

In this paper, we will exploit this property to simultane-
ously measure multiple Pauli string observables with a single
state preparation and measurement circuit. Notice that this
problem is non-trivial because commutativity is not transitive
(and hence, not an equivalence class). Consequently, finding
optimal partitions of commuting families is a hard problem,
as we formalize later.

2.3. Quantum Computational Chemistry

Quantum computational chemistry has been a long targeted
problem on the classical computer. Due to the limits of classi-
cal computing resources, we are only able to perform approx-
imate classical simulations. Examples include Hartree Fock
(O(N4) runtime [15], only takes ground state orbitals into ac-
count), Density Functional Theory (O(N3) runtime [16], but
with even less precision), and Coupled Cluster Single-Double
(O(N6)+ runtime [17], only considers single and double exci-
tations).

The way to achieve chemical accuracy is to use Full CI
(full configuration interactions), which considers all necessary
orbitals. Classically this will generally require O(

(M
N

)
)→

exponential runtime [18]. On the other hand, quantum compu-
tation is able to encode an exponential amount of molecular
information into a polynomial number of qubits and thereby
achieve Full CI in polynomial time [19].

2.4. Variational Quantum Eigensolver (VQE)

As mentioned previously, VQE can be applied to a wide class
of problems that are solvable as minimum-eigenvalue estima-
tion [5, 6]. In this paper, we focus on the application that has
received the most commercial and experimental interest: esti-
mating molecular ground state energy. Within the molecular
context, we use VQE to approximate the lowest eigenvalue of a
matrix called the Hamiltonian that captures the molecule’s en-
ergy configuration. The lowest eigenvalue is the ground state
energy which has important implications in chemistry such as
determining reaction rates [20] and molecular geometry [21].

The Hamiltonian matrix for a molecule can be written in
the second quantized fermionic form as [22]

H =
N

∑
p=1

N

∑
q=1

hpqa†
paq +

N

∑
p=1

N

∑
q=1

N

∑
r=1

N

∑
s=1

hpqrsa†
pa†

qaras (1)

where a† (a) is the fermionic raising (lowering) operator,
and N is the number of qubits and also the number of molecu-
lar basis wavefunctions considered. The hpq and hpqrs terms

can be computed classically via electron integral formulas
implemented by several software packages [23, 24, 25]. The
second sum in Equation 1 indicates that the fermionic form of
the Hamiltonian has O(N4) terms [26, 27]. It can be translated
to qubit form by an encoding such as Jordan-Wigner [28],
Parity [29], or Bravyi-Kitaev [30], as we will discuss further
in Section 6. The resulting qubit form will also have O(N4)
terms, where each term is a Pauli string.

It is difficult to directly AND efficiently estimate 〈H〉, the
expected energy of the Hamiltonian under an input state vector.
The approach of VQE is to estimate it indirectly but efficiently,
by employing linearity of expectation to decompose 〈H〉 into a
sum of O(N4) expectations of Pauli strings, which can each be
computed efficiently. In the standard and original formulation
of VQE, each of these Pauli strings is measured via a separate
state preparation [4].

At its core, VQE can be described as a guess-check-repeat
algorithm. Initially, the algorithm guesses the minimum en-
ergy eigenvector of the Hamiltonian H. Then, it checks the ac-
tual energy for the guessed eigenvector by summing expected
values over the O(N4) directly measurable Pauli strings, as
previously described. Finally, it repeats by trying a new guess
for the minimum energy eigenvector, with the assistance of a
classical optimizer that guides the next guess based on past re-
sults. The potential quantum speedup in VQE arises from the
fact that checking the energy on a classical computer would
require matrix multiplication of an exponentially-sized state
vector; by contrast, the energy can be estimated efficiently with
a quantum computer by summing over the expected values of
the O(N4) Pauli strings.

Algorithm 1: Variational Quantum Eigensolver (VQE)
Result: Approximate ground state energy, min~θ 〈H〉ψ(~θ)

~θ1← random angles;
i← 1;
while (not classical optimizer termination condition) do

for j ∈ [O(N4)] do
for O(1/ε2) repetitions do

Prepare ψ(~θi);
Measure 〈H j〉ψ(~θi)

;
end

end
〈H〉

ψ(~θi)
← ∑ j 〈H j〉ψ(~θi)

;
Record (θi,〈H〉ψ(~θi)

);
i++;
Pick new θi via classical optimizer;

end

Algorithm 1 presents the pseudocode for VQE, under the
standard ‘Naive’ formulation where each Pauli string is mea-
sured separately. The resource complexity of VQE is clear
from this code: the inner for loops run O(N4/ε2) times and

3



each iteration requires a separate state preparation and mea-
surement. The outer while loop termination condition is
dependent on both the classical optimizer and the ansatz–we
discuss the latter next.

2.5. Unitary Coupled Cluster Single Double Ansatz

Since the number of possible state vectors spans an exponen-
tially large and continuous Hilbert space, we seek to restrict the
family of candidate energy-minimizing states. Such a family
is called an ansatz, and the ansatz state |ψ(~θ)〉 is parametrized
by a vector of independent parameters, ~θ . Since VQE aims to
run in polynomial time, the number of parameters should be
polynomial. While our work in this paper is applicable to any
ansatz, we focus our attention to the Unitary Coupled Cluster
Single Double (UCCSD) ansatz, which has generally been the
leading contender for molecular ground state estimation. In
addition to having a sound theoretical backing (the coupled
cluster approach is the gold standard for computational chem-
istry [22, 31]), UCCSD is more resilient to barren plateaus in
the optimization landscape that are experienced by hardware-
oriented ansatzes [32, 22]. Recent work has also demonstrated
the experimental superiority of UCCSD to other ansatz types
[33].

In terms of the number of qubits (which is also the number
of molecular basis wavefunctions) N, the total gate count of
UCCSD is O(N4) [34, 35], which can be parallelized in exe-
cution to O(N3) circuit depth. As a concrete scaling example,
a recent 4-qubit, 2-electron UCCSD circuit construction re-
quired circuit depth of 100 gates, spanning 150 total gates [33].
This is already out of range of present machines—the experi-
mental work thus far has required many symmetry reductions
and approximations to implement UCCSD. The number of
parameters in UCCSD, with respect to the number of electrons
and wavefunctions is O(N2η2), or O(N4) under the standard
assumption that these two terms are asymptotically related by
a constant.

2.6. Mutually Unbiased Bases

Finally, we give a brief overview of Mutually Unbiased Bases
(MUB) [36, 37], a concept in quantum information theory that
is connected to our overarching question of maximizing the
information learned from a single measurement. In the case
of qubits, MUBs describe a partitioning of the 4N−1 N-qubit
Pauli strings (Identity is excluded) into commuting families
of maximal size. For example, Table 1 shows a MUB for the
2-qubit Pauli strings. Notice that each row corresponds to a
commuting family. Also note that not all rows are created
equal–in the first three rows, the shared eigenbasis features
separable eigenvectors. In the last two rows, the shared eigen-
basis has entanglement between the two qubits.

It is known that for N qubits, there exists a MUB with 2N +1
rows and 2N−1 Pauli strings per row. This is optimal in the
sense that 2N−1 is the maximum possible number of distinct
Pauli strings (excluding Identity) within a commuting family.

Operator 1 Operator 2 Operator 3 Shared Eigenbasis
ZZ IZ ZI Separable
XX IX XI Separable
YY IY YI Separable
XY ZX YZ Entangled
YX ZY XZ Entangled

Table 1: MUB for two qubits. For the first 3 bases, the shared
eigenbases has fully separable eigenvectors. The last 2 bases
have fully entangled eigenvectors.

In Section 5, this result will give us insight into the bounds on
our MIN-COMMUTING-PARTITION approach.

3. Prior Work

Some of the theoretical aspects of our work were concurrently
and independently developed by two other research groups
(our work was first presented a month earlier [38]). The four
relevant papers, [39] from Waterloo and [40, 41, 42] from
Toronto all share with our work a high level goal of reducing
the cost of VQE by exploiting the simultaneous measurability
of commuting Pauli strings. In particular, [39] maps the mea-
surement cost reduction goal to a graph coloring problem. [40]
and [41, 42], which respectively consider Qubit-Wise Com-
mutativity and General Commutativity (defined in Section 4),
treat measurement cost reduction as a minimum clique cover
problem. The core ideas of these four papers can be compared
to Sections 4-5 and Appendix A in this paper.

Our paper is differentiated by a systems perspective that
gives explicit attention to the classical computation costs for
compilation and transpilation, as well as quantum overheads.
The graph algorithms discussed in [39, 40, 41, 42] incur im-
practical classical costs that may undo potential speedups
from simultaneous measurement. We remedy this issue by
introducing problem-aware techniques that operate on molec-
ular Hamiltonian graphs in linear time and hence preserve
speedups, as discussed in Section 6. Also, in Section 7, we
introduce a synthesis tool for simultaneous measurement cir-
cuits, in recognition of the fact that simultaneous measurement
does incur a quantum overhead in additional gates and coher-
ence requirements. To the best of our knowledge, this is the
first synthesis tool that constructs simultaneous measurement
circuits efficiently in both the classical compilation cost and
in the quantum circuit complexity. Sections 8 and 9 present
benchmark results and experimental results validating that the
classical and quantum costs of simultaneous measurement are
worthwhile. Additionally, we study the statistics of simultane-
ous measurement in Section 10 and demonstrate a constructive
procedure to guard against corruption from covariance terms.

