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Abstract

An old question in economics concerns the role of the stock market:

Is the stock market another Las Vegas, where a lot of people just ?tgamblelt?

Or do the activities of informed stock traders contribute in a useful way to

the optimal allocation of resources by providing guidance for physical

investment? A new model to adress this old question is analyzed in this

thesis.

The approach taken here is to incorporate the endogeneously costly

acquisition information about future returns the partial transmission

of that information to the market via prices into an infinite horizon rational

expectations neoclassical growth model. The key feature is that stock prices

signal investment opportunities for physical investment and thus guide the

allocation of resources. That is, the higher the stock price for a particular

technology, the more likely is a high future dividend stream per capital unit,

and thus, the more should be added to the physical capital using that

technology.

However, this efficiency increasing effect is trading off against the

redistributional effect, which arises because information acquirerers

(insidersu) will earn a higher expected rate of return on their assets than the

average. This tradeoff is analyzed for the model at hand with numerical



calculations. It turns out that information acquirerers perform a welfare

increasing role only as long as their information is revealed sufficiently well

to the market.

Among the theoretical insights, it is shown that a perfect market

portfolio mutual fund rules out information acquisitional activities.
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I. Introduction

The stock market is the focus of many recent policy debates. The

Security Exchange Commission has stepped up their efforts in prosecuting

"unfairly" informed traders. The number of highly skilled individuals

attracted to Wall Street rather than to the manufacturing sector, say, is of

concern to many. Various kinds of trading regulations for stocks have been

proposed or even been put into effect.

The fundamental question that underlies much of this debate is

actually an old one and can be phrased as follows: Is the stock market

another Las Vegas, where a lot of people just "gamble"? Or do the activities

of informed stock traders contribute in a useful way to the optimal allocation

of resources by providing guidance for physical investment? To formulate it

differently: given the arrangement of a stock market, is the presence of

information acquirerers welfare improving? It is impossible to think about

and judge policy regarding the stock market without taking a stand on this

key question. Economic theory should enable us to guide our intuition on

the answer. While some progress has been made to that end (see in

particular Hayek (1945), Hirshleifer (1971) and Grossman (1977)), a

computationally tractable general equilibrium type framework which can be

fit to data and within which the question can be answered is still lacking.

This paper analyzes a new model to adress this old question. The

approach taken here is to incorporate the costly acquisition of information



about future returns and the partial transmission of that information to the

market via prices into an infinite horizon rational expectations neoclassical

growth model. The key feature is that stock prices signal investment

opportunities for physical investment and thus guide the allocation of

resources. That is, the higher the stock price for a particular technology, the

more likely is a high future dividend stream per capital unit, and the more

fruitful is it for outsiders without special knowledge of this technology to use

real resources for the addition to the technology's capital stock.

However, the agents in the economy have to pay handsomely for that

service of the stock market: information acquirerers (Itinsiders) will earn a

higher rate of return on their assets on average than agents without special

information ("outsiders"). Insiders do not participate in the production

process in the model: the foregone wages are their (opportunity) costs of

information. Taken together then, there is a tradeoff between the service

provided by insiders (i.e. the information revealed in stock prices) and the

losses they induce (e.g. the non-participation in the production process).

The paper develops a computationally tractable model in which this

tradeoff can be analyzed. The model is a step in the direction of a

computationally tractable general equilibrium framework which can be fit to

data. While it assumes away aggregate uncertainty in order to make the

analysis simpler (but at the same time remote from aggregate time series

analysis), it works within a neoclassical growth model framework which has

become the basis for much of modern business cycle analysis, see Kydland
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and Prescott, (1982). Integrating aggregate uncertainty into the model is the

next step on the agenda. It should be emphasized that the steady state

growth rate is an exogeneous variable of neoclassical growth models. For

that reason, the information acquisition here will only have effects on the

level but not on the growth rate of the economy. Incorporating endogeneous

growth could make the impact of insiders more dramatic and is left to future

research.

One can view the model here as a version of Tobin's q with costly

information acquisition and in an infinite-horizon neoclassical growth model.

It is reasonable that there is a distinction in the resources spend on

information acquisition in the stock market versus information acquisition

of ownership of capital or claims to revenues and with

other forms of financial intermediation. This paper focuses on information

acquisition given the arrangement of a stock market. It might therefore help

to shed light on the puzzle, that stock market prices are good predictors for

investment, while data on q in general is not (see Barro (1989)).

One of the key difficulties in constructing the model is to find a

inference mechanism on the stock market. It is necessary to understand why

agents might want to spent resources (i.e., time) on predicting future prices

of stocks instead of just inferring information from prices. Understanding

why this is so is by no means trivial from a theoretical perspective. This

point has been made forcefully by Radner (1979), Grossman and

Stiglitz (1980), Tirole (1982), and Milgrom and Stokey (1982), culminating



in versions of the No-Trade theorem. The theorem states that under certain

conditions, no trade should take place just because of the injection of

additional information. Although this theorem does not apply directly to our

framework, since information is actually productive (it signals

resource-allocation possibilities), it is nonetheless relevant here, since this

productive nature of information is purely external to the information

acquisition activities of the agent in this model.

Attempts have been made to generate inference mechanisms in which

informed trades are both possible and profitable. There are (at least) five

approaches to the problem: The first uses a one-shot market clearing in the

stock market. Agents are prevented from trading contingent on their

endowment shock or preference shock before the signal is realized [See, e.g.,

Grossman and Stiglitz (1980), Hellwig (1980), Verrecchia (1982), or Admati

and Pfieiderer (1987)]. The second tells an explicit story of how stock

market prices are set over time by a specialist, using a bid-ask spread [See,

e.g., Glosten and Milgrom (1985) and Diamond and Verrecchia (1987)]. In

the third, the informed insider explicitly recognizes the impact of his actions

on the overall trades [See, e.g., Kyle (1985) and Gale and Hellwig (1987)].

For the fourth approach, markets become dynamically incomplete due to the

acquistion of information, making it possible for some agent to exploit the

lack of insurance possibilities of other agents for their own good (see Berk

and Uhlig (1990)). A fifth approach does away with the common knowledge

assumption, so that agents do not assume the same probability structure for

the underlying randomness of the economy. All these models break the



assumptions of the No-Trade theorem at some point. In the first three, a

source of noise is introduced which prevents prices from completely revealing

all information and which constitutes a source of income for the insiders.

From the aggregate point of view taken here, the question of where the noise

comes from moves into focus.

In this paper, the idea of the one-shot approach as e.g. in

Verrechia (1982) is used. The difficulty with that framework is that it has

been developed only for normally distributed random payoffs. In our model,

however, the overall growth rate is essentially determined by the maximum

outcome of these random variables. Furthermore, we would like to have a

continuum of these random variables to avoid the difficulties that would be

introduced if agents infer information from aggregate variables. It follows

that independently and normally distributed random variables imply that

our economy grows at an infinitely high rate. Thus, for the environment

studied here, the distribution of growth rates must have compact support,

and the closed form solutions as in Verrechia(1982) can no longer be used.

As in Verrecchia (1982), the No-Trade theorem does not apply

because noise and stock-return information arrive simultaneously and

complete insurance is ruled out. Noise enters in our model via the somewhat

imperfect diversification attempts by agents without special knowledge

(outsiders) when trying to save across periods. The economy does not start

from Arrow - Debreu complete markets, but rather evolves over time with

trading on the spot markets like in a Radner-equilibrium. Stock information
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is injected during the sequence of trades that otherwise might achieve the

usual equilibrium.

The model displays the following features. Stock market prices

partially reveal future growth rates of a particular technology. Information

acquisition happens and "informed trades" are profitable, if the

diversification attempts of outsiders are noisy. The number of information

acquisitors is endogenous. Physical investment into the technologies is

guided by the information revealed by stock market prices. Thus, the

presence of information acquisitors allows a better allocation of resources to

physical investment than would be possible without signaling through prices.

However, given an allocation of capital, information acquisition diminuishes

total output within the period, since information acquisitors do not

participate in the physical production process.

Let me highlight three theoretical results of this paper. First, a

Bayesian formula is derived which allows an agent to combine his own

private information with information contained in stock prices to form his

posterior beliefs (Theorem 111.1). This formula might be of practical use.

Secondly, noise trades and insider trades have to be "compatible" in

equilibrium, i.e. there is a consistency condition that relates the insider

trades and the noise (Theorem A.V.13, see also the discussion in section V).

Essentially, insiders earn their higher returns from exploiting the noisy

trades, i.e. noise traders have to be on the "wrong side" of the market on

average. In order to keep the inference problem well posed, it should not be
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possible for outsiders to infer from prices on which side the noise traders

traded: prices have to clear markets at the same time as transmitting

information. Thirdly, if outsiders have access to a perfectly diversified

1market portfoliot' mutual fund, there can be no insiders (Theorem VI.1).

The reason is in short as follows: in our model, all returns on assets are

ultimately return on capital. But if outsiders can get the average return on

total capital, a non-zero fraction of insiders cannot get a higher return on

average!

The question we originally posed at the beginning can be answered

within this model for any specific choice of parameters. We solve for the

steady state equilibrium numerically and make welfare comparisons across

different steady states of the economy - one with , one without insiders and

information in prices - to evaluate the trade-off. Judging from the

experiments, the results support the intuition that insiders perform a

welfare-increasing role only as long as their information is revealed to the

market sufficiently well. Examining the welfare effects on individual agents

rather than just averaging shows that distributional effects cannot be

ignored: it can easily happen that while the presence of insiders induces

higher output as well as higher wages, making particularly poor and

particularly rich agents better off, the vast majority of agents still favors

outlawing insider trades since their welfare is lowered because of the lower

returns on their portfolio in the absence of private stock market information.

There are eight sections, figures and six appendices. Section II
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describes a quick overview and the environment. Section III describes the

market arrangement we impose. Section IV defines the steady state

equilibrium. Section V "dissects" the model in order to gain an

understanding of the basic mechanics and to gain insights in how to compute

the model. Also it discusses the consistency result. Section VI states that a

market-portfolio mutual fund rules out costly information acquisition.

Section VII describes the numerical results. Section VIII concludes. All

figures follow section VIII. The discussions of figures 1.1.1 to 5.4.2 can be

found in the section for the numerical results, part VII, whereas figures 6.1.1

to 6.8.2 are referred to in appendix VI.

Appendix I briefly describes the law of large numbers for continuum

economies. Appendix II contains a table of notation for the main body of the

text. Appendix III offers a table for the sequence of events within a period.

Appendix IV contains the transformation of the value-function to eliminate

the growth rate and gives a formula to allow meaningful average - welfare

comparisons across experiments. Appendix V analyzes the model

theoretically as far as possible. Appendix VI describes in greater detail the

design of the computer program to calculate equilibria numerically.

References follow the last appendix.
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II. The Environment.

A quick overview is in order before we describe the model in detail.

The assumptions made in this model are largely dictated by the key feature

of incorporating costly information acquisition at the stock market and the

signalling of opportunities for physical investment due to the revealed

information. The model aims at simplicity, given this key feature, although

it might seem complicated at first. We will try to motivate some of our

assumptions below.

The basic structure is that of a neoclassical growth model: this is the

most commonly used model to analyze physical investment in an infinite

horizon economy. There is a continuum of technologies T. The productivity

parameter of a technology can grow at two different rates independently

across technologies and time. By using a law of large numbers there are no

aggregate uncertainty and no aggregate fluctuations in the model. That way,

the inference problem agents face does not have to include aggregate

variables since they do not contain any information. This simplifies the

model.

The same output good can be produced with any technology using

technology-specific capital and labor as input. Aggregate output is split

between consumption and investment at time t. Non-negative investment

can be undertaken in the (old) capital committed to a specific technology r,

resulting in new capital, which becomes productive in the next period.
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Stocks are ownerships of capital, and dividends are capital shares. This is

just the usual neoclassical growth model structure.

Agents are endowed with one unit of time per period each. Each

period, they can choose to devote this unit of time to participate in the

physical production process for a wage ("outsider") or to acquire information

("insider"). The opportunity costs of foregone wages are the costs of

acquiring information. Independently from each other, insiders will then

learn a private message about the new growth rate of the productivity of a

particular technology. Exploiting their message, insiders will engage in stock

market trades beyond the "liquidity trades" which accomodate the usual

savings decisions of agents from period to period. Since agents individually

face risky streams of income (with risky portfolios), a representative agent

analysis seemed to be too complicated (though potentially still possible, see

e.g. Prescott and Rios-Rull (1988)). Instead, we use many agents. Again

for simplicity, there is a continuum of agents with different asset-holdings

and a constant relative risk aversion utitity function for per-period

consumption. In steady-state equilibrium then, we only need to consider

stationary asset distributions to describe our population of agents. There

will also be a continuum of insiders per stock. That way, we avoid

complications due to information monopoly power (for a discussion of these

issues, see e.g. Gale and Heliwig, 1988).

Noise enters in the way agents pick a stock for their portfolio at

random. Their access to diversification is imperfect: they can buy a mutual

15



fund which makes the same ?terrorsu in picking a stock as individual agents

do. The mutual fund here only plays the role of modelling the attempts at

diversification of uninformed agents and allows the analysis to proceed with

the consideration of only very low-dimensional portfolio choices. That is,

the mutual fund gets rid of the risk due to the idiosynchratic shock in each

technology, but it does not get rid of the noise inherent in the stock choices

of agents. We need this noise to make costly information acquisition and

incomplete revelation possible: this is discussed in section VI. The noise here

is generated via randomness in the demand for stocks rather than

randomness in the supply of stocks: this assumption is more reasonable since

the number of shares is actually a number that is easy to find out for any

publicly traded company.

Due to the noise, the information available to the insiders will be

revealed only incompletely to the market: on average, higher stock prices

signal higher productivity next period. That information can be used

productively, since physical investment (undertaken by a competitive

investment sector) takes place at the same time. Thus, by equating margins,

more investment will flow to the capital with higher - priced capital and

thus to the capital which will on average be more productive next period. It

is here, where the insiders provide a positive informational externality to the

market.

The realized growth rate for a particular technology can then be read

off the actual production in the next period, i.e. insiders have an

16



informational advantage for only one period and the externality lasts only

one period. Thus we may as well assume, that all past uncertainty is

resolved at the beginning of the next period. Extending the uncertainty

across multiple periods would make the model harder to analyze, but could

at the same time enhance the impact of insiders.

A period then has roughly the following structure (see alse Appendix

III). Observe that the key ingredient is the stock market in the fifth part:

1. All past information becomes public and agents can price their

portfolios without assymet nc information.

2. Insider-IOutsider-decision

3. Physical production. Wage- and dividend payments.

4. New random variables are drawn. Insiders learn their message.

5. The stock market. Agents make their

consumption-/ savings-decision. Insiders exploit their superior

information. Stock prices aggregate that information oniy

incompletely due to noisy mutual fund demands. Physical

investment happens and is directed more towards the

higher - priced capital, thus exploiting the informational

externalities of the insiders.

6. Agents consume.

In steady state, the distribution of capital across the various types of

technologies, the foregone wage as the opportunity cost of information as well
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as the asset distribution and the split into outsiders and insiders will be

generated as part of the solution.

For the analysis of this model as well as for numerical solutions,

observe that part 5 of a period requires to solve for the information contained

in prices, given the noisy demands by the mutual fund. It turns out, that

this is almost impossible to do. The theoretical reason for that is the

consistency condition, which is discussed in section V. Instead, we will

impose the information revealed by prices as a parameter and solve for the

noisy demands of the mutual fund consistent with the amount of revealed

information in equilibrium. This is an application of the backsolving idea,

see Sims (1984, 1989, 1990).

Certain restrictions are imposed on the behavior of agents. These

restrictions will not be derived from first principles and some initial

environment. This allows us to keep the model simple and to get interesting

results. These restrictions are:

1) The value of all assets an agent holds has to be nonnegative at all

times, in particular in part 1 of the period. This is the form of a

borrowing constraint as introduced in Foley and Hellwig (1975) or

Scheinkmann and Weiss (1986) and guarantees bounds to risky

speculations.

2) Agents are prohibited from contracting on the side to use their

observations for other traders. A careful discussion of side trades or

contractual arrangements other than the markets postulated in this



model would be well beyond the scope of this paper.

3) Agents can buy only limited portfolios (e.g. due to some unmodelled

broker-fees for trading in arbitrarily diversified portfolios). We make

the extreme assumption that agents can hold at most two types of

assets: a particular stock and a possibly imperfect mutual fund. This

allows the introduction of noise into the model, and noise is necessary

in order to have insiders at all (see section VI).

We will now describe the economy in detail. For convenience a table

of notation and a table for the sequence of events within a period have been

assembled in Appendix II and III.

The stochastic nature of the environment is completely spelled out in

this and the following section. However for the definition of a stationary

equilibrium in section IV, we appeal to a law of large numbers (see Appendix

I) and only deal with aggregate descriptions of our economy. The description

of the environment serves to motivate the definition of a steady state

equilibrium in section IV.

a. Preferences and Endowments.

There are countably many time periods, t = 0, 1, 2, .. There is one

consumption good c per period. There is a continuum of infinitely lived

agents j {0,i]. They care about a consumption stream c = (c)0 via
expected utility
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where

U(c) = E0[ fit u(c
) 1

1-17

u(c)=
1-17

is the utitity function with constant relative risk aversion parameter 7> 0,

77 1, and 0 <fi < 1 is a discount factor.

Agents are endowed with one unit of time each period, which they

supply inelastically. If used in physical production, this unit of time has

productivity Nt i.e. the worker can provide Nt standard units of labor.

is drawn iid across time and agents from some distribution FN with E[ N] =

1. The random variable N is introduced to ensure a mixing behaviour for the

stochastic process of the asset variable to ensure a resupply of insiders in

every period and to ensure that the equilibrium interest rate is not big

enough as to make insiders become ever richer.

Agents are also endowed initially with asset holdings a0 drawn from

some distribution Fa on R++. For now, we regard a0 as claims to the

consumption good at time 0. Finally, there is a random variable Tjt e [0,1],

which assigns each agent to a technology T (see section III).

b. Technologies.
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There is a continuum of technologies, indexed by r E [0,1]. For each

technology and period in time, there is a technology specific capital good, the

total physical units of which are denoted by k. k is produced in period t

("new" capital) and is productive in period t+1 ("old" capital).

In each period, each technology is used by a competitive market of

production firms for the production of the same output good. Denote with

the total input of labor units for technology r at time t. Total output

from technology r is then given by

-'v k nrt 'rt rt-1 rt

where is the productivity specific to technology r and 0 < p < 1 is the

capital share. Aggregate output is then given by

= d.\(r)

with A the Lebesgue measure and the integral here as in the sequel is to be

read as a Pettis-integral or a nonstandard sum over an appropriate

hyperfinite grid (see Appendix I or Uhlig (1987)). Let

t f dX2(j)

denote aggregate consumption and
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x dA(7-)

aggregate investment, where x is total non-negative investment into

r-specific capital k1. Aggregate output can be used for either

consumption or investment, i.e feasibility requires that

xt + Ct yt.

The capital for the next period t+1 (new" capital) is produced by a

competitive market of investment firms according to

k = f(k1,x),

where f is linear homogeneous of degree 1. Some further assumptions about f

are made in appendix V of this paper. For the numerical examples, we use in

particular

f(k,x) = (,c1ka +

with 0 < < 1, ,c1 > 0 and > 0. Observe that with a = 1, the function

f(k,x) = ,c1k + i2x

gives rise to the usual linear investment technology and = 0, i.e.

22



f(k,x) = ,c1k

corresponds to "Lucas-trees" (see Lucas (1978)).

Total aggregate ("old") capital in physical units is denoted by
,

= :f k d(r).

Observe that we add up "apples and oranges" in this equation, since

capital specific to a technology i- cannot be used for another technology.

Also, does not correspond to aggregate capital in an accounting sense,

since we simply add up physical units and do not weigh by their market

value. is simply a number helpful for our further analysis.

Initial "old" capital k1 in each technology is assumed to be the

same amount k1 across all technologies. Hence, = k1.

c. Information.

We need to draw the random growth rates of the productivity

parameter as well as the messages, insiders will receive about these random

growth rates. Since we proceed in a "backsolving mode", we will also draw

an index which will correspond to the information revealed by prices in

equilibrium.

Thus, in each time period t and for each technology T, a random

23



variable

=

is drawn iid from some distribution F on the domain dom. The parts of Z

are

 { 0, 1 } is the index for the random growth rate F of the

productivity parameter of technology r. We assume

F0> F1> 0

E { 0,.. ,I } together with g indexes the noise in the demand for

a particular stock. This is modelled as the noisy part of the

mutual funds asset holdings decision, see section III. The

index is correlated with g, i.e. provides an instrument for g. In

equilibrium, it also indexes the publicly available information

about the growth rate F of a stock as revealed by prices,

e { 0,.. ,M } describes the message agent j receives if he decides

to be an "insider" in period t and if technology r is assigned to

him.