Prior to this month, strategies for simultaneous measure-
ment in VQE had not been studied formally, aside from
the initial suggestion of measurement partitioning in [43].
Most experimental implementations of VQE, for instance
[44, 45, 34, 46], did at least perform measurement partitioning
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on an ad hoc basis, via inspection of the Hamiltonian terms.
Inspection is insufficient for larger molecules, because the
underlying problem is NP-Hard, as described in Appendix A.
The improvement in these experimental works due to simul-
taneous measurement is indicated by the reduction from the
# Pauli Strings to QWC (Qubit-Wise Commutation) column
in Table 2. The last column considers General Commutation
(GC) partitioning, which we introduce and evaluate in this
paper. Even for the small molecules that have been studied ex-
perimentally thus far, GC achieves significant cost reductions
over both Naive and QWC partitions.

Molecule # Pauli Strings QWC GC
H2 [44] 4 2 2
LiH [44] 99 25 9

BeH2 [44] 164 44 8
H2 (Bravyi-Kitaev) [34] 5 3 2
H2 (Jordan-Wigner) [34] 14 5 2

H2O [45] 21 3 3

Table 2: State preparation and measurement costs from prior
VQE experiments that performed Pauli string partitioning on
an ad hoc basis. # Pauli Strings indicates the number of mea-
surement partitions that would be needed naively. QWC ex-
presses the number of Qubit-Wise Commuting partitions that
were actually measured via ad hoc inspection—we propose a
more formal partitioning procedure in Section 5. GC foreshad-
ows the General Commuting partitions that our techniques de-
scribed in Sections 4.3 and 5 - 6 achieve.

In software implementations, both the OpenFermion [25]
and Rigetti PyQuil [47] libraries were recently augmented with
functions for simultaneous measurement via Qubit-Wise Com-
mutation: group_into_tensor_product_basis_sets()

and group_experiments() respectively. However, these
software implementations do not consider General Commuta-
tivity and suffer from at least N8 scaling in runtime, which may
undo the potential speedup from simultaneous measurement.

An alternative perspective on the reduction of measurement
cost in VQE was introduced in [48] which takes the approach
of transforming molecular Hamiltonians to create commuta-
tivity and reduce the number of qubits needed. Another prior
paper [49] operates in a related mathematical setting, using
feedforward measurements to create QWC (though we note
that feedforward measurements are equivalent to standard uni-
tary transformations by the principle of deferred measurement
[11]).

Aside from state preparation and measurement costs, re-
cent work has focused on improving other elements of the
VQE pipeline. In the classical stage, [5, 43, 50] describe im-
provements to the classical optimizer and [51, 52] present
techniques for optimized pulse-level compilation. At the quan-
tum stage, [35, 53] propose improvements to ansatzes and
[43, 54] demonstrate procedures for error mitigation. We note

that all of these techniques apply to orthogonal stages of the
VQE pipeline and therefore can compose directly on top of
our work.

4. Analysis of Commutativity
We analyze the commutativity of the terms present in Hamil-
tonian decompositions. Two terms A and B commute, if their
commutator is 0:

[A,B] := AB−BA = 0→ AB = BA

As mentioned in Section 2.2, two commuting terms are simul-
taneously diagonalizable by a shared eigenbasis.

In our case, the terms in an N-qubit Hamiltonian are Pauli
strings, which are N-fold tensor products of the Pauli matrices,

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Pauli strings are also referred to in other literature as members
of the Pauli Group, GN .

We seek to analyze when two Pauli strings commute. While
most of these results are known, they are usually discussed
in the context of the stabilizer formalism and quantum error
correction. We present the elements relevant to VQE here,
with foreshadowing of our key techniques.

4.1. Single Qubit Case

First, let’s note the commutation relations for single qubit
Pauli matrices:
• I commutes with everything else. Specifically, [I, I] =

[I,X ] = [I,Y ] = [I,Z] = 0.
• X , Y , and Z commute with themselves. [X ,X ] = [Y,Y ] =

[Z,Z] = 0.
• The other pairs form a cyclic ordering. In particular,

[X ,Y ] = iZ, [Y,Z] = iX , [Z,X ] = iY . Flipping the commuta-
tor bracket order negates the result.

4.2. Qubit-Wise Commutativity (QWC)

The simplest type of commutativity is Qubit-Wise Commuta-
tivity (QWC). Two Pauli strings QWCommute if at each index,
the corresponding two Pauli matrices commute. For instance,
{XX , IX ,XI, II} is a QWC partition, because for any pair of
Pauli strings, both indices feature commuting Pauli matrices.

As mentioned in Section 3, QWC has been leveraged in
past experimental work for small molecules [44, 45, 34, 46]
by ad hoc inspection of the Hamiltonian terms. However, Ap-
pendix A demonstrates that optimally partitioning Pauli strings
into QWC families is NP-Hard, so an efficient approximation
algorithm is needed for larger Hamiltonians with more Pauli
strings.

QWC is also referred to in other work as Tensor Product Ba-
sis (TPB) [44, 25, 47], recognizing the fact that for a family of
QWC Pauli strings, the vectors in the simultaneous eigenbasis
can be expressed as a tensor product across each qubit index,
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with no entanglement. As shown in Section 7, this makes
simultaneous measurement very easy for QWC partitions.

4.3. General Commutativity (GC)

QWC is sufficient but not necessary for commutation between
Pauli strings. For example, {XX ,YY,ZZ} is a commuting fam-
ily, even though none of the pairs are QWC—at both indices
the Pauli matrices always fail to commute. The most general
rule for commutation of two Pauli strings is that they must fail
to commute at an even number of indices—2 in the example of
{XX ,YY,ZZ}. We refer to this most general form of commu-
tativity as General Commutativity (GC), and its proof is below.
Note that QWC is simply the subset of GC corresponding to
the case where the number of non-commuting indices is 0
(which is even).

Theorem 1. Consider two N-qubit Pauli strings,

A =
N⊗

j=1

A j and B =
N⊗

j=1

B j

where A j,B j ∈ {I,X ,Y,Z}. A and B commute (GC) iff A j and
B j fail to commute on an even number of indices.

Proof. For Pauli matrices that don’t commute, AiBi =−BiAi.
Thus, we can write AB as

AB =
N⊗

j=1

A jB j =
N⊗

j=1

{
B jA j if [A j,B j] = 0
−B jA j if [A j,B j] 6= 0

= (−1)kBA

where k is the number of indices where [A j,B j] 6= 0. For AB to
equal BA, we require (−1)k = 1, which requires k to be even.
Thus, A and B commute iff A j and B j commute on an even
number of indices.

Figure 3 depicts the commutation relationships between
all 16 2-qubit Pauli strings. Edges are drawn between Pauli
strings that commute—a blue edge indicates that the pair is
QWC and a red edge indicates that the pair is GC-but-not-
QWC. The II identity term QWCommutes with every other
Pauli string.

5. MIN-CLIQUE-COVER on Hamiltonian
We refer to our core problem of interest as MIN-
COMMUTING-PARTITION: given a set of Pauli strings from
a Hamiltonian, we seek to partition the strings into commuting
families such that the total number of partitions is minimized.
While the underlying structure of Pauli matrices and their
commutation relationships raises the possibility that MIN-
COMMUTING-PARTITION may be efficiently solvable, it
turns out to be NP-Hard, as we prove in Appendix A. More-
over, MIN-COMMUTING-PARTITION is hard even when we
only consider the restricted commutativity of QWC. Thus, the
ad hoc QWC partitioning techniques from past experimental

Figure 3: This is the commutation graph (also known as a com-
patibility graph [55]) for all 16 2-qubit Pauli strings. An edge
appears when two Pauli strings commute. The blue edges indi-
cate Pauli strings that commute under QWC (which is a subset
of GC). The red edges commute under GC-but-not-QWC.

work [44, 45, 34, 46] are likely to have limited potential for
larger molecules.

Instead of solving MIN-COMMUTING-PARTITION ex-
actly, we approximately solve it by mapping to a graph prob-
lem as suggestively expressed by the graph representation in
Figure 3. Observe that cliques (fully connected subgraphs
where each pair of Pauli strings commutes) are relevant be-
cause all of the strings in a clique can be measured simultane-
ously. Therefore, we seek the MIN-CLIQUE-COVER, i.e. the
smallest possible set of cliques whose union spans all vertices.
As an example, Figure 4 shows the commutation graph for
LiH’s 4-qubit Hamiltonian and its MIN-CLIQUE-COVERs
using QWC edges and using GC edges.

MIN-CLIQUE-COVER, in its decision version, is one of
the classic Karp NP-Complete problems [56], so efficiently
finding the minimal possible clique cover for a general graph
is unlikely. Moreover, finding a guaranteed “good” clique
cover approximation is also NP-Hard for general graphs [57].
However, molecular Hamiltonian graphs are highly structured
owing both to features of the Pauli commutation graph [58]
and to patterns in the Pauli strings that arise in molecular
Hamiltonians (we explicitly address and exploit the latter in
Section 6). This suggests that MIN-CLIQUE-COVER approx-
imation algorithms may yield reasonably good results. Before
discussing the approximation algorithms we used, we discuss
bounds on the MIN-CLIQUE-COVER and the relationship to
whether the partitions are QWC or GC.

5.1. Bounds via MUBs

Note that 2N separate Pauli strings can be measured via a sin-
gle simultaneous measurement. For instance, consider the 2N

set of Pauli strings of form (I or Z)⊗N . All such Pauli strings
can be simultaneously measured by simply measuring in the Z
basis on each qubit. This example is suggestive of the power
of simultaneous measurement. In the graph picture, it means
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QWC All edges (Full)

Figure 4: The top commutation graph shows both QWC (blue)
and GC-but-not-QWC Commuting (red) relationships between
the Pauli string’s in LiH’s Hamiltonian. The vertex colors in
the bottom two graphs indicate MIN-CLIQUE-COVERs using
only QWC edges (left) or using all edges (right). The reduction
in measurement partitions from Naive (measuring each Pauli
string separately) to QWC to GC is 14→ 5→ 2.

that cliques exist of size 2N , which means that simultaneous
measurement can lead to an exponential reduction in quantum
cost relative to Naive separate measurements.