Thus,

dom={0,1}x{0,..,I}x{0,..,M}LOh1
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with the usual product-u-algebra.

We let denote the maximal productivity parameter at time t and

across all technologies r. I.e.

max{
'y

T e [0,1] }

and we restrict ourselves to equilibria in which exists. We will restrict

ourselves to economies, in which the fraction of technologies with = is

not zero (and this restriction has to be compatible with the stationarity of

the equilibrium). It follows by the law of large numbers, that

t= F3;o.

Observe that it is here where we need an upper bound on the

distribution of growth rates.

Initial productivity levels are assumed to be

YT0 =

where the nonnegative integer 1 is drawn at random and iid across

technologies according to some distribution F1 on the nonnegative integers

and where

25



= ( F1 / F0 )l

As a result, the only values can take are products of with an

integer power of (1' I F0 ):

'y1-t=l t.rt

We call 1 = 1 the iy of technology r at time t. Since the

production sector of the economy is competitive, !Inameslt of technologies do

not matter - the only relevant characteristic at the beginning of a period is

the level of a technology. Thus let

Fkt(l) = 1 l{l l} k d(r) /

be the fraction of total capital which is specific to technologies on level 1 at

time t. We can and will proceed as if all technologies are renamed so that

and Fk(l) is the fraction of all technologies r E [0,1] on level 1 (e.g.

imagine that firms reorganize each period so that all firms on the same level

redistribute their capital and then start on their own technology path for

next period independently from the other level-1 firms). We note that

FkO = Fk.

We assume that the indices g and i are drawn independently

across technologies according to some probability distribution

26



P( i, g 11)

Furthermore, we assume that different insiders in the same technology

receive messages independently from each other according to some

probability distribution

P( m l,i, g) = P( ml g)

I.e. we also assume that the probabilities for a message only depend

on the random growth rate of a technology.

We will always assume that there is a continuum of agents per

technology whose asset distribution and whose split in insiders and outsiders

mirrors the corresponding aggregate distribution. Strictly speaking, this

requires a Fubini-type of law of large numbers, which is not proven in

Appendix I. We do not rely on the mathematics of the law of large numbers

to formulate our equilibrium, however, but rather define an equilibrium

directly as if the law holds. In particular, the combined knowledge of the

insiders in a technology would completely reveal F (unless of course there

are no insiders). That information will be oniy partly revealed via prices (see

section III). We will be interested in equilibria in which the random

information index i but not the growth rate F is revealed via prices.

I.e. in equilibrium the level 1 and the parameter i of a technology will be

public information. We call (l,i) the of a technology and (l,i,g) the
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category of a technology. The type of a technology will be known at the end

of period t, but the category will not be revealed until the beginning of the

next period. We restrict the analysis to equilibria that are symmetric in the

sense that technologies of the same category are treated in the same way,

technologies of the same type are priced the same etc.



ifi. Markets, Portfolios, Structure of a Period and Agents' Maximization

Problem.

Instead of deriving the market structure endogeneously, we will

impose a certain structure on our economy. We will rule out certain types of

insurance arrangements or information sharing arrangements. Both can be

motivated by alluding to the fact that information is costly in this model.

Thus these trading restrictions might be thought of as resulting from further

specifications of the costly informational requirements for engaging in

contracts other than the ones described below.

We assume that there are only two types of assets trades: stocks,

representing ownership of a unit of physical capital in a particular

technology, and shares of a mutual fund, which we will describe in some

more detail below.

a. Structure of a Period.

A period t consists of six consecutive parts, enumerated by roman

letters 1,11 through VI. For a quick overview, see Appendix II.

In part I, the growth rates F (and hence the category

become public information. A market in ownerships of

capital opens (stock market 1) and prices q1(l), 1 0,1,.. for one unit of

("old") capital on level 1 in terms of the period-t-consumption good are set.



Agents thus know the total value of their beginning-of-the-period asset

hoklings We prohibit agents at this point from ever holding portfolios

with negative values, i.e we restrict agents to

a. > 0.jt -

This is a form of borrowing constraint as e.g. used in Foley and

Hellwig (1975) or Scheinkmann and Weiss (1986) and introduces risk

aversion with respect to holding assets for one period. In equilibrium, agents

will sell all their individual stocks to the mutual fund and only hold shares of

the mutual fund, thus insuring themselves against technology-shocks within

the period.

In part II. agents can enter a betting market in which they can trade

asset holdings for any actuarialy fair lottery. Agents that buy a lottery

ive (non-negative) random amount of assets whose mean is the purchase

e of the lottery. This part of the period exists for purely technical

Sons to ensure the concavity of the value function of agents (lotteries are

en used to ensure convexities, see e.g. Prescott and Rios-Rull (1988)).

ents then decide after the outcome of possible lotteries, whether they want

be an insider" or an "outsider".

In part III, the agent -specific labor-productivity shock is

:ealized. There is a market in labor. Production of output takes place.

Wages w and capital shares d(l) are paid. "Insiders" are busy acquiring
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information.

In part IV, the technology-specific random variables are realized.

Agents pick their stock that they might include in their portfolio (see below).

Insiders learn their message m about their stock.

In part V, a market in ownerships of old and new capital opens with

prices q2(l,i) for a unit of old capital of type (l,i) and q3(l,i) for a unit of new

capital of type (l,i) (stock market 2). A consumption good! investment good

- market opens. A competitive sector of investment firms buys all old capital

and buys the investment good to produce the new capital which they sell.

Agents and the mutual fund make their portfolio- and

saving/consumption-decisions.

In part VI, agents consume and the period ends.

b. Available Portfolios.

We now spell out the portfolio choices available to agents: restrictions

are imposed to introduce noise on the stock market.

In "reality" we can observe that it is costly to trade in many assets at

the same time: broker fees have to be paid, time is involved. There are

indivisibilities: it is not possible to buy arbitrary fractions of one IBM-stock

say. We also observe that agents typically are not extremely diversified, but

hold only few assets, some of which might be shares of a diversified basket of
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assets.

Instead of modelling explicitely the costs of diversification, we restrict

agents directly to not holding more than an a priori fixed number of different

assets in their portfolio: this allows us to proceed with a simpler although

not quite "micro-founded" model. Proceeding this way, we use the extreme

assumption that agents can hold at most two assets ("two" instead of "one"

still allows for some non-trivial portfolio decisions): a stock and a mutual

fund.

A stock, i.e. one unit share, of technology T at time t is a certificate of

ownership of one unit of capital in technology r at time t. At the second

stock market, i.e. in part V of the period, old stocks are in effect exchanged

to new stocks at the rate of the marginal contribution of old capital to the

production of new capital in that technology. This "exchange" of stock

should not be taken too literally: choosing a unit for a stock is just a matter

of accounting.

We now describe the way an agent picks a stock he might include in

his portfolio in part IV of the period before the second stock market opens in

part V. It is at this point, where noise possibly enters the model. We

assume that agents pick a stock of category (l,i,g) randomly with probability

ir( 1,i,g), where the random wheel 'r is part of the nature of the economy. At

this time in the period, the agent can only observe the level of a technology.

The agent can reject the technology and pick again at random according to
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the probabilities ir and so on until he finds a level 1 he likes. Hence, to keep

things simple, we restrict our analysis to probability distributions so that

agents are indifferent between stocks of different levels, i.e. that they are

indifferent between stocks based on public information up to that point. It

follows from this restriction that the conditional probability ir( i 1) for

drawing a parameter i and the conditional probability 'ir( g l,i ) for the

growth rate Fg does not depend of the level 1. I.e. we have

7r(l,i,g) = lr(l)7r(i)lr( g i )

Further implications of this assumption are analyzed in section V of this

paper.

However we do not assume that the probabilities ir(l,i,g) coincide with

the distribution of capital units across categories (which have to be scaled

appropriately for that comparison to account for the price-differences, see

appendix V). Instead agents pick their technologies with an "unbalanced"

wheel, throwing them off a "fair" choice. This unbalanced wheel ir is part of

the nature of the economy and cannot be affected by actions of the agents.

Another way to motivate this wheel is to consider a "fair" wheel the

benchmark model of completely rational agents and to consider an

unbalanced wheel as a deviation from rational stock - picking, which is not

further explained in this model (but where agents then proceed to price

assets well knowing that they picked stocks in an irrational fashion).

Reasons why agents might pick stocks in irrational, unbalanced ways are
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given e.g. in Shiller(1984), who argues that agents follow trends and fashions

in their portfolio decisions.

The mutual fund, which we are going to describe now, is the only

other asset in this economy. This asset has been included, since it pulls an

interesting aspect of the model out into the open and since it simplifies the

model. The mutual fund holds a very diversified portfolio, thus yielding a

rate of return with certainty by the law of the large numbers. The mutual

maximizes this rate of return. However, the technology for diversification on

the second stock market for this mutual fund is as imperfect as the choice of

stocks by the agents. More precisely, we assume that the mutual fund

chooses numbers t(l,i) to buy

= ço(l,i) ir( l,i,g)

units of all the (new) capital of technologies of category (l,i,g). Observe that

the mutual fund can decide not to buy a certain type (1,i) at all (via

i(l,i) = 0) or to sell it short (via (l,i) < 0). As a story, one might envision

that the mutual fund only operates by asking each agent to buy on account

of the fund an amount (l,i) of shares of the technology picked by him and to

put these shares into a pooi available to the fund. Thus the noise is a part of

the nature of this procedure. We assume that neither agents nor the mutual

fund itself can see the fraction (l,i,g) the mutual fund buys. Just (1,i) is

public information. Agents can buy shares of this mutual fund.
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By the law of large numbers, the mutual fund earns a sure return on

all its stock holdings of technologies of type (1,i). This return is given by

1

ir( g
I

i ) 1,1(l+g)

Rt(1,i)
g=O

Since the mutual fund maximizes its return, we must have

R(l,i) = Rt

for any technology-type (l,i) included in the mutual fund, where Rt is the

overall return on the mutual fund.

We assume that there is no noisiness in the portfolio decisions of the

mutual fund between part I and part V of the period and that the return on

any included level has to be equal to 1 to keep the analysis simple.