In the case of VQE, we will consider graphs that have only
a polynomially sized (O(N4)) number of Pauli strings. It
is still enlightening to consider the MIN-CLIQUE-COVER
on the N-qubit graph comprising all 4N − 1 possible Pauli
strings (in this analysis, we exclude I⊗N which commutes
with everything else). Per the MUB formalism introduced
in Section 2.6 and as suggested in the previous paragraph, a
clique of Pauli strings can contain at most 2N − 1 vertices.
This suggests that at least 2N +1 cliques are needed to cover
all 4N − 1 possible Pauli strings on N qubits. In fact, this
lower bound is exactly attainable—a MUB is exactly such a
covering of all N-qubit Pauli strings by disjoint cliques. Again,
this illustrates the potential of simultaneous measurement—a
square root reduction is achieved in the total number of state
preparations and measurements needed to cover all possible
N-qubit Pauli strings.

Many of the partitions produced by MUBs have entan-
glement in the shared eigenbasis: for example, the bottom
two rows of the MUB in Table 1. This means that the MIN-
CLIQUE-COVER corresponding to a MUB requires GC edges

and not just QWC edges. Next, we further discuss the advan-
tage of GC over QWC.

5.2. QWC vs. GC

GC captures a much denser commutation graph than QWC
does, and therefore has more opportunities for larger cliques
and thereby smaller clique covers.

We first consider the commutation graph of QWC, over
all possible N-qubit Pauli strings; this graph has 4N vertices.
Given a Pauli string with I on k indices, it QWC commutes
with exactly 4k ·2N−k−1 = 2N+k−1 other Pauli strings: on
the ‘partner’ string, the k indices are unrestricted and the N−k
indices can either match the original Pauli matrix or be I (we
subtract 1 to not count the original Pauli string). Since there
are
(N

k

)
3N−k terms with I on exactly k indices, we see that

|E|=
N

∑
k=0

(N
k

)
3N−k(2N+k−1)

2
=

10N−4N

2

This corresponds to an asymptotic graph density of

lim
N→∞

|E|
|V |(|V |−1)/2

= lim
N→∞

(104−4N)/2
4N(4N−1)/2

= lim
N→∞

(5/8)N = 0.

In other words, the QWC graph is extremely sparse. By con-
trast, the GC graph is dense: consider two random Pauli strings.
The indicator variable denoting whether the two strings com-
mute on the ith index is a Bernoulli random variable. There-
fore, the GC commutation graph corresponds to when the sum
over N such independent variables is even, i.e. when a Bino-
mial random variable is even. Asymptotically, this occurs with
1
2 probability—thus the asymptotic graph density for GC is 1

2 ,
much denser than for QWC.

Although GC leads to smaller MIN-CLIQUE-COVERs than
QWC, QWC does have cheaper simultaneous measurement
circuits, as we will see in Section 7. However, the cost of GC
simultaneous measurement will still turn out to be favorable,
because circuit costs in VQE are dominated by the ansatz
preparation.

5.3. Approximation Algorithms Tested

In our benchmarking, we performed MIN-CLIQUE-COVERs
using the Boppana-Halldórsson algorithm [59] included in
the NetworkX Python package [60], as well as the Bron-
Kerbosch algorithm [61] which we implemented ourselves.
These heuristics approximate a MAX-CLIQUE whose ver-
tices are marked; we then recurse on the residual unmarked
graph, repeating until all vertices are marked. We also
used the group_into_tensor_product_basis_sets()

approximation implemented by OpenFermion [25]—this ap-
proximation is a non-graph-based randomized algorithm that
only finds QWC partitions. Section 8 presents results across a
range of molecules and Hamiltonian sizes.

While the benchmark results indicate promising perfor-
mance in terms of finding large partitions, it is critical to also
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consider the classical computation cost of performing the MIN-
CLIQUE-COVER approximation. First, the Bron-Kerbosch
algorithm has a worst case exponential runtime. Therefore,
its optimality should be interpreted as a soft upper bound on
how well other standard approximation algorithms can approx-
imate a MIN-CLIQUE-COVER. The Boppana-Halldórsson
algorithm’s runtime is polynomial but is not well studied. Our
benchmarks and theoretical analysis indicate roughly quadratic
scaling in graph size. Some polynomial benchmarks consid-
ered in the other concurrent work scale as much as cubically
in the graph size.

However, this poses a problem—the Hamiltonian graph has
N4 terms, so a quadratic or cubic runtime in the number of
vertices implies N8 or N12 scaling in classical precomputation
time. Beyond simply implying impractical scaling rates, these
runtime ranges may exceed the quantum invocation cost of
VQE, in which case, we’d be better off just running VQE
in the Naive fashion. In particular, recall that the UCCSD
ansatz has O(N3) circuit depth after parallelization and that
naively, O(N4) state preparations are needed per ansatz. The
total quantum invocation cost of VQE therefore scales as N7

multiplied by the number of ansatz states explored, though
we note that both the ansatz exploration and the naive O(N4)
measurements could be parallelized given multiple quantum
machines. The number of ansatz states explored is an open
question that depends on the classical optimizer, the ansatz
type, and the variational landscape. Nonetheless, we can make
rough estimates by noting that the VQE ansatz has O(N4) pa-
rameters, and rough theoretical results suggest anywhere from
O(N4) iterations under the default SciPy optimization settings
[62] to O(N12) under matrix inversion techniques. Further
work is needed to understand the exact cost of VQE, but there
is a strong case that standard graph approximation algorithms
may have higher asymptotic cost than simply executing VQE
naively without simultaneous measurement optimization. In
the case of many expensive MIN-CLIQUE-COVER approx-
imation algorithms, it seems likely that it would be better to
simply skip the partitioning step and just measure the Pauli
strings naively.

In the next section, we remedy this concern by present-
ing a MIN-COMMUTING-PARTITION approximation that
exploits our knowledge of the structure of molecular Hamilto-
nians and their encodings into qubits. The resulting approxi-
mation algorithm runs in O(N4) time (linear in the number of
Pauli strings, i.e. the graph size), which is safely below the
quantum invocation cost of VQE.

6. Linear-Time Partitioning
As discussed in the previous section, standard MIN-CLIQUE-
COVER approximations may be unsuitable since the classical
cost of partitioning can exceed the quantum cost from naively
running VQE. This motivates us to inspect features of molec-
ular Hamiltonians and develop a new partitioning strategy
accordingly. At a high level, our new strategy is context-aware

and attacks the MIN-COMMUTING-PARTITION problem at
a different abstraction level, namely the encoding stage from
fermionic Hamiltonian to qubit Hamiltonian. By contrast, the
previous approximations are unaware of molecular properties.

For convenience, we repeat Equation 1 for the molecular
Hamiltonians:

H =
N

∑
p

N

∑
q

hpqa†
paq +

N

∑
p

N

∑
q

N

∑
r

N

∑
s

hpqrsa†
pa†

qaras

where a† and a denote raising and lowering operators that act
on fermionic modes.

The N4 scaling of the number of terms in the Hamilto-
nian is clear from the second summation. In particular, the
asymptotically-dominant terms are of form a†

pa†
qaras with

p 6= q 6= r 6= s. These O(N4) terms are known as the double
excitation operators [63]. At the scale of smaller molecules,
the O(N) terms of form a†

pap and the O(N2) terms of form
a†

pa†
qapaq are frequent. These are termed the number and

number-excitation operators respectively. We will treat both
the asymptotically-dominant terms and the frequent-for-small-
molecules terms in this section.

The commutation relationships of fermions are different
from the commutation relationships of qubits. Thus, an en-
coding step is needed to convert the fermionic Hamiltonian
into a qubit Hamiltonian. We consider the most common
[22] such encodings: Jordan-Wigner [28], Parity [29], and
Bravyi-Kitaev [30].

6.1. Jordan-Wigner

Under the Jordan-Wigner encoding, we make the fermion-to-
qubit transformations:

ap→
Xp + iYp

2
Zp−1...Z0, a†

p→
Xp− iYp

2
Zp−1...Z0

with I on every other index.
6.1.1. Double excitation operators . For the asymptotically
dominant O(N4) terms of form a†

pa†
qaras (WLOG, p > q >

r > s), we end up with the 16 Pauli strings matching the regular
expression:

(Xp|Yp)Zp−1...Zq+1(Xq|Yq)(Xr|Yr)Zr−1...Zs+1(Xs|Ys)

Thus, we see that the Jordan-Wigner transformation turns
each of the N4 fermionic terms into a sum over 16 Pauli strings.
Moreover, these 16 Pauli strings are disjoint from the ones
generated by a a†

p′a
†
q′ar′as′ term. Consider the commutation

graph of the 16 Pauli strings. All indices except for p,q,r,
and s immediately commute, so the commutativity graph only
needs to consider the p,q,r, and s indices. Figure 5 depicts
the commutation graph, which has a MIN-CLIQUE-COVER
of 2. Thus, this yields a strategy for reducing the number of
measurement partitions by 8x: we collect all Pauli strings from
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Figure 5: The 16 relevant Pauli strings in the Jordan-Wigner
encoding of a†

pa†
qaras have a MIN-CLIQUE-COVER of size 2.

fermionic terms of form a†
pa†

qaras (and from the 4! permuta-
tions of the indices) and measure them using 2 GC partitions
instead of 16 Naive partitions.

For molecular Hamiltonians, we generally expect to have
hpqrs = hsrqp, because of the nature of these calculations via
integrals and the fact that electrons are indistinguishable. In
this case, only 8 terms arise (as noted in another context by
[63]), specifically the green 8-clique in Figure 5. Thus again,
we can achieve an 8x reduction.
6.1.2. Number and number-excitation operators While the
8-fold reduction in the partitions of the O(N4) pqrs terms is
the asymptotic bottleneck, we also note a useful reduction for
the smaller terms which are significant for smaller molecules.