In this model, agents would like to diversify at least part of their

portfolio, since they are risk-averse: this is what the mutual fund allows

them to do although 'imperfectly". It will be shown below, that outsiders

would like to hold the "market' if they could. In absence of a mutual fund

but with other types of restrictions on complete, perfect diversification (like

e.g. the above-mentioned transaction costs etc), we might substitute the

phrase "mutual fund" by "net result of the possibly noisy diversification
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attempts by agents". This is the function and role of the mutual fund in this

model rather than an explanation for how mutual funds actually behave.

The noisiness in the diversification attempt will allow the existence of

insiders and the incomplete revelation of the aggregate insider information to

the market.

In equilibrium, the aggregate insider demand for a stock, the demand

of the mutual fund and the private demand of outsiders (which will turn out

to be zero) has to sum up to the total supply of a category of a stock to clear

the market: this will put restrictions on the the probability structures in the

model and generate the consistency condition. This condition is discussed in

section V as well as a more direct way to think about the asset holdings of

the mutual fund and the random wheel ii.

In steady state, the shares hold by the mutual fund move with the

growth rate (of the economy. I.e. we have

c. The Decision Problem of the Agent.

Let us now analyze the maximization problem, an agent faces in

period t, who holds assets valued at at (in terms of the period t consumption

good) at the beginning of part II of the period. He takes as given prices,

wages, interest rates and the distribution of the various variables. First, the

agent can buy a fair lottery on assets and receives the outcome. The agent
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then chooses to become either an outsider or an insider, makes his

consumption/investment decision in part V and ends up with asset holdings

at the beginning of the next period. Since the mutual fund delivers a

sure return Rt, it acts like a bond as far as the portfolio decisions of an agent

are concerned. We thus denote the value (in terms of period-t consumption)

of the mutual fund shares an agent hold by We reserve the word stock

holdings, denoted sj for the units of new capital agent i buys in the assigned

technology Tjt. We restrict ourselves to solutions to the agent problem, in

which only his asset holdings and aggregate state variable matter. I.e.

suppose we have a list of state variables which describes the aggregate

state of the economy at the beginning of period t. We then look for value

functions v, vu1, vouts, which satisfy

and

ins [max {c17_1
v (a,t) (l,i,m) c ,b,s 1 - + GEg[v(a't+i) I

i,m]
I

c + q3()5 + b a,

0 < a' = Rtb + 11(l+g)s } 1' (3.1)

outs + g[v(a't+i) i]v (a,t) = E(Nlj)[ max
c ,b,s

c + q3 t(l,i)S + b a + w N,

0 a' = Rtb + 11(l+g)s }], (3.2)
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ins, outs,v(a,1t) = max{ :fmax{ v a,It) , v a,.st) } di(a) I

11.

is a probability distribution on IR

With a d(a) = a } (3.3)

For the analysis in appendix V, we assume as a tie-breaking rule,

that agents hold the portfolio with the minimal amount of variance, if they

are indifferent between several portfolios.

Note, that we used our restriction to symmetric treatment of

technology categories in the formulation of the insiders problem, i.e. his

maximization problem only depends on the type (l,i) of the chosen

technology and his message m.

The expectations in the expressions above are taken with respect to

the probabilities ir( g l,i ) for an outsider resp. ir( g l,i,m ) for an insider.

The following formula gives the correct probabilities the insider infers from

his knowledge. Note, that this formula only requires the insider to know the

probabilities of the various growth rates based only on his private message as

well as based only on public information i. This formula might therefore be of

practical use: one just has to take a guess at these distributions as !?input??,

the formula takes care of the rest.

TUOREM ffl.1:

Assume that ir(g) 0 for all g, where ir(g) is defined below. Assume



PROOF:

that P(mg) 0 for at least one growth rate g such that ir(gi) 0.

The probability 7r(Ii,m) of growth rate , given the information i

contained in stock prices and the private message m is calculated from

the distributions for the growth rates 7r( g
I

m ), 7r( g i ) and ''r( g )

(that is, given only the message m, given only public information i,

and given no information at all) according to

where

Ii,m)= 1

g=0

ir(Ii) 7r(ilm) I irtj)

7r(gi) ir(gm) / ir(g)

g) = gi) (i).

Observe, that this probability is independent of the level 1 of the

technology by our assumptions about ir. By Bayes' rule, we have

where

P(m,i) ir(ii)
ir(gi,m) = , (3.4)

m i )
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m I) = gji).

Furthermore by Bayes' rule,

or

where

P(mg) ir(g)

ir(m)

ir(gjm) ir(m)
P(mg,i) P(mg) =

ir(g)

m) = (g).

Substituting (3.5) into (3.4) yields the result..

(3.5)

Below, we will concentrate entirely on steady state equilibria of our

economy. Then and we can delete and time subscripts in (3.1) to

(3.3). Furthermore, there will be a constant growth rate . In Appendix IV,

we show that any solution TOUtS v to the following "transformed"

problem yields a solution (with the same decision rules) to the original
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problem described in equations (3.1) to (3.3) in steady state:

and

ins! cl_li_iv ta)=E . [max { 117+(1,i,m)
C , b,s

I
im] + c17 - 1

1-fl 1-it
c + q3(l,i)s + b a,

0 < a' = R b/( + q1(l+g)s/( } 1 (3.6)

outs cl-li-i(a)=E(N . [max {,1,i) c,b,s 1
17+

C1flEg[V(') i] + - 1

1-fl 1-17
c+q3(1,i)s+ba+wN,

0 < a' = R b/C + q1(l+g)s/( }] (3.7)

ins outsv(ã) = max{ fmax{ v (a) , v (a) } d(a)
IL

is a probability distribution on

with a dIL(a) = a

ins outs insWe denote the decision rules by c (a,l,i,m), c (a,N,l,i), b (a,l,i,m),
insbOit5(a,N,l,l), s (a,l,i,m), s0UtS(a,N,l,i) and where denotes the

choice of the lottery given initial assets a. These decision rules result in

nonnegative random asset holdings next period denoted by a'(a) in the
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transformed problem.

Since v is the concavification of the maximum of two functions, which are

concave themselves, the choice of the lotteries can be made simpler: we show

in appendix V, that it is enough to consider only lotteries which randomize

over two points at most. I.e. we can write the decision problem for the

lottery as

insv(a) = max { P0 v011tS(a0) + v (at)
a , a0

eitherO<a0<aorOaaa0,
and P0, P1 e [0,1], so that P0+P = 1 and

P0a0+Paa}. (3.8)

We denote the resulting decision rules by a0(a), a(a), P0(a) and P(a).
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W. Equilibrium

Definition:

A steady state equilibrium is a vector (C a, Fa Fins FOUtS
a ' a , Fk, \T V,

ins outs bur b0tS s' outsv,a0,a,P0,P,c ,c , , , ,s ,,a',R,w,q1,q2,q3,1,
, , i, E, x, n) consisting of

- a growth rate (,

- a cut-off level a,

- asset distributions Fa (pre-lottery) and F and FtS
(post-lottery),

- distribution of old capitals over levels Fk,
ins outs- value functions v ,v ,v,

ins outs bins outs ins outs- decision rules c , c , b , s , s
, ai , a0, P,

P0

- "next-periods" random asset holdings a', corrected for the

growth rate,

- interest rate R,

- wage w,

- pricing functions q1, q2 and q3,

- aggregate capital k (equal to initial capital 1i), output

labor iiI, investment i and consumption ,

- investment rules x and labor hiring rules n per unit of capital,

such that the following conditions (i) through (vi) are met:

(i) the problem of the agent (3.6), (3.7), and (3.8) is solved,

(ii) firms maximize profits. I.e. we have
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- for the production firms:

i-pd(1) = max ( ,1'y0n -wn), (4.1)
n

n(1) = argmax ( el7On0 -wn) (4.2)

y(1) = 170n(1)1", (4.3)

- for the investment firms:

q2(1,j) = max( q3(l,i) f(1,x) -x ),
x

x(1,i) argmax( q3(1,i) f(1,x) -x ),

- and for the mutual fund:

R(l,i) = R

for all technology-types (l,i) included in the portfolio across periods

and

q1(l) = d(l) + P(i Ii) q2(l,i)
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for all technology-levels 1 included in the portfolio within the period.

(iii) markets clear:

consumption goods market:

I 1

7r(l i,g)fc0It5(a,N,l,i)d(Fh1t5xF) +
l=0,i=0 ,g=0Ii M

ins . insir(1,i,g) P(mlg)fc (a,l,1,m)dFa
l=0,i=0,g=O m=0

I

x=1 Fk(l) P(ill)x(l,i)
1=0 i=0
a,

y = Fk(l) (1) (4.4)

1=0

and

c+x=y.

stock market:

for all categories (1,i,g):

Fk(l) P(i,gl) f(1,x(l,i))

ir(l,i,g) (1,i) +

ir(l,i,g) J'sOUtS(a,N,l,i) d(Ft5xFN) +
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M

ir(l,i,g) P(m
I

g),fsiS(a,1,i,m) th am0

mutual fund market:

( 1 ,i,g) 1,i) q3(1,i)

1=O,i=0 , g=O

ml 1

ir( 1 +
1=0,i=0 , g=0
ml 1 M

ir( 1 ,i,g) P(mg).fbms(a,l,i,m) dFIS,

1=0,i=O,g=O m=0

labor market:

F({a < a}) = = Fk(1) n(1)

(iv) distributions are stationary':

*

forajl0<a <:

'The term "distribution" always refers to "probability distribution", i.e. a
distribution yields nonnegative weights for measurable sets and integrates
out to 1.0 over the whole set.
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Fa(a) = f P( ä'(a) < a*
) Fa(da),

*
forall0<a <co:

and

F'5(a) = f P(a) 1{()(*} Fa(da)

FtS(a) :f P0(a) l{a0(a)<a*} Fa(da),

for all 1 = 0,1,2,

Fk(l)= 1K gl_) P(i,g
I
l-g)f(1,x(l-g,i))

1-g 0

and

Fk(0) > 0

(v) identifiability: for all 1,

- either q3(1,i) q3(l,i') whenever i i'

- or q3(1,i) and all other functions that depend on (l,i) are

independent of i.
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(vii)C is the steady growth rate,

i.e. let y(l,,) be the solution to (4.1), (4.2) and (4.3) with

substituted for and r substituted for w. Similarly let (k,y,*) be

aggregate output defined analogously to (4.4) with i replacing k

Then

= ( k, F0')'0, w)



V. Analysis of the Model

We now want to "dissect" the model, i.e. prove the existence of an

equilibrium and understand its properties. This is done as far as possible in

Appendix V. Here we only give the intuition behind the analysis. It turns

out, that equilibria can only exist, if a certain consistency condition is met,

which links the "subjective" probabilities r with the "objective" production

uncertainties P. We will discuss this in more detail below.