For the O(N) number operators of form a†
pap, multiplying

out the Jordan-Wigner encoding yields the Pauli string Zp. For
the O(N2) number-excitation operators of form a†

pa†
qapaq, the

Jordan-Wigner encoding yields the Pauli string ZpZq.
Observe that all of these Pauli strings commute and there-

fore can be simultaneously measured. Moreover, they are
QWC, so the simultaneous measurements are cheap, as we
will see in Section 7. While this result may appear obvious
from inspection of small molecular Hamiltonians, which have
many Pauli strings of form I...IZI...I, we underscore that it
is not obvious to a context-unaware MIN-CLIQUE-COVER
approximation.

6.2. Parity Encoding

For the Parity encoding, we make the transformations:

ap = XN−1...Xp+1
XpZp−1 + iYpIp−1

2

a†
p = XN−1...Xp+1

XpZp−1− iYpIp−1

2
6.2.1. Double excitation operators . WLOG, suppose p−
1 > q,q− 1 > r,r− 1 > s. Multiplying out a†

pa†
qaras we see

that the parity encoding creates Pauli strings matching the
regular expression:

(XpZp−1|YpIp−1)Xp−2...Xq+1(XqZq−1|YqIq−1)...

Figure 6: Similar to the Jordan-Wigner case, the 16 relevant
Pauli strings in the Parity encoding of a†

pa†
qaras have a MIN-

CLIQUE-COVER of size 2.

...(XrZr−1|YrIr−1)Xr−2...Xs+1(XsZs−1|YsIs−1)

Only indices p, p−1,q,q−1,r,r−1,s, and s−1 are rele-
vant for commutativity. Once again expanding the resulting 16
Pauli strings, we see that the commutation graph has a MIN-
CLIQUE-COVER of size 2, as depicted in Figure 6. Thus,
we can again achieve an 8x reduction in the number of parti-
tions by performing simultaneous measurement across these
indices. However, note that the simultaneous measurement cir-
cuit now involves 8 indices, so it will be more expensive than
the simultaneous measurement circuit for the Jordan-Wigner
encoding.
6.2.2. Number and number-excitation operators We also
again consider the O(N) and O(N2) operators that are frequent
in smaller molecules. The parity encoding on the number and
number-excitation operators gives rise to Pauli strings of form
ZpZp−1 and ZpZp−1ZqZq−1 respectively. Again, we see that
for small molecules, the parity encoding creates a large set of
QWC Pauli strings.

6.3. Bravyi-Kitaev

The Bravyi-Kitaev coding is asymptotically favorable for
Hamiltonian simulation because it requires asymptotically
fewer non-I operators per Pauli string by only selecting a sub-
set of indices to perform partial sums needed in the fermion-
to-qubit encoding. As a result, every ap or a†

j term involves a
subset of indices (> p) that carry the X update, and a subset of
the indices (< j) that require the phase correction. This com-
plicates the commutation structure of a†

pa†
qaras and there is

not an immediately obvious clique cover strategy–we identify
this as an open question.

7. Circuits for Simultaneous Measurement

Once an approximate MIN-COMMUTING-PARTITION so-
lution has been generated, a natural question arises of how
to actually perform the necessary simultaneous measurement
for each commuting partition. In the case of Naive partitions
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where each Pauli string is measured separately, the measure-
ment circuit is trivial. In particular, recall from Section 2 that
we simply perform the H and HS† operations on the indices
with X or Y respectively, and then we measure every qubit
in the Z basis. Thus, we need just O(N) fully-parallelizable
single qubit gates; more specifically, we require k ≤ N single
qubit gates, where k is the number of indices in the Pauli string
that equal X or Y .

Simultaneous measurement is also similarly straightforward
in the case of QWC partitions. Each index of a QWC parti-
tion is characterized by a measurement basis. For example,
consider the task of simultaneously measuring the two QWC
Pauli strings XIY IZI and IXIY IZ. We simply apply H to the
left two qubits and HS† to the right two qubits. The resulting
qubits can all be measured in the standard Z basis, and the
corresponding outcomes indicate the X , X , Y , Y , Z, and Z out-
comes as desired. In terms of circuit cost, QWC measurement
is essentially identical to Naive measurement: O(N) single
qubit gates are required, and the gates are fully parallelizable
to constant depth.

While Naive and QWC partition measurements are straight-
forward, GC partition measurements are nontrivial. We now
introduce a circuit synthesis procedure enabling these measure-
ments, and we analyze both the quantum and classical costs of
this procedure. To the best of our knowledge, this is the first
work explicitly demonstrating how to perform simultaneous
measurement in the general case of GC Pauli strings. We
implemented our circuit synthesis tool as a Python library and
validated it across a wide range of molecular Hamiltonians.

7.1. Background

As discussed in Section 2, performing a simultaneous measure-
ment amounts to applying a unitary transformation in which
the columns of the unitary matrix are the simultaneous eigen-
vectors of the commuting Pauli strings in the partition. After
applying such a transformation and then performing standard
Z-basis measurements, the outcomes are mapped directly to
measurements of the Pauli strings of interest. One approach to
synthesize a simultaneous measurement circuit would be to ex-
plicitly compute the matrix of simultaneous eigenvectors and
then apply one of many possible unitary decomposition tech-
niques [64, 65, 66, 67, 68, 69] to this matrix. However, this
approach is not sufficient for two reasons. First, in general, de-
composition techniques trade off between requiring intractable
quantum circuit depth, requiring intractable classical compi-
lation time, and yielding only approximations to the desired
transformation. Second, and most importantly, these tech-
niques require us to compute the simultaneous eigenvectors
and input them to the decomposer. In general, the simulta-
neous eigenvectors resulting from GC can be fully entangled
across all N indices, and they are represented by a 2N-sized
column vector. The corresponding unitary matrix would be
doubly exponentially sized in N, erasing any potential quan-
tum advantage.

With this in mind, it is clear that any decomposition tech-
nique must avoid explicitly computing eigenvectors and writ-
ing out exponentially sized unitary matrices. Fortunately,
the stabilizer formalism—typically applied to quantum er-
ror correction—provides us such a mechanism. Before pro-
ceeding, we note that our work is built upon the language
of stabilizers introduced in [70] and expanded upon in [71].
While these two papers were applied to error correction and
quantum simulation, the core techniques also apply to our use
case. Also, [72] and [73] leverage these stabilizer techniques
to perform MUB measurements. Our circuit constructions are
drawn from these two papers as well as [74], but stem from a
different context and end goal.

7.2. An Example: {XX ,YY,ZZ}

We begin with a well-known example. Consider the task of
trying to simultaneously measure XX ,YY, and ZZ, a GC (but
not QWC) partition. The simultaneous eigenvectors of these
Pauli strings are known as the four Bell states:

|Φ+〉= |00〉+ |11〉√
2

, |Φ−〉= |00〉− |11〉√
2

,

|Ψ+〉= |01〉+ |10〉√
2

, |Ψ−〉= |01〉− |10〉√
2

These eigenvectors are linearly independent and span all possi-
ble 2-qubit states—hence, they are a basis. Unlike the vectors
in the standard computational basis of {|00〉 , |01〉 , |10〉 , |11〉},
the eigenvectors in the Bell basis feature entanglement be-
tween the two qubits. As a result, measurement in the Bell
basis requires interaction between the two qubits, unlike the
the Naive and QWC measurements described previously. The
quantum circuit in Figure 7 is a well-known circuit that per-
forms Bell basis measurement, i.e. simultaneous measurement
of XX , YY , and ZZ.

• H
|ψ〉

Figure 7: Bell basis measurement circuit that simultaneously
measures XX , YY , and ZZ on the |ψ〉 state. After application
of these two gates, the measurements of the top and bottom
qubits correspond to outcomes for XX and ZZ respectively.
The YY outcome is obtained from YY =−(XX)(ZZ).

To understand why this circuit measures XX and ZZ (and
also YY =−(XX)(ZZ)), we observe that our ultimate goal is
to transform a target measurement of [XX ,ZZ] into [ZI, IZ]—
the latter captures the outcomes we actually measure directly
via standard Z-basis measurement. An important background
result is that after applying some unitary operation U , a target
measurement of M on the original state has become equivalent
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to a measurement of UMU† [70, 11] on the new state. This is
known as unitary conjugation.

In the Bell basis measurement circuit, we first apply U =
CNOT . By computing UMU† we can see that target mea-
surements of [XX ,ZZ] are transformed under conjugation to
measurements of

[XX ,ZZ] UMU†

−−−−−−→
U =CNOT

[UXXU†,UZZU†] = [XI, IZ].

Finally, after applying the Hadamard gate on the top qubit, the
measurements are transformed to

[XI, IZ] UMU†

−−−−−→
U = H⊗ I

[UXIU†,UIZU†] = [ZI, IZ].

Thus, this CNOT , H⊗ I gate sequence performs the desired
transformation of rotating a measurement of [XX ,ZZ] into the
computational basis, [ZI, IZ]. The ordering of the elements
is important and indicates that measurement of the top qubit
(ZI) corresponds to the XX outcome and measurement of
the bottom qubit (IZ) corresponds to the ZZ outcome. As
mentioned previously, YY follows as −(XX)(ZZ).