Fix the probability structure ( P , 'r). The key to understanding the

model is to recognize that it consists of two parts, each of which can be

analyzed in a fairly standard way and which are linked by one parameter and

one market clearing condition.

The first part is the production side of the economy. These are all

those equations and conditions of the equilibrium which pertain to

production:

- profit maximization, part (ii),

- labor market clearing,

- stationarity of the capital distribution,

- determination of the steady state growth rate.

There ae two items here that require some work. First, a stationary

solution is to be obtained for the prices q and the investment rule x. Profit

maximization for the mutual fund maps prices q2 into prices q1 and prices
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(via a no-arbitrage condition with respect to expected values) and maps q1

into q3 via

Rq3(1,i) = ir(g=Oi)q1(1) + ir(g=1i)q1(l+1) (5.1)

given an interest rate R, for the equilibria in which the mutual fund holds

shares of all types. q3 is mapped into q2 and linked to x and the unit price

for the consumption good for a given wage w via the maximization condition

of the investment firms. A contraction mapping argument then yields the

fixed point. The formal argument is in Theorem A.V.2. The second item

concerns the stationarity of the capital distribution across levels: this is not

a fixed point argument for the whole distribution but instead a fixed point

argument for level 1: the equilibrium wage has to be chosen just right so

that the investment rule for the fraction P(g=Ol=O) Fk(0) of the capital

which is on the highest level and will again be on the highest level in the

next period exactly replicates the fraction Fk(0): such a wage can be found.

The rest of the distribution can now be calculated in a straightforward

manner. The steady state level of capital can then be found from the

aggregate labor supply (which is determined when solving the agents

problem), and the labor demand, arising from the distribution Fk (see

appendix V).

The second part of the model concerns the decision problem of the

agents or the consumption side of the model. The arguments here are for

most parts rather standard. Firstly, the decision problem of the agent can be
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written simpler: the wage can be normalized to 1, since it is only a scaling

factor and prices q1 and q3 can be completely eliminated and be substituted

by probabilities r, once relationship (5.1) is established. One can then

analyze the decision problem of the outsider and the insider separately. Each

of these decision problems map a future value function v' into a present value

function v1 and 1ns Via the simplified two - point lotteries, we obtain a

present value function v. A standard contraction mapping argument under

rather mild assumptions about the given interest rate R yields a fixed point.

Let

R=Rmax{ i,m)
I

i,g}
ir( g i )

be the maximal return, an insider can possibly earn on his portfolio.

Furthermore, let

be the equilibrium interest rate in the benchmark neoclassical growth model

with a representative agent. If R < it and messages are not too informative,

we will have Rm <it By comparison with a standard

consumption - savings - problem (see Stokey - Lucas with Prescott (1989),

p. 126 ff), we conjecture that extremely rich insiders should eventually eat

most of their "cake" and thus return to the region of more average agents.
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This will be the condition on the stochastic transition kernel for asset

holdings which ensures, that agents will not become too rich. We will thus

be able to prove the existence of an invariant asset distribution and the

continuity of this distribution in the parameter vector, for which we

eventually solve in the final fixed point theorem, by an extension of the

Theorems 11.12 and 12.13 in Stokey - Lucas, with Prescott (1989).

The common link between the production side and the consumption

side of the economy will be market clearing on the mutual funds market or

(equivalently, by Wairas' law) market clearing on the consumptions goods

market: the interest rate R is the parameter that has to adjust until market

clearing is accomplished. What will force the equilibrium interest rate R to

satisfy R < R (which is important to prove the existence of a stationary asset

distribution) is the random labor income N for outsiders: with low initial

asset holdings, they have to save more than in the standard

consumptions - savings -problem with a fixed income of 1 unit of labor,

since they might get a bad draw and have little labor income in the next

period.

In order to calculate market clearing on the mutual funds market, we

first have to determine the asset holdings (l,i) of the mutual fund, however.

This is done via the stock market clearing condition (4.12), which is used as

a defining equation for (l,i). Observe however, that with two possible

values for g, we get two equations (4.12) which have to be linearly dependent

in order to define ço(l,i) consistently: this is the consistency condition. The
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condition is roughly of the form

P( g I l,i) = (1 + (l,i,g)) g
I

i), (5.2)

where x depends on the aggregate insider demands, among other things.

Without this consistency condition being satisfied, an equilibrium cannot

exist.

This condition should not be too surprising. After all, prices have to

do two things here at the same time: they have to clear markets as well as

aggregate information. Suppose, a price q3 is a convex combination

mmmaxq3=aq3 +(l-a)q3

of the maximal possible price

maxq3 = q1(l) / R,

which would prevail, if the good growth rate g = 0 was certain and the

minimal price

mmq3 = q1(1+1) / R,

which would prevail, if the bad growth rate g = 1 was certain. This price q3

conveys the public information, that based purely on the price, there is a
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probability of a, that the good growth rate will prevail for the stock bought

by some agent on account of the mutual fund or his own account, since there

would be arbitrage possibilities for the mutual fund otherwise (when using a

large number of stocks and applying the law of large numbers). Under both

possibilities - the good growth rate g=O and the bad growth rate g= 1 - the

price q3 must be a market clearing price: otherwise, the growth rate would

be immediately known and q3 not an equilibrium price. From the properties

of the model, agents can calculate the aggregate demand functions and thus

the probabilities a' and 1-a', that market clearing came about from g = 0

and g = 1, given that the market cleared at q3 and given that this

technology has been picked for that agent. It then has to be the case that

this probability a' coincides with the probability a conveyed by the price

being a convex combination of the maximal and the minimal price. This is

another way of stating the consistency condition.

Let us examine this argument in some more detail. How does the

information a get into the price q3 in the first place? The best way to think

about this is to start by fixing the size of the noisy demand and solving for

the information contained in prices "forward" rather than fixing the

information in prices ir and working "backwards" to the noise: we will show

below, how the one approach maps into the other one. Let us fix some

technology r on some level 1. Let w be some state of nature, drawn from

some probability space (i2,,P), which we assume to be finite for the sake of

the argument: = { w1,.. . ,w }. Since we only need two random variables

below, we might as well identify with the space of the outcomes of these
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variables: Q = { (o1,g1) ,..., (a11,g11) }. Nature decides on the size of the

population o(w) > 0, trading in the stock of our technology r. Following the

framework of Grossman (1981), the mutual fund decides on some function

ço(q3), taking into account the information contained in q3, if q3 was actually

the market clearing price. Nature then decides on how many assets

Dmut(q3,w) = ço(q3)a(w) the mutual fund actually buys, since every agent

present on the market buys ço(q3) assets on account of the mutual fund.

ço(q3) is known to all agents, but nobody can observe the size of u(w): this is

the source of noise. The mutual fund is risk - neutral, thus equilibrium

prices have to make the mutual fund indifferent between buying more or less

of the stock. Now suppose the random growth rate g for our stock is the

good one: g(w) = 0. The Walrasian auctioneer calls out various prices q3.

Since the insider combine their own private message with the information a

contained in the price q3, if it were the market clearing price, their aggregate

demand Dms(g=O,q3) will vary with q3. Aggregate supply S(q3) will also

vary but in a known fashion via the investment decisions of the firms in the

investment sector who only equate margins. The tI0Y? part of the demand

of the mutual fund a(w) does not change with q3, but the overall demand

ço(q3)u(w) might. For the sake of this argument, let us assume that there is

only one market clearing price q3 = q3(w), q'" < < Let be the

parameter that expresses 4 = q'' + (1 - ) q'"11 as a convex

combination of the maximal and the minimal price.

What would happen, if this was the only way, the price could come

about? In that case, everybody would know at that price, that g(w) = 0, i.e.
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the price would be completely revealing. But by the argument given above,

the revealed information should just be 2 and not 1.0, i.e. l3 cannot be an

equilibrium price. Another way to put that is that at a price q3 <q'',

which completely reveals the good growth rate in equilibrium, agents and the

mutual fund will have taken that into account when formulating their

demand functions and thus there can only be excess demand for the stock,

contradicting market clearing. For to be an equilibrium price at w, it thus

has to be the case, that there is another possibility: there is some w' with the

same (for the argument here, unique) market clearing price

q3(w') = q3(w) = and g(w') = 1. This is the same as the observation

above that the two equation (4.12) have to be linearly dependent. Since g

takes only two values in our model and since we identified w with distinct

(o -,g) - pairs, this exhausts all possibilities of arriving at the market clearing

price q3(w).

The expected return on the portfolio of the mutual fund, given q3,

thus satisfies

Ret(3) P(w)cT() q1(1)

P(w)(w)+P(w')a(w') q3
+

P(w')a(w') q1(l+1)

P()u(w)+P(w')u(w') q3

taking into account that the size of the portfolio of the mutual fund depends

on the state of nature w. To make the mutual fund indifferent between
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buying more or less of the stock (which is the same as the absence of an

arbitrage opportunity when averaging over many stocks), it is necessary, that

Ret(43) = R, or,

where

-. , max mmq3=aq3 +(1-a')q3

a'= P(W)cT(w)

P( w)a(w)+P(w') u(w')

is the relative probability ir(g
I ) for a member of the population, that he

was chosen for a stock with the good growth rate g = 0, given that the

market clears at q3. This "subjective probability is the wheel ir, which we

chose for parameterizing our model. q3 can be a market clearing price only if

a = a'.

Observe that we get two instead of one market clearing conditions for

q3, because the price E13 aggregates rather than reveals information: this is

what the consistency condition is all about. In order to have both market

clearing conditions hold, it has to be the case, that the noises o(w) and a(w')

come in the right (relative) sizes (to get market clearing twice) and with the

right probabilities (to be consistent with the information revealed by prices

by avoiding arbitrage for the mutual fund). I.e., given 7r(g=0q3) a or q3

itself, we can find the required u(i) and o -(w') from the market clearing
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conditions and the required P(w) / P(w') from the equation on a'.

If we started describing the model by choosing some arbitrary

distribution for 21 (a,g) - pairs, equilibrium with incomplete revelation could

only exist, if we can find a list of distinct prices q,.. ,q, and for each price

q two pairs (o.1O,O) and (o.11,1) with their associated probabilities P("0,O)

and P(a"1,1) such that the conditions implied by q3 described above hold.

By starting from the probabilities ir(g q) = ir(g Ii) instead (which

correspond to a') we automatically ensure a = a' and fix

Market clearing (where we solve for the right mutual fund demand factor

cc(i)) implicitely delivers the right relative population size Thus, the

relative fundamental probability has to be found to be consistent

with ir(g i): this is the way, the condition has been formulated in

equation (5.2).

The consistency condition is not a nuisance of this particular model,

but rather a typical feature which we should expect in general equilibrium

rational expections models, in which prices both aggregate information and

clear markets and where noise is generated via noisy demand. The relevance

of the consistency condition for models in which the market mutual fund

shows risk aversion as well, in which there are more than two (and possibly a

continuum of) possible future states of the world, and in which there is a

continuum of possible prices should be examined. In that context, it will also

be important to understand, in how far our backsolving approach imposes

these difficulties arising from the consistency condition. If the consistency



condition and the difficulties associated with it are a persistent phenomenon,

it should be clear that the interpretation of rational expectation models with

partial price revelations is not a straightforward matter. That is, if the

distribution on (u,g) - pairs is viewed as part of the fundamental description

of the economy, the equilibria analyzed here or in models of this type should

generically not exist and instead we will generically have prices that are

always revealing. A different view is that there are market forces not spelled

out in these models, which force the population sizes and probabilities to be

of the right kind. A third approach is to see these models as an approximate

description of a real phenomenon which will not be quite as knife - edged as

the theoretical results, thereby relaxing the non - genericity.

In order to finally show that there are equilibria at all (where we

allow ourselves to choose the right fundamental probabilities P(gi,l)), we fix

the "subjectiv&' probabilities ir and, apply a fixed point argument to find the

equilibrium interest rate and the equilibrium probabilities P which achieve

market clearing for the mutual funds market and satisfy equation (5.2).

Observe that the decision problem of the agents does not change as long as

we do not change R, since it only depends on the "subjectiv&t probabilities ir:

this simplifies the theoretical as well as the numerical analysis.
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VI. Access to a market portfolio mutual fund rules out information

acquisition.

Suppose that besides the assets introduced, there is another mutual

fund, which can hold "the market" in the sense that it can choose a fraction

and then includes that fraction of all capital in its fund.

TJEE0KEM VT.1:

Suppose that agents can hold shares of the second mutual fund in

their portfolio besides the stock and the mutual fund described above.

Then the fraction of agents that acquire information is zero.

Pioop:

Let K be the total value of the capital stock at the end of the period and K'

be the total value of the capital stock at the beginning of the next period. I.e.

we have

and

WI 1

K = P( i ,g l)Fk(l)f(1,x(l,i)) q3(1,i)
1=O,i=O g=O

K' = P ( i,gIl)F(l)f(1,x(1,i)) q1(1+g)
l=O,i=O,g =0



Let K0UtS 0 resp K,OUtS be the value of all assets the outsiders possess at

the end of the period resp. at the beginning of the next period. Define

likewise K] resp. K4"5 be the value of all assets the insider hold long and

K11 0 resp. K1' 0 the value of all assets the insiders hold short. Since

all assets are ultimately ownerships of capital, we must have

and

K = Kouts + Kh1S - K"s (6.1)

K' = K,0ut5 + K' - (6.2)

Let it = K' / K be the gross return on the aggregate capital stock. Since

outsiders have now access to a mutual fund with the same rate of return it,
outs outswe must have K' / it K Now suppose that there is a non-zero

fraction of insiders. Then, since information is costly, we have K' 0 and

K"5 / it> K" or we have K' 0 and K"5 / it < KlnS or we have

both. Substituting these inequalities into (6.1) and multiplying by it yields

K' = it K> K,oUtS + K115 - K"5

in contradiction to (6.5). This proves the Theorem. .

This Theorem is a version of the logic convincingly stated in Grossman and

Stiglitz (1980), that if markets were efficient, they couldn't be if information
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acquisition is costly: nobody would have an incentive to acquire the

information. The Theorem above requires even weaker conditions. A

market portfolio mutual fund avoids the possibility that outsiders ever get

"exploited" by the "insiders". It shows, how crucial our assumption is that

the mutual fund introduced in section III has only access to a noisy

diversification technology. It also shows that the other market restrictions

we impose on agents are not such big restrictions after all.
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VII. Numerical experiments

We have performed 66 numerical experiments, in which we varied two

parameters:

- six values for the spread of the prices (and thereby the public

information contained in prices)

ir( g=0 i=0 ) - r ( g=0 j=1 ):

spread = .1 ,.2,.3,.4,.5,. 6,

- eleven values for the informativeness of the private messages

P(m=0g=O) = P(m=1g=1):

signal quality = .64 ,.66,.68,.685,.69,. 695 ,.70 ,.705,

.710, .715, .72.

The finer step size between .68 and .72 was chosen since

previous experiments pointed to this region as the most

interesting one.

The other parameters were common:

The unconditional growth probability ir(g=0) = .7,

The unconditional information index probability ir(i=O) = .7, (thus

computing ir(gi) to

7r(g=0i=0) = .7 + spread*.3 and

ir(g=0 i=1) = .7 - spread*.7)

F0 = 1.05, F1 = 1.02,

= 0.95, i' = 1.5,
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a = .,
' = .94, ç2 = 1.0,

p = .3,

an exponential distribution with,\ = 1 was used for N.

The way the equilibria are computed numerically is described in some

more detail in appendix VT. Essentially, the program follows the same logic

as in the analysis of the "disection" of the model. To solve for the

consumption-/savings-rules, we used a value function iteration approach by

iterating on linearly interpolated functions described by its values on a grid

of asset values a, which are equally spaced in logs. This method is similar to

that of Coleman(1990), except that we used the value function rather than

the Euler equations to update the policy rules. Colemans method has

performed well in a comparison of different solution methods as performed in

Taylor and Uhlig(1990), but a comparison of the results of different solution

methods have not been performed for our model here.

In order to judge the effect of insiders, we compared each equilibrium

of an economy with insiders with the "same" economy without insiders,

where prices do no longer convey information (i.e. I = 0) and where we took

care, that the average "objective" growth probabilities for a technology

P( g=0 1)

=
0P(

g=0 l,i ) P( i 1)
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are the same for the economy with and without insiders (this requires

computing the solution for the economy with insiders first and then taking

the results for the endogeneously determined probabilities P as input for the

economy without insiders, see the discussion at the end of section V and in

Appendix VI). Note the meaning of the word average? here: P( g=O 1)

is the average growth probability before prices across the entire old capital

stock on level 1 and not the average growth probability after prices across the

entire new capital stock on level 1, which would have to take into account the

effect of i on the production of new capital and therefore should not be the

same in the two economies.

a. Properties of a Specific Experiment.

To get an idea of how the results of a simulation look, we first plotted

several results in figures 1.1.1 through 1.8.2 from one particular experiment,

where we chose the spread at .4 and the signal quality at .7. We calculated

an equilibrium to both the economy with and the economy without insiders.

The figures with numbers ending in 1 (like 1.1.1, 1.2.1) are results from the

with - economy, whereas the figures with numbers ending in 2 are the

corresponding results from the without - economy. It turns out, that the

increase of the total output in the economy with insiders over the economy

without insiders is a little more than 1% and thus, the results between the

two economies will not be too different. This is especially true for the capital

distribution, since both economies use rather similar transition probabilities

(remember that we enforced both economies to have the same transition

probabilities P(gl)): this is shown in figures 1.1.1 and 1.1.2. Differences
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arise only because there is an additional possibility in the insider - economy

to invest relatively more in the technologies, which are relatively more

promising as indicated by P(gji,l): this results in a 1 % increase of the

level -0 fraction of the capital in the with - economy compared to the

without - economy: while this difference is barely visible in figures 1.1.1 and

1.1.2, it is more visible in figures 1.2.1. and 1.2.2, where we plotted the

output produced by each level. Ultimately, it is this 1 % increase (and the

induced increase in the level of the steady state capital), which is responsible

for the 1 % increase of total output. Figures 1.3.1 and 1.3.2 show, how the

agents are distributed across the different levels of the technologies, i.e. show

the distribution ir(l). This distribution is calculated rather than a parameter

and chosen so that the market demands by the insiders (which increase with

decreasing prices, i.e. with increasing levels) end up being of the same size,

see appendix VI. For the without - economy, the same formulas are applied,

but the distribution of agents is of course without relevance there.

Differences between the two economies become better visible in

figures 1.4.1 through 1.5.2, where we show the effect, information revelation

(via i) has on prices q3(l,i) and on investment x(l,i) respectively. The effect

on investment in the highest level 0 is quite dramatic, resulting in a more

than 100 % increase in investment as we move from i = 1 - capital to

i = 0 - capital. This dramatic difference is translated into only a small

difference in the distribution of capital on level 0, since the existing old

capital and the CES - reproduction function have a smoothing effect.



Figure 1.6.1 and 1.6.2 plot the value functions: while figure 1.6.1

compares the insider and the outsider value function and shows how they

cross at 12.2 in the with-economy, figure 1.6.2 shows the value function

(which is the same as the outsider value function) in the without economy.

The steady state distribution of assets is shown in figures 1.7.1 and 1.7.2 for

the with and the with-out economy. The dotted line at .99 in figure 1.7.1

separates the insiders from the outsiders. Note, that the distribution in the

with - economy is much more smeared out towards higher values of a beyond

the cut - off point (at a = 12.2) than in the without - economy: this is the

result of the possibilities of "speculation" for the insiders. In fact, while they

constitute less than 1 % of the population in the with - economy, their asset

holdings as a fraction of the total assets of the economy is around 23 %! In

other words, while the population of insiders is tiny in the entire economy,

their wealth is certainly not. This point is demonstrated again in figure

1.8.1, where the maximal value of the value functions for the poorest x % of

the population is plotted as x varies from 0 to 100. Again, there is a fat,

sharp spike in figure 1.8.1 for the last percent or so of the population. We

take this issue up again below when examining the welfare comparisons

between the with- and the without -economies.

b. Variation of the Signal Quality and the Revealed Information.

To see how the results vary and to make the welfare comparisons to

answer the question posed at the beginning, we show the results of all 66

experiments in 2.1 through 4.7. Here, figures with the same endings (such as

2.1, 3.1 and 4.1) show the same aspect of the comparison, but from different
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points of view.