7.3. Stabilizer Matrices

In order to consider the general case, we now switch to the
formalism of stabilizer matrices. Our notation and terminol-
ogy is similar to previous work [70, 71, 72, 73, 74], with
some deviations for clarity. Within the stabilizer formalism,
every N-qubit Pauli string maps to a 2N-entry column vec-
tor. The top N entries indicate whether each corresponding
index ‘contains’ a Z. The bottom N entries correspond to X’s.
The Y Pauli matrix corresponds to having a 1 in both the Z
and X entries, since Y = iZX . The stabilizer matrix for a list
of Pauli strings is simply the concatenation of the column
vectors. As an instructive example, the stabilizer matrix for
[XXX ,YYY,ZZZ,XY Z] is:

0 1 1 0
0 1 1 1
0 1 1 1
1 1 0 1
1 1 0 1
1 1 0 0


For convenience and clarity, we will refer to the top N

rows as the Z-matrix and the bottom N rows as the X-matrix.
Recall that our goal is to transform a target set of Pauli strings
for simultaneous measurement into the computational basis
measurements, [ZII...I, IZI...I, ..., III...Z]. We see that the
stabilizer matrix for this computational basis simply has an
N×N Identity as the Z-matrix and all zeroes in the X-matrix.

We now seek a procedure to transform the target stabilizer
matrix into this computational basis stabilizer matrix. To see
how to accomplish such a transformation, it is useful to know
unitary conjugation relationships for a basic gate set. Table 3

and Table 4 list the unitary conjugations of important Pauli
strings for 1- and 2- qubit unitary gates respectively.

UZU† UXU†

U = H X Z
U = S Z Y

Table 3: Result of conjugation of Z and X by single qubit gates
U = H or S. Note that H can be thought of as a “NOT gate”
between X and Z. The S (phase) gate does not affect Z, but
does transform X into Y .

UZIU† UIZU† UXIU† UIXU†

U =CNOT ZI ZZ XX IX
U =CZ ZI IZ XZ ZX
U = SWAP ZI ZI IX XI

Table 4: Result of conjugation of ZI, IZ, XI, or IX by two qubit
gates U =CNOT , CZ, or SWAP.

Based on these tables, we can interpret the action of each
of these unitaries on a stabilizer matrix. These rules can be
verified directly from the tables and are also explained in
[71, 73].
• H on the ith qubit swaps the ith and i+Nth row of the

stabilizer matrix (i.e. swaps between corresponding rows
of the Z- and X- matrices). It is helpful to think of H as a
"NOT gate" that flips Z and X measurements.

• S on the ith qubit sets the (i, i) diagonal entry in the Z-matrix
to 0.

• CNOT controlled on ith qubit and targeted on the jth qubit
adds the jth row to the ith row and adds i+Nth row to the
j+Nth row. All additions are performed modulo 2.

• CZ between the i and jth qubits sets the (i, j) and ( j, i)
symmetric off-diagonal entries of the Z-matrix to 0.

• SWAP between the i and jth qubits swaps the i and jth rows
of both the Z and X matrices. This can be seen from the
fact that SWAP = (CNOT )(NOTC)(CNOT ) and two rows
can be swapped with three alternating binary additions.

7.4. Circuit Synthesis Procedure

We now have the tools we need for circuit synthesis, which
amounts to transforming the stabilizer matrix for a commuting
family of Pauli strings into the computational basis stabilizer
matrix (which has Identity for the Z-matrix and zeros for the
X-matrix). For simplicity, we describe the procedure for the
case when the partition of N-qubit Pauli strings is complete
and contains N linearly independent elements. This is the
hardest case—if the partition is incomplete, the measurement
procedure is similar but has more slack, because at least 1 of
the qubits will not need to be measured.

The circuit synthesis procedure is described in Algorithm 2.
To develop its intuition, we demonstrate its application to the
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Algorithm 2: Circuit synthesis for sim. measurement
input : {Pi}, a complete GC family of Pauli strings
output : Circuit for simultaneous measurement of {Pi}
M ∈ F2N×N

2 ← basis of {Pi};
Full-rankify Z-matrix by applying H gates;
Gaussian eliminate X-matrix using CNOT & SWAP gates;
for each diagonal element in Z-matrix do

if element is 1 then apply S to corresponding qubit;
end
for each element below diagonal of Z-matrix do

if element is 1 then apply CZ to the row-col qubits;
end
Apply H to each qubit;
Measure each qubit;

problem of simultaneously measuring [IY X ,ZZZ,XIX ,ZXY ],
which is a GC (but not QWC) family. We initialize the algo-
rithm by setting the stabilizer matrix to a basis of this partition.
Note that the fourth term is linearly dependent on the first
three, so we exclude it to yield such a basis; in general, we use
Gaussian elimination to perform this distillation of the Pauli
strings into a basis. The stabilizer matrix for this resulting list
of Pauli strings, [IY X ,ZZZ,XIX ], is:

0 1 0
1 1 0
0 1 0
0 0 1
1 0 0
1 0 1


The first step of the simultaneous measurement circuit syn-

thesis is to apply H gates as needed to transform the X-matrix
to have full rank (it is currently only rank 2). Such a trans-
formation is always possible and can be found efficiently by
Gaussian elimination [71, Lemma 6]. In this case, applying H
to the first qubit swaps the first and fourth rows of the stabilizer
matrix, yielding an X-matrix of full rank 3:

H →


0 0 1
1 1 0
0 1 0
0 1 0
1 0 0
1 0 1


Now that the X-matrix is of full rank, we can apply standard

Gaussian elimination to row reduce it into the Identity matrix.
The CNOT and SWAP gates give us the elementary row oper-
ations needed: add one row to another and swap rows. In this
example, the X-matrix can be row reduced to the identity by
first adding its second row to the third row, and then swapping
the first and second rows. Breaking this down, we first observe
the effect of the CNOT on the stabilizer matrix:

• →


0 0 1
1 0 0
0 1 0
0 1 0
1 0 0
0 0 1


And finally the SWAP completes the row reduction, leaving

the X-matrix as the identity:

×
× →


1 0 0
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1


Notice that the CNOT and SWAP also affected the Z-matrix,

which is now a symmetric matrix; this is guaranteed to occur
[73]. Now our desired transformation is almost complete.
The on-diagonal 1 is erased with S on the first qubit, and the
two off-diagonal 1s are erased with a CZ between the second
and third qubits. These two operations have no effect on the
X-matrix:

S

•
•

→


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


Finally, we apply an H to each qubit, which swaps the

Z- and X- matrices, leaving us in the computational basis
stabilizer matrix, as desired:

H

H

H

→


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



The full circuit and resulting transformation is shown below:
0 1 0
1 1 0
0 1 0
0 0 1
1 0 0
1 0 1

→
H × S H

• × • H

• H

→


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



7.5. Circuit Complexity

The efficiency of Algorithm 2 and the overarching stabilizer
formalism stems from the fact that the stabilizer matrices are of
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size 2N×N, and all manipulations are on this tractably-sized
matrix. This averts the exponential cost that manipulating
simultaneous eigenvectors would entail. In terms of classical
cost, the synthesis tool is fast because its slowest step is the
Gaussian elimination, which has time complexity of O(N3)
[75].

The actual circuit produced by the synthesis procedure re-
quires only O(N2) gates in the worst case, as also noted in
related results [73, 74]. This follows because the Gaussian
elimination can require O(N2) elementary row operations,
which entails O(N2) CNOT gates. The erasure of off-diagonal
elements in the Z-matrix also requires O(N2) CZ gates.

While the O(N2) gate count for GC measurement is worse
scaling than the O(N) gate count for Naive or QWC measure-
ment, we emphasize that the measurement circuit is preceded
by an ansatz preparation circuit that dominates gate counts and
depth. In particular, the UCCSD ansatz has O(N4) gate count
and O(N3) depth after parallelization. Therefore, the cost of
simultaneous measurement is asymptotically insignificant. As
discussed, we base our studies on UCCSD because the Cou-
pled Cluster approach is the gold standard for quantum com-
putational chemistry [22, 31]. Moreover, UCCSD has shown
experimental and theoretical promise, unlike hardware-driven
ansatz, which were shown to suffer from “barren plateaus”
in the optimization landscape [32, 22]. Even in the case of
other non-hardware-driven ansatzes, gate counts and depths
generally scale at least as N3 in order to achieve high accuracy.
Thus, the quadratic cost of GC measurement appears to be
benign.

We also underscore that the O(N2) gate count scaling of
simultaneous measurement is a worst case scenario, where our
partition is dominated by GC-but-not-QWC edges. In practice,
this is not the case and we see QWC on many, if not most
indices. For example, in the linear-time MIN-COMMUTING-
PARTITION 8x approximations presented in Section 6 only a
constant (4 or 8) number of Pauli string indices have a GC-but-
not-QWC relationship in the simultaneous measurements. The
remaining N−4 or N−8 Pauli string indices are QWC. Thus,
under this MIN-COMMUTING-PARTITION approximation,
the simultaneous measurement circuit gate count is still O(N)
and the depth is still parallelizable to O(1).

For reference, we show in Figure 8 the simultaneous mea-
surement circuit for the 4 GC-but-not-QWC qubits in the Pauli
partition for the Jordan-Wigner transformation. Specifically,
this measurement circuit is used to measure the green 8-clique
in Figure 5. The other N− 4 qubits are QWC and require
single-qubit gates for measurement—this is why the simulta-
neous measurement gate complexity is still just O(N).

7.6. Measurement Circuit Optimizations

While the circuit synthesis procedure in Algorithm 2 yields a
correct simultaneous measurement circuit, it is not necessarily
the most optimal circuit possible. For instance, in Figure 8,
the SWAP (implemented as 3 CNOT s) between qubits 2 and

• H

H • • • • • H

H • • • • H

H • • • • H

Figure 8: Simultaneous measurement circuit generated by our
software for the green 8-clique in Figure 8. It transforms the
measurements of XXXX ,XXYY,XY XY,Y XXY (which is a
basis for the Pauli strings in the green 8-clique) to measure-
ments of ZIII, IZII, IIZI, IIIZ.

3 can be omitted from the circuit and instead implemented by
swapping their subsequent gates, and then accounting for the
SWAP classically after the measurements are performed. In
other words, the SWAPs in our circuit constructions can be
accomplished by simple classical re-labeling of qubit indices.