In figures 2.1 through 2.7 we compared the results of the experiment

directly, providing a ?tbackwards_solvingu view on the results. Six curves,

one for each spread - value, are plotted against the quality of the signal.

Higher spread values correspond to more information being revealed by the

prices. Figure 2.1 shows the insider demands in %, if i = g 0 as a fraction

of the total supply of capital on a particular level (this fraction is

independent of the level 1 by the construction of ir(l) in the numerical

calculations). Note, that the fraction reaches sizable portions of the market

for the higher signal qualities. Figure 2.1 shows clearly a monotonicity: the

insider - demands are the higher, the better their signal and the lesser

information is revealed by prices. This is quite intuitive: if the signal quality

is better, more agent will become insiders and try to exploit their private

information. They can do that the greater their informational advantage

over the market is, that is, the lesser information is revealed through prices.

This must then lead to lower returns on the portfolios for the outsiders, i.e. a

lower interest rate R, and a higher return on the portfolios for the insiders.

That this intuition is correct is demonstrated by figure 2.2 and figure 2.3: the

interest rate R is the lower and the insider return is the higher, the better the

signal quality and the lesser the information revealed by prices.

Figures 2.4 and 2.5 compare the relative aggregate wealths of the

insiders and the relative aggregate sizes of the insider population. Both

figures look rather similar (and similar in turn to figure 2.1), except that the



fractions are different by an order of magnitude: while the insider population

is typically quite small and less than 3 %, their relative wealth is not,

reaching 50 % for the "worst" case. The interpretation of that is, that while

the reduction of the labor force due to the presence of insiders is almost

negligible even for high - quality signals, we have to expect huge

redistributional effects in direction towards the group of insiders simply

because they own a large part of the entire capital stock.

Figures 2.6 and 2.7 finally compare two aggregates to judge, which

economy is better off. These figures deliver an answer to the question posed

at the beginning, whether or not the economy is better off with the

information acquirerers than without them.

In figure 2.6, we calcullated the increase in % of total output, when

moving from the steady state in the economy without insiders to the

economy with insiders. Not surprisingly, the effect is mostly positive, since

insiders most often improve the capital distribution and the reduction of the

labor - force as the only off - setting effect is quite small. Only, when too

little of their information is revealed through prices (as is the case for e.g.

spread .1) and when too many agents become insiders (i.e. for high signal

qualities), too much of that return to information remains private and the

output actually decreases through the foregone labor. For the majority of

the cases, however, insiders actually increase the gross national product in

the experiments. If there was a way to redistribute this increase across the

entire population, everybody would support their presence in these cases.



However, we did not introduce such a redistributional scheme and

introducing it would likely to have an effect on the information acquisition

incentives, which could destroy the gains it was intended to distribute. In

absence of a redistributional scheme, every agent has to judge such a switch

to the insider - economy from his own evaluation of his current asset

holdings. We thus calculated the average welfare in the with- and the

without-economy and calculated the growth required in the steady state of

the economy without insiders to reach the same average welfare level as the

economy with insiders. This is the same as calculating by how many percent

every consumption has to be increased from now on in all the future in the

without-economy to make agents there as happy on average as in the

with-economy. The algebra on how this is done is explained in appendix IV.

Note then, that the decision for an economy with insiders, judging from this

average welfare criterion, is no longer as clear - cut as from just looking at

output: only, if the quality of the signal is rather small and only, if a lot of

the information gets revealed through prices do we see that agents are better

off on average with insiders. This contrasts quite sharply with the results

above, where we examined aggregate output. Both figures, however, answer

the question of whether the economy is better off with the insiders

qualitatively in the same way: only if the information of these insiders is

revealed sufficiently well to the market for everybody to share. This answer,

of course, makes intuitively sense.

Figures 3.1 through 4.7 are now designed to provide a

"forward - solving" view of the results. I.e. instead of fixing the information
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revealed by prices (the spread) and back - solving for fundamental

ingredients such as the noise, we use a comparison between our experiments

to proceed the other way around. What we do it to fix the level of the noise

in some meaningful fashion and solve for the information revealed by prices.

That way, a comparison is possible, if we regard the level of the noise and

the signal quality as fundamental properties of our economy and the

information revealed by prices as endogeneous.

To achieve this goal, we need to identify a sensible measure for the

noise. Noise should be that part of the model, which covers up the insider

trades, i.e. noise is that part of the model, which creates the inference

problem, given e.g. a high price, whether that price is high because of

knowledgeable insider demands or uninformative noise demand. Thus, noise

is readily identified with the variations in the mutual fund demand: the

mutual fund ends up buying the bad stocks more often than the good stocks

through the biased wheel of selecting stocks, thereby partly covering up the

presence of the insiders, given a particular price. Since market clear, noise is

as well represented by the variation in the insider - demands, given the

price. Since insiders are always long in stocks, if the receive the message

m = 0 and short in stocks, if they receive the message m = 1, a reasonable

measure of the noise is the insider demand for m = i = 0 as a fraction of the

total supply as given in figure 2.1 (a potentially more accurate measure

would take an average over all four possibilities for m and i).

Figures 3.1, 3.3 and 3.4 examine, whether this is indeed a sensible way
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of describing the noise (note, that there is no figure 3.2). In figure 3.1 we

just inverted figure 2.1, plotting the signal quality as a function of the noise,

rather than the noise as a function of the signal quality. To draw curves, a

linear interpolation of the signal quality over the logarithm of the noise is

used to take care of the fact that the curves seem to grow at geometric rates

in figure 2.1. Figure 3.3 shows that our measure for noise is almost the same

thing as a measure for the average return on the insider portfolios, regardless

of the information revealed by prices. The intuition for that is, that the

noise is the exploitable mistake by the mutual fund of buying the wrong

stocks on average. Given a certain size of this mistake, i.e. given a certain

level of noise, the advantage for the insiders from exploiting this error has

nothing to do with the information eventually revealed in the prices or with

the quality of their information, since this level of noise will be exploited "no

matter what". Figure 3.4 demonstrates, that the fraction of assets owned by

insiders is close to a linear function of our measure of the noise, where the

slope depends somewhat on the information revealed in prices. We conclude

therefore, that we have a sensible way of measuring noise in our model.

Having identified the noise, we can now develop the forward view by

solving for the information contained in prices, given the signal quality and

the noise: this is done in figure 4.1. Figure 4.1 is obtained from figure 2.1 by

fitting, for each of our 11 grid points of the signal quality, a line per least

squares through the 6 noise values from spread = .1 through spread = .6 at

that signal grid point and then inverting this line to solve for the spread

values corresponding to the four arbitrarily chosen noise levels 3, 4, 5 and 6.
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Connecting these four solutions for each signal - grid point across the

different signal - grid points delivers figure 4.1. Figure 4.1 thus provides a

table to look up the spread corresponding to one of the four chosen noise

levels and a signal quality (on the grid).

This table is used in the graphs 4.2 through 4.7, which are created in

a similar way to figure 4.1 by fitting, for each signal quality grid point, a

least - squares line through the six function values of the corresponding

figure 2.2 through 2.7 to define a function of signal quality and spread and

then calculating a corresponding function of signal quality and noise by

looking up the spread corresponding to signal quality and noise in (the

calculations for) figure 4.1. This delivers, for each signal grid point, four

function values for the four chosen level of noises, which are then connected

across signal quality values to generate the curves in pictures 4.2 through 4.7.

Figure 4.1 shows, that the more information is revealed by prices, the

greater the quality of the signal of the insiders and the lesser the amount of

noise there is to cover up the trading activities of these insiders.

Consequently, with a fixed level of noise, the return on the mutual fund

increases as the signal quality increases as demonstrated in figure 4.2. Figure

4.3 shows, that the the variation in the insider returns for different levels of

noise decreases as the signal quality improves. More importantly, however,

figure 4.3 shows that the insider return almost does not change at all for a

fixed level of noise: even for the noise = 3 - curve, the variation of the

insider return is less than 1 %. This corresponds well to the insight
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generated by figure 3.3 and the argument above, that the return on the

insider portfolio should be a function of the noise alone.

Figures 4.4 and figures 4.5 demonstrate, that the fraction of the assets

owned by insiders and the fraction of insiders in the population goes done for

fixed levels of noise, as the signal quality increases, since the improvement in

the private return to that information is more than offset by the higher

degree of revelation of that information in the prices.

Finally, to answer again the question posed at the beginning, figures

4.6 and 4.7 show, that the output and the average welfare of the economy

with insiders is the higher, the better the quality of the signal, given a fixed

level of noise. This result is intuitive, since the cost for the information

remains the same - it is the non - participation in the production process -

whereas the rewards become higher with higher signal quality. Keeping the

level of the noise constant ensures that the private gains and the social gains

from that information move in the same direction.

c. Distributional Considerations.

Comparing average welfare in figures 2.7 and 4.7 has a few drawbacks,

most notably that we compare between steady states and that we average

across the entire population. Little can be done about judging, how the

economy would move towards the new steady state, once insiders are allowed

in or ruled out, since it is only possible to compute steady state versions of

the model at this stage of the research. However, insights can be provided as
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to whether and how the average welfare criterion distorts the perspective of

each individual agents. This is the purpose of figures 5.1 through 5.4.2,

which are all derived from results for the example with spread = .4 and

signal quality = .7 examined above. Figure 2.7 shows for these parameters,

that the economy is better off without the insiders as measured by the

average welfare criterion and that a growth rate of approximately .957 is

required of all consumptions in the without - economy to make agents

indifferent on average, although aggregate output is higher by about 1.2 % in

the with - economy (cmp. figure 2.6).

Figures 5.1 through 5.4.2 now show the results of several variations of

the same experiment. Suppose, we had two countries, both completely

autonomous with no trade between them (there is some kind of very high

mountain, say), both very similar with the parameters stated above, both in

their steady state equilibrium, but one country has outlawed information

acquirerers, whereas the other one allows them. Suppose now, an individual

agent found a tiny tunnel, that would carry just him alone and some of his

belongings to the other economy. Would he do so? And by what factor

would his home - country have to change his consumption from now on into

all the future to make him just indifferent between leaving or staying.

Finally, if a poll was taken on how many people would leave, if given the

chance, how would the results look like?