We also observe that many gates can be parallelized. For
example, the depth of Figure 8 can be reduced by parallelizing
the execution of the CZ gates with the execution of the CNOT
gates.

8. Benchmark Results

We tested the performance of our simultaneous measurement
strategies in Section 5 on multiple molecular benchmarks,
whose Hamiltonians we obtained via OpenFermion [25]. Our
benchmark results encompass both the reduction in number of
partitions relative to Naive, as well as the classical computation
runtime required to produce the partitioning.

As mentioned, in Section 5, the Bron-Kerbosch based MIN-
CLIQUE-COVER approximation has exponential worst case
runtime and should thus be considered a soft bound on the
optimality of partitions produced by other graph approxima-
tion algorithms. Figure 9 indicates the performance of Bron-
Kerbosch in terms of number of commuting partitions (cliques)
found using both QWC and GC edges, in comparison to the
Naive VQE implementation in which each Pauli string is in
a singleton partition. The improvement from Naive to QWC
is consistently about 4-5x—a significant reduction especially
considering that QWC measurement is cheap. The improve-
ment from Naive to GC ranges from 7x to 12x from H2 to
CH4 (methane). This suggests that the state preparation cost
reduction factor from GC partitioning improves for larger
molecules.

Figure 10 and Figure 11 examine partitioning efficacy when
we vary the qubit encodings and the number of active spaces
considered for the H2 molecule. Across the qubit encodings,
performance is roughly consistent with a 3x improvement from
QWC partitions and a 10x improvement from GC partitions.
We do note one outlier in that the performance is particularly
promising for the Brayvi-Kitaev Super-Fast encoding [30],
which achieves a 20x reduction in the number of partitions
from Naive to GC. Across the varying active spaces, we again
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Figure 9: Number of QWC and GC partitions (which we are
attempting to minimize) generated by Bron-Kerbosch for four
representative molecules. AS# indicates the number of active
spaces for the molecular Hamiltonian.

see evidence that the GC partitioning advantage scales with
Hamiltonian size, ranging from 3x to 12x as the number of
active spaces is increased. This is important and encouraging,
because prior work demonstrated that a relatively large number
of active spaces are needed to achieve chemical accuracy [76].

Figure 10: Number of QWC and GC partitions generated by
Bron-Kerbosch for the H2 molecule, under different fermion-
to-qubit encodings.

Along with the Bron-Kerbosch approximations as a loose
upper bound on the expected partitioning optimality, we also
benchmarked another MIN-CLIQUE-COVER approximation:
the Boppana-Halldórsson algorithm, applied to both QWC-
and GC- edge graphs. In addition, we also benchmarked with
the QWC partitioning heuristic provided by the OpenFermion
electronic structure package. We tested each of these algo-
rithms on problem sizes ranging from 4 to 5237 terms in the

Figure 11: Number of QWC and GC partitions generated by
Bron-Kerbosch for the H2 molecule, under different numbers
of active spaces.

molecular Hamiltonian. These Hamiltonians correspond to
the H2, LiH, H2O, and CH4 molecules with varying numbers
of active spaces. We recorded both the number of partitions
generated and the runtime for each algorithm-benchmark pair.
Figure 12 shows the number of partitions generated for Hamil-
tonians with up to 5237 Pauli strings. Note that some of the
benchmarks were unable to be run due to prohibitive runtime
costs on the order of days (e.g. Bron-Kerbosch for |H|> 1519
Pauli strings). Figure 13 shows a zoom-in for molecules with
up to 630 Pauli strings; the y-axis now shows the reduction
factor in number of partitions. The plots generally align with
our expectations: GC leads to much more optimal partitioning
than QWC (recall the arguments in Section 5.2, and Bron-
Kerbosch GC achieves the fewest number of partitions gen-
erated although Boppana-Halldórsson GC has comparable
optimality. Among the QWC methods, we consistently see
3-4x reductions in number of partitions over Naive separate
measurements, and our Boppana-Halldórsson QWC algorithm
marginally outperforms the OpenFermion heuristic.

Figure 14 plots the wall clock runtimes for each of the
algorithm-benchmark pairs; Figure 15 focuses on the 0 – 630
Hamiltonian size range. These plots corroborate the exponen-
tial worst-case scaling of Bron-Kerbosch and suggest quadratic
runtime scaling for the Boppana-Halldósson algorithm. Open-
Fermion’s function is clearly the fastest of the algorithms
explored, but is also consistently the worst approximation to
the MIN-COMMUTING-PARTITION.

9. Experimental Results
We validated our techniques with a proof of concept demon-
stration by experimentally replicating a recent result [77]:
ground state energy estimation of deuteron, the nucleus of
an uncommon isotope of hydrogen. We performed our experi-
ments via the IBM Q Tokyo 20-qubit quantum computer [78],
which is cloud accessible.

Following [77], deuteron can be modeled with a 2-qubit
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Figure 12: Number of partitions found for each algorithm-
benchmark pair. Under Naive measurement, the number of
partitions would exactly equal the Hamiltonian size (number
of Pauli strings). Thus, these techniques all achieve a 4-20x
reduction in state preparations and measurements relative to
the Naive strategy.

Figure 13: Factor of improvement (which we are attempting to
maximize) over Naive for each of the algorithms benchmarked
for Hamiltonian sizes up to 630 terms.

Hamiltonian spanning 4 Pauli strings1: IZ, ZI, XX , and YY .
Under Naive measurement, each Pauli string is measured in a
separate partition. Under GC, we can partition into just two
commuting families: {ZI, IZ} and {XX ,YY}. Recall that the
former partition is QWC and can be measured with simple
computational basis measurements. The latter partition can be
measured by the Bell basis measurement circuit in Figure 7.

To establish a fair comparison between Naive measurement
and simultaneous measurement we performed experiments

1There is also an II term, but this doesn’t actually require any
measurement—it just adds a constant offset to the Hamiltonian.

Figure 14: Classical computer runtimes for each partitioning
algorithm + benchmark pair. Bron-Kerbosch has exponential
and Boppana-Halldósson has quadratic runtime scaling. This
partitioning step runs as a compilation procedure before the
actual quantum invocations of VQE.

Figure 15: Zoom-in of Figure 14 for Hamiltonian sizes up to
630 terms.

in which both settings were allocated an equal budget in to-
tal number of shots (trials) allowed. We first considered a
resource-constrained setting with a budget of 100 total shots.
This corresponds to 25 shots per partition in Naive measure-
ment and 50 shots per partition in GC simultaneous measure-
ment. Figure 16 plots our results for a simplified Unitary
Coupled Cluster ansatz with a single parameter and just three
gates (two single qubit rotations and one CNOT), as described
in [77].

The results indicate reasonable agreement between Naive
measurement, GC measurement, and the true (Theory) values.
The deviation from Theory stems both from statistical variance
due to the low shot budget, as well as systematic noise in
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Figure 16: Deuteron energy estimation under Naive and GC
partitions, as executed on IBM Q20 with a total shot budget
of 100. The energies are in MeV. Average error is 11% lower
with GC simultaneous measurement than with Naive separate
measurements.

the quantum processes. As Figure 16’s lower |Error| plot
indicates, for 13 of the 24 values swept across the θ range, GC
measurement had lower error than Naive measurement. On
average, the GC measurements had an error of 835 KeV—11%
less than the average error of 940 KeV for Naive measurement.

We also ran another experiment with a much higher total
shot budget of 4000 (i.e. 1000 shots per partition in Naive
and 2000 for GC). In this regime, errors due to systematic
quantum noise should dominate over errors from statistical
variation. We expect GC simultaneous measurement to exhibit
more systematic noise because it requires an extra CNOT gate
as per the Bell measurement circuit in Figure 7. Therefore, we
expect better results from Naive measurement than from GC
simultaneous measurement. Figure 17 plots the experimental
results.

For 17 of the 24 values swept across the θ range, Naive
measurement does indeed outperform GC simultaneous mea-
surement in terms of lower error. The respective average errors
are 848 KeV and 914 KeV, indicating a 7% higher accuracy
with Naive measurement.

These results are presented as proof-of-concept that simul-
taneous measurement achieves higher accuracy when the shot
budget is limited. Equivalently, we can achieve equal accuracy
with fewer shots (i.e. fewer state preparations) when the shot
budget is limited. For several reasons, we note that these ex-
perimental results underestimate the potential of simultaneous
measurement, especially as higher quantum volume devices
emerge. In particular:

Figure 17: Deuteron energy estimation under Naive and GC
partitions, as executed on IBM Q20 with a total shot budget
of 4000. The energies are in MeV. Average error is 7% lower
with Naive separate measurements than with GC simultane-
ous measurements.

• the Unitary Coupled Cluster ansatz of [77] is highly sim-
plified and does not yet exhibit the asymptotic O(N4) scal-
ing. Our argument that simultaneous measurement is cheap
hinges on the comparison between O(N4) ansatz gate count
and O(N2) simultaneous measurement gate count. For this
simplified ansatz and small N, simultaneous measurement
essentially doubled the gate count. As lower-error devices
emerge with the ability to support the full UCCSD ansatz
gate count and larger qubit count N, simultaneous measure-
ment circuits will become a negligible cost.

• For a small Hamiltonian like the one considered here, the
partitioning gain from GC is only 2x. As indicated in the
benchmark results in Section 8, we expect up to 30x gains
for larger Hamiltonians and possibly a gain factor that con-
tinues to linearly increase for larger molecules, based on
extrapolation of the benchmark results.

• For current machines, the number of jobs is far more costly
than the number of shots for practical purposes, since ex-
ecutions are scheduled at the granularity of jobs. In our
executions, we saw this as an immediate and practical ad-
vantage of simultaneous measurement. Our total latency
was dominated by the number of jobs rather than the number
of shots, so our simultaneous measurement results were col-
lected much more rapidly than Naive measurement results,
even though both settings had equal total shot budgets.
We re-iterate that these results should only be interpreted

as a proof of concept. As machines improve, we expect to see
dramatically better results, for the aforementioned reasons.
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10. Statistics of Simultaneous Measurement:
Guarding Against Covariances

We have now shown both how to approximate a MIN-
COMMUTING-PARTITION and how to actually construct
the requisite simultaneous measurement circuits. Finally, we
now address an important question regarding the statistics of
simultaneous measurement. This question was first raised
by [43, Section IV B2] which proved that simultaneous mea-
surement can actually underperform separate measurements
due to the presence of covariance terms. In particular, while
simultaneous measurement does not bias the estimate 〈̂H〉, it
can increase the variance of the estimator, relative to separate
measurements.

In this section, we first show a specific example from [43]
in which simultaneous measurement is suboptimal. Then,
we prove that such examples are atypical and that the MIN-
COMMUTING-PARTITION is still optimal when we have no
prior on the ansatz state. Finally, we demonstrate an adaptive
strategy for detecting and correcting course in the atypical
case when a simultaneous measurement should be split into
separate measurements.

10.1. An Example

Consider the Hamiltonian, H = IZ+ZI−XX−YY +ZZ, fol-
lowing the example of [43]. The commutation graph has a
bowtie shape. Figure 18 depicts two possible clique parti-
tionings with k = 2 and k = 3 commuting-family partitions
respectively.

Figure 18: Commuting-family partitions of H = IZ + ZI −
XX−YY +ZZ with k = 2 and k = 3.

Thus far, we have worked under the assumption that esti-
mating 〈H〉 is more efficient with simultaneous measurement
than with separate measurements and we have therefore tar-
geted MIN-COMMUTING-PARTITIONs. However, consider
a case in which the ansatz state is |01〉, for the previously
stated Hamiltonian.

Since the outcomes of our measurements are random, we
quantify the uncertainty around our estimate of the expectation
value by Var(〈H〉). Our end goal is to determine the expected
value of the Hamiltonian to a target accuracy level ε . The ex-
pected number of state preparations, nexpect, needed to achieve

this accuracy for a k-way partitioning is [43]:

nexpect =
k ∑

k
i=1 Var(Partition i)

ε2 (2)

The variance from each partition can be computed from the
formula for the variance of a sum of terms:

Var({
n

∑
i=1

Mi}) =
n

∑
i=1

Var(Mi)+2 ∑
1≤i< j≤n

Cov(Mi,M j)

where Cov(M1,M2) = 〈M1M2〉 − 〈M1〉〈M2〉 and Var(M) =
Cov(M,M).

In our case with |ψ〉 = |01〉, the primitives evaluate
to: Var(IZ) = Var(ZI) = Var(ZZ) = 0 and Var(−XX) =
Var(−YY ) = 1. All covariances are 0 except for
Cov(−XX ,−YY ) = 1.

For the k = 2 partitioning, we have

nexpect =

2 [Var({−XX ,−YY,ZZ})+Var({ZI, IZ})]
ε2 =

2
[
Var(−XX)+Var(−YY )+Var(ZZ)+

2Cov(−XX ,−YY )+2Cov(−XX ,ZZ)+2Cov(−YY,ZZ)+

Var(ZI)+Var(IZ)+2Cov(IZ,ZI)
]
/ε

2

= 8/ε
2

For the k = 3 partitioning, we have:

nexpect =

3
[
Var({−XX})+Var({−YY,ZZ})+Var({IZ,ZI})

]
ε2 =

= 3
[
Var(−XX)+Var(−YY )+Var(ZZ)+

2Cov(−YY,ZZ)+Var(ZI)+Var(IZ)+2Cov(IZ,ZI)
]
/ε

2

= 6/ε
2

Thus, due to the contribution of positive covariance between
−XX and −YY , the k = 3 partitioning is better than the k = 2
partitioning for this (H, |ψ〉) combination.

This phenomenon motivates us to pay close attention to co-
variances within each partitioning. The worst case scenario is
that we end up with positive covariances within each partition.
In a best case scenario, we’ll have negative covariances within
each partitioning, which could dramatically reduce the number
of state preparations needed to achieve some desired error on
〈H〉.

10.2. Typical Case

We now observe that examples such as the previous one, in
which the MIN-COMMUTING-PARTITION is suboptimal,
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are atypical. Below, we prove that when we have no prior
on the ansatz state |ψ〉, the expected covariance between two
commuting Pauli strings is 0. This validates the general goal
of finding the MIN-COMMUTING-PARTITION, because un-
der 0 covariances, the only strategy for reducing nexpect in
Equation 2 is to minimize the total number of partitions k.

Theorem 2. Given M1,M2, two commuting but non-identical
Pauli strings, E[Cov(M1,M2)] = 0 where the expectation is
taken over a uniform distribution over all possible state vectors
(the Haar distribution [79, 80]).

Proof. We consider the following two exhaustive cases:
1. Either M1 or M2 is I. WLOG, suppose M1 = I. Then,

Cov(M1,M2) = 〈I ·M2〉−〈I〉〈M2〉= 0.
2. Neither M1 nor M2 is I. Since M1 and M2 are Pauli strings

which have only +1 and −1 eigenvalues, the eigenspace
can be split into M1,M2 = (−1,−1), (−1,+1), (+1,−1),
and (+1,+1) subspaces. Moreover, these subspaces are
equally sized (proof follows from stabilizer formalism [11,
Chapter 10.5.1]). Let us write |ψ〉 as a sum over projections
into these subspaces:

|ψ〉= a |ψ−1,−1〉+b |ψ−1,+1〉+ c |ψ+1,−1〉+d |ψ+1,+1〉

Under this state, the covariance is Cov(M1,M2)|ψ〉 =

〈M1M2〉 − 〈M1〉〈M2〉 = (|a|2 − |b|2 − |c|2 + |d|2) −
(−|a|2−|b|2 + |c|2 + |d|2)(−|a|2 + |b|2−|c|2 + |d|2).
Now consider the matching state:

|ψ ′〉= b |ψ−1,−1〉+a |ψ−1,+1〉+d |ψ+1,−1〉+ c |ψ+1,+1〉

Under |ψ ′〉, the covariance is Cov(M1,M2)|ψ ′〉= 〈M1M2〉−
〈M1〉〈M2〉 = (|b|2 − |a|2 − |d|2 + |c|2)− (−|b|2 − |a|2 +
|d|2 + |c|2)(−|b|2 + |a|2−|d|2 + |c|2).
Thus, Cov(M1,M2)|ψ〉 = −Cov(M1,M2)|ψ ′〉. Since each
|ψ〉 is matched by this symmetric |ψ ′〉 state, and our ex-
pectation is over a uniform distribution of all possible state
vectors, we conclude that E[Cov(M1,M2)] = 0.

10.3. Mitigating Covariances: Partition Splitting

While we have now secured the top level goal of initially
performing measurements under the MIN-COMMUTING-
PARTITION approximation, it is still important to detect and
correct course if covariances do turn out to harm our mea-
surement statistics. We now introduce such a strategy that
adaptively splits partitions to mitigate harmful covariances.

Our strategy is based on building sample covariance matri-
ces of commuting Pauli strings. If M1, M2, and M3 are Pauli
strings, recall that the covariance matrix, Cov([M1,M2,M3]),
under a fixed state is expressed as follows: Var(M1) Cov(M1,M2) Cov(M1,M3)

Cov(M2,M1) Var(M2) Cov(M2,M3)
Cov(M3,M1) Cov(M3,M2) Var(M3)



Or, in shorthand notation, where Var(M1) = σ2
M1

and
Cov(M1,M2) = σM1M2 :

 σ2
M1

σM1M2 σM1M3

σM2M1 σ2
M2

σM2M3

σM3M1 σM3M2 σ2
M3



Note that for commuting matrices M1 and M2, we
have Cov(M1,M2) = 〈M1M2〉 − 〈M1〉〈M2〉 = 〈M2M1〉 −
〈M2〉〈M1〉 = Cov(M2,M1), so covariance matrices are sym-
metric around the main diagonal.

We now return to the pathological example from Sec-
tion 10.1. Since the variance of a partitioning is the sum
of all entries in each partition’s covariance matrix, the sum of
the shaded terms below represents the variance of the k = 2
partitioning ({−XX ,−YY,ZZ},{ZI, IZ}):


σ2
−XX σ−XX ,−YY σ−XX ,ZZ σ−XX ,ZI σ−XX ,IZ

σ−YY,−XX σ2
−YY σ−YY,ZZ σ−YY,ZI σ−YY,IZ

σZZ,−XX σZZ,−YY σ2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−YY σZI,ZZ σ2
ZI σZI,IZ

σIZ,−XX σIZ,−YY σIZ,ZZ σIZ,ZI σ2
IZ



And the sum of the shaded terms below represents the vari-
ance of the k = 3 partitioning ({−XX},{−YY,ZZ},{ZI, IZ}):


σ2
−XX σ−XX ,−YY σ−XX ,ZZ σ−XX ,ZI σ−XX ,IZ

σ−YY,−XX σ2
−YY σ−YY,ZZ σ−YY,ZI σ−YY,IZ

σZZ,−XX σZZ,−YY σ2
ZZ σZZ,ZI σZZ,IZ

σZI,−XX σZI,−YY σZI,ZZ σ2
ZI σZI,IZ

σIZ,−XX σIZ,−YY σIZ,ZZ σIZ,ZI σ2
IZ



Therefore, it is favorable (fewer state preparations
needed to achieve a target accuracy) to break the −XX
term out of the {−XX ,−YY,ZZ} partition if the condi-
tion atop the next page holds. The matrices represent
a sum over enclosed terms, and the multiplicative fac-
tors of k = 2 and k = 3 follow from Equation 2.
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2


σ2
−XX σ−XX ,−YY σ−XX ,ZZ

σ−YY,−XX σ2
−YY σ−YY,ZZ

σZZ,−XX σZZ,−YY σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ

> 3


σ2
−XX

σ2
−YY σ−YY,ZZ

σZZ,−YY σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ


or equivalently, if:

2σ−XX ,−YY 2σ−XX ,ZZ
2σ−YY,−XX
2σZZ,−XX

>


σ2
−XX

σ2
−YY σ−YY,ZZ

σZZ,−YY σ2
ZZ

σ2
ZI σZI,IZ

σIZ,ZI σ2
IZ

 (3)

Informally, notice that the left-hand side of Equation 3
is a multiple of the sum of the covariances that exist in the
expression for Var(k = 2) but not Var(k = 3) (which we will
call the “broken terms"), whereas the right-hand side is a
multiple of the sum of the variances and covariances that
exist in both the Var(k = 2) and Var(k = 3) expressions (the
“unbroken terms"). This pattern generalizes such that it is
favorable to switch from a partitioning with k partitions to a
clique-splitting partitioning with k′ > k partitions if:

k ∗ (∑broken terms)> (k′− k)∗ (∑unbroken terms)

A similar strategy was described in [44, Section V. A.],
for the special case of comparing Naive partitions (with no
covariances) with QWC partitions; our work generalizes to
the case of comparing two non-Naive partitions where both
sides have covariance terms.

10.4. Strategies for covariance estimation

As demonstrated in Section 10.1, the expected number of state
preparations needed to determine 〈H〉 to an accuracy level ε

can be calculated if the variances and pairwise covariances of
commuting Pauli terms under an ansatz state are known.

In practice, the true theoretical values of these variances
cannot be known beforehand, as doing so would require com-
putations involving the exponentially sized ansatz state vector.
However, just as we use repeated measurements from parti-
tions of commuting terms to approximate the expected value of
their sum, we can use these same measurements to approx-
imate the covariance matrices of Pauli strings in the same
partition. This estimation of covariance is termed “sample
covariance", since its value is calculated via a sample from the
theoretical distribution. This key idea of adaptively building
a sample covariance matrix, using the measurements we are

already making, allows us to adaptively detect and correct for
harmful covariance terms.

Note that the theoretical variance of 〈M〉 is Var(M) =

〈M2〉− 〈M〉2, and is approximated by the sample variance,
V̂ar(M) = 1

n−1 ∑
n
i=1(mi −m), where {m1, ...,mn} represent

the n observed measurements of M, and where m = 1
n ∑

n
i=1 mi

is the sample mean. Similarly, the theoretical covariance
Cov(M1,M2) = 〈M1M2〉−〈M1〉〈M2〉 is approximated by the
sample covariance Ĉov(M1,M2) =

1
n−1 ∑

n
i=1(m1i−m1)(m2i−

m2) where {m11, ...,m1n} and {m21, ...,m2n} are the n ob-
served measurements of M1 and M2 respectively.

Since covariance terms can only be approximated if
terms are simultaneously measured, we ideally want to start
our measurements in a setting with MIN-COMMUTING-
PARTITIONS. Fortunately, this is exactly the optimal starting
strategy that we initialize with, as per the argument in Sec-
tion 10.2. Once we collect sufficiently many observations that
the sample covariance matrices stabilize, this will enable us
to identify opportunities to split partitions in order to lower
variances and thus reduce the number of requisite state prepa-
rations.

To make this concrete, let us again consider
the k = 2 partitioning from the previous example,
{−XX ,−YY,ZZ},{ZI, IZ}. As we accumulate more
observations, we can empirically build up an approximation
of each partition’s sample covariance matrices, like so:


σ̂2
−XX σ̂−XX ,−YY σ̂−XX ,ZZ

σ̂−YY,−XX σ̂2
−YY σ̂−YY,ZZ

σ̂ZZ,−XX σ̂ZZ,−YY σ̂2
ZZ

σ̂2
ZI σ̂ZI,IZ

σ̂IZ,ZI σ̂2
IZ


Since the sample covariance matrix V̂ar(k = 2) contains a

superset of the terms needed to calculate V̂ar(k = 3), we can
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use observations from the k = 2 setting to explore whether
further partitions would be beneficial.

Each of the grey lines in Figure 19 depicts the value of
V̂ar(k = 2)− V̂ar(k = 3) as it evolves with a set of 100 ob-
served measurements under the |01〉 state. The plot illustrates
that the empirical difference, V̂ar(k = 2)− V̂ar(k = 3) con-
verges to the true theoretical difference, Var(k = 2)−Var(k =
3) = 2 after around 30 observations. The positive sign of this
difference indicates that Var(k = 3)<Var(k = 2), and there-
fore the k = 3 partitioning should be favored due to its lower
variance.

Figure 19: Convergence of the empirical difference, V̂ar(k =

2)−V̂ar(k = 3), to the true difference in variances under |01〉.
Since Var(k = 2)−Var(k = 3) is positive, this signals that
the k = 3 partitioning will lead to a lower-variance estimator.

When we broaden analysis of the k = 2 versus k = 3 setting
across many different random states, we observe that the state
|01〉 is indeed atypical and pathological, as suggested in Sec-
tion 10.2. Under the vast majority of states, the variance of the
k = 2 setting is lower than the k = 3 setting, as observed by
the negative values of V̂ar(k = 2)−V̂ar(k = 3) in Figure 20,
and therefore the −XX term should not be split into a separate
partition.

This discussion naturally leads to the question of how many
observations are necessary for the sample covariance matrix
to be a good approximation of the true theoretical covariance
matrix. To answer this question, we need to formalize a notion
of the accuracy of a sample covariance matrix. Several candi-
date measures may be considered, which we are exploring in
ongoing work:
• Enforcing a minimum number of “burn-in" observations.

This acts as a proxy of the sample observations being suffi-
ciently representative of the true theoretical distribution.

• Enforcing that the distance between the sample covariance
matrix after n−1 observations and after n observations be
less than a pre-specified threshold. This acts as an alterna-

Figure 20: The empirical difference in V̂ar(k = 2)−V̂ar(k = 3)
across ten Haar-randomly-chosen states. While the conver-
gence value differs across states, it is is negative in all ten
cases. This contrasts with the atypical case of convergence to
a positive value in the example of Figure 19 under state |01〉.

tive proxy of the stability of the observations on which the
sample covariance matrix is based.

• Enforcing that a hypothesis test between the sample vari-
ance of the full partitioning and the sample variance of the
split-up partitioning returns a p-value below a pre-specified
significance level.
The last candidate measure is the most attractive because

p-values can be compared across different experimental set-
tings. By contrast, appropriate cutoff values for the first two
measures vary with H and |ψ〉. Formalization of the last mea-
sure will require further work to confirm the distribution of
the sample variance and covariance terms.

11. Conclusion
Our techniques and demonstrations show that simultaneous
measurement substantially reduces the cost of Variational
Quantum Eigensolver by allowing state preparations to cover
several Pauli strings simultaneously. We demonstrate algo-
rithms that achieve up to 30x reductions in the number of
requisite state preparations. We also raise practical concerns
about these algorithms and identify an alternate strategy that
exploits properties of molecular Hamiltonians to achieve an 8x
reduction in state preparation cost, with almost no additional
pre-computation. Our systems emphasis includes explicit at-
tention to the overhead of simultaneous measurement circuits.
Accordingly, we develop a circuit synthesis procedure, which
we have implemented and tested in software. We also study
the statistics of simultaneous measurement, and ensure that the
top-level goal of finding MIN-COMMUTING-PARTITIONs
is statistically justified. Our statistical analysis also yields
a strategy for detecting and correcting course when simulta-
neous measurements are harmed by covariance terms. Our
theoretical and benchmark/simulation results are accompanied
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by a proof-of-concept experimental validation on the IBM
20Q quantum computer.

Our ongoing work includes further benchmarking, more
theoretical investigation, and the development of a software
tool that packages together all of our techniques. We also see
promising future work towards further developing molecular-
Hamiltonian-aware partitioning strategies, especially since the
advantage of the MIN-COMMUTING-PARTITION appears
to improve with molecular size. Moreover, other qubit en-
codings like Bravyi-Kitaev, as well as Hamiltonian reduction
techniques such as active space reductions and frozen orbitals
should be considered.

A. MIN-COMMUTING-PARTITION is NP-
Hard

We show that MIN-COMMUTING-PARTITION is NP
hard. Given a set of operators o1,o2, . . . ,on, the MIN-
COMMUTING-PARTITION problem partitions the opera-
tor set into k subsets such that all operators in each subset
pairwise commute and k is minimized. The corresponding
decision problem is in NP as it is easy to verify pairwise
commutativity for each subset of operators. To show NP com-
pleteness it remains to show the problem is NP hard. This can
be done by reducing from MIN-CLIQUE-COVER. Given a
graph G = (V,E) with n vertices that represents an instance
of MIN-CLIQUE-COVER, we produce an instance of MIN-
COMMUTING-PARTITION consisting of a set of operators
o1,o2, . . . ,on where each operator oi has n Paulis, and the j-th
Pauli is Z if j = i, X if j > i and (vi,v j) 6∈ E, and I otherwise.
This is illustrated in Figure 21. It is easy to see that a com-
muting subset of operators corresponds to a clique, which con-
cludes the proof. Notice that the commutativity relationships
required in this reduction are only Qubit-Wise Commutative,
meaning that even the QWC-restricted MIN-COMMUTING-
PARTITION problem is NP-Hard.
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Figure 21: Instance of MIN-CLIQUE-COVER (top) and MIN-
COMMUTING-PARTITION (bottom).
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