The answer to these questions depend somewhat on which economy it

is, that the agent is leaving and what he can take with him when traversing
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the tunnel. In figure 5.1, the agent is leaving the without - economy to

traverse to the with - economy. The two lines indicate his change in

happiness by providing the ubribing factor" of the home economy to make

the agent indifferent: a growth factor less than one, indicates that he is

happier in his own country anyways. The solid line indicates his relative

change in happiness if he can take along the consumption - good equivalent

of his assets, whereas the dotted line indicates his relative change in

happiness, if he can take along the productive capital he owns. Both curves

are plotted against a logarithmic scale for the value of their asset holdings

(cmp. figure 1.7.1). It should not surprise, of course, that a superrich agent

would rather want to traverse to the with - economy. What is perhaps

surprising at first, is that a reasonably rich agent finds it even more

unattractive than a very poor agent to use the tunnel. The intuition for that

result is that the interest rate on the mutual fund is lower in the

with - economy than in the without economy (where it is just the average

rate of return on capital): a relatively rich, but not superich agent would

dislike this lower interest rate on his substantial asset holdings, since he is

still poor enough as to be an outsider (facing this lower interest rate) with

sufficiently high probability in the future.

Figures 5.2 contains the fraction of voters in favor of leaving the

without - economy (or similarly, of transforming their economy to a

with - economy by instantaneously adapting to the new steady state). They

vote for leaving, if their growth factor is bigger than 1.0, which is the case for

practically nobody in the economy. The poil changes slightly, if taken in the
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with - economy in figure 5.3 to find the fraction of people who would like to

stay, even though a tunnel is available to them. While the vast majority still

favors the without - economy, there is a visible, though extremely tiny

fraction of agents (the superrich), who favor the economy which allows

insider - trading. These superrich agents are simply almost not present in

the steady - state without - economy.

Finally, we imagine, that our tunnel - traveler, traversing from the

without- to the with-economy could take along a document that shows his

relative status within his society instead of any assets and that the

government of the other country awards him with an asset endowment that

gives him the same relative status. That is, if exactly 3 % of the agents were

richer than our agent before crossing the tunnel, exactly % of the agents

will be richer than him after he got endowed with these assets in the new

country. This experiment possibly captures most closely of what would

happen, if an economy slowly transforms itself after legalizing insiders, since

with a given level of noise, it will be the top fraction of the population which

can exploit this noise for their private insider - return (see also the argument

above to explain figure 3.3). Figure 5.4.1 (where the last .1 % before 1.0 of

the graph was cut off) indicates, that almost nobody favors the

with - economy that way and actually, the aversion against a switch of that

type is the bigger the wealthier an agent is. Only, if agents are superrich and

belong to the very upper crest of the population will they favor traversing to

the with - economy: this is demonstrated by figure 5.4.2.. Again the

intuition for the result in figure 5.4.1, that the rather rich dislike to switch
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even more than the poor results from the fact, that the presence of insiders

depresses the returns an outsider earns on his (mutual fund) portfolio: this is

only important, if the agent has a portfolio to talk about to begin with.

Overall, these figures 5.1 through 5.4.2 show, that distributional

effects cannot be ignored. While it is true in this experiment, that the gross

national product is higher by 1.2 % and the wage is higher by 2.1 % in the

economy, which permits insiders, it turns out that the interest rate in this

economy is also depressed from R = 1.094 in the without - economy to 1.065

in the with - economy, inducing in particular the reasonably wealthy agents

to favor outlawing insiders.

It probably is true, that for some of the experiments performed, the

very poor and the very rich agents would join forces against the

middle - class in a vote in favor of permitting insider trading, since the very

poor are made happy by the higher wage and the very rich are made happy

by the possibilities to speculate, whereas the middle - class faces the

draw - back of a lowered return on their portfolio in the absence of special

stock market information.



VIII. Conclusions

We demonstrated that it is possible and feasible to present a model in

which the questions of the welfare effects of information acquirerers (called

insiders) on the stock market can be adressed meaningfully and in a

computationally tractable way. The results one obtaines depend on the

particular parameters chosen for the numerical calculations.

Three theoretical results are worth highlighting. First, a simple

Bayesian formula is given which allows agents to combine different sources of

information to form their final beliefs. This formula might be of practical

use. Secondly, equilibria will not exist unless a certain consistency condition

is met, that ensures that the signal extraction problem agents face is well

posed at the same time that markets clear. the distribution of noise in

the economy cannot be chosen 'independently" from the activities by

information acquirerers.

Thirdly, noise in this model can only arise if agents are prevented

from perfect diversification. In particular, if agents can hold a mutual fund,

whose share holdings mirror the structure of capital in the economy (i.e. a

uperfectnt market portfolio), insiders can not earn a higher than average

return and in equilibrium there will be no noise left that insiders can

"exploit". Thus, the costly acquisition of information ceases to exist.

66 numerical experiments have been performed. The results of this

experiment support the intuition that insiders perform a welfare-increasing
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role only as long as their information is revealed sufficiently well to the

market. It was also shown, that distributional effects across the population

are important in judging the welfare effects of insiders: it is possible, that

although wages and aggregate output increase due to their presence, the vast

majority of the population, facing a depressed return on their portfolio due to

their imperfect asset selections, will be in favor of outlawing insider trading.

There are many interesting possibilities for extensions of this work.

The importance of the consistency condition for other classes of models with

costly information acquisition and incomplete information aggregation

through prices needs to be examined. It will be interesting to analyze

whether the existence of a market portfolio mutual fund rules out acquisition

of information even in models with aggregate uncertainty. Thirdly, the

introduction of e.g. treasury bills in a model of this type will lead to different

available portfolio structures and thus has an impact on the relationship of

returns paid on equity versus the return paid on government bonds. Then,

there is the question of better arrangements for generating the information

about future possibilities of technologies. Simple changes of the arrangement

include various forms of taxation or trading restrictions in this model, more

complex arrangements will substitute new forms of contracts in place of the

stock market altogether. Finally, the quest for a general equilibrium model

which can be fit to data to adress the question of the welfare effects of

information acquirers and to answer more detailed question regarding policy

has not yet come to an end. While the model in this paper takes a step in

that direction, incorporating aggregate uncertainty is necessary before one



can be serious about estimation. Incorporating endogeneous growth and long

time lags before the private information becomes public will increase the

importance of insiders in these models.

The hope is, that this research can lead to a better understanding of

the interesting question on how to design an economic mechanism that will

optimally generate and transmit information to agents in the economy.



F. Figures.

The following figures 1.1.1 through 5.4.2 are explained in part VII,

describing the results of the numerical experiments. Figures 6.1.1 through

6.8.2 are referred to in appendix VI, which contains details on the way the

numerical calculations were performed.
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Figure 1.3.1: Distribution of Agents across Levels
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Figure 1.4.1: Prices of One Unit of New Capital
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Appendix I: The law of large numbers

In the model the following technical question arises: let (Xl)lE{OlJ

be a collection of independent and identically distributed random variables

with mean i and variance Is there a meaningful way of stating a law of

large numbers which states

fx1dl=p

We will state and prove a simple version of this law of large numbers below,

generalizations of which are needed in this paper. For its original source,

generalizations and an extended discussion for how to interpret the integral

in a mathematically more elegant way as a Pettis-integral, see Uhlig (1987).

As in Calculus, let

F = { I

O=10<li..<lfl=l, lj_ljlj j=l,..,n }

be the set of all partitions T of the interval [0,1]. For TEF, we define the

mesh

(T) := max { 'j'j-1 I
iE{1,. .,n} }.

In order to define the integral, we need a convergence concept for random
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variables. We chose the mean square as a measure of distance. What we want

to define is the Riemann-type integral of a vector-valued function:

Definition:

Let (Xl)lE[01] be a collection of random variables, defined on the

probability space (12,E,P). If there is a random variable Y, such

that

lim X (l.-l. ))2} =0,
C(T)-+0

'b. j j-1
J=1

we write

Y = JXdl
and call Y the integral of (Xl)lE[olJ.

We call (X1) Itiemami-type integrable.

THEOREM A.1. (The law of large numbers for a large economy)

PROOF:

Let (XI)lE{ol] be a collection of pairwise uncorrelated random

variables with common finite mean j and variance . Then (X1)

is Riemann-type integrable and we have

Calculate

= 5Xd1.
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II

E[ (ii- X,(1.-1. ))2ii-'
j=1

n

= E{ (( X,__Ii)(1__1}....1))2 I

n
22= .-1. )uJJ-1

j=1
II

(1.-i )Jj-1
j=1

= (T)u2

converging to zero as (T) converges to zero. This completes the proof.
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Appendix II

Table 1: Notation:

1{} indicator function, = 1, if {.} is true,

a individual total asset holdings at the beginning of the period or after

the lottery,

a parameter of the CES-function f(k,x) = (c1k +
cutoff point for insider-outsider decision,

b individual mutual fund holdings, paying a sure return R,

discount factor,

c c is individual consumption,

C is aggregate consumption,

d d(1) is the dividends (capital share/rental rates) for one unit of

("old") capital on level

D D(l,i,g) is the aggregate stock demand by individuals for all

technologies of category (l,i,g) in units of capital,

dom domain of the random variable Z,

E{.] Expectation operator. Ex[f(x,y,z) I

Y] denotes the conditional

expectation of f(x,y,z) for a fixed z and randomly varying x, given

the random variable Y.

f k' = f(k,x) is the production function for new capital k' from old

capital k and investment x,

F distribution function of assets before the lottery,

Fa distribution function of assets after the lottery,

Fk Fk(l) is the fraction of all capital (in physical units) on level 1,

FN distribution function for N,
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Fz distribution function for Z,

o(l,i,g) is the fraction the mutual fund holds of the aggregate capital

stock of category (l,i,g), co(l,i,g) = (l,i) ir(l,i,g).

g index for the random growth rate Fg = Fg

is the productivity parameter of an individual technology,

is the maximal productivity parameter in period t,

F F0 > F1 > 0 are the random growth rates 'H4 Fg
'Yrt

h the function h(q) = q X(q) ), where defined,

coefficient of relative risk aversion,

is the random index for the information revealed by prices about

technology T at time t,

ins abbreviation for insider,

I,II,III,IV,V,VI parts of a period,

2j index of an individual, j e [0,1]

scaling factors for the calculation of probabilities (see the

consistency-theorem),

k k is the total ("old't) capital for technology r,

is total aggregate capital (in physical units), produced in period t

and productive in period t+1,

k1 is the initial capital for each technology,

12 are parameters of the CES-function
a al/af(k,x) = (ic1k + icx )

l is the i& of a technology r in period t, 1 = 0,1,2,.

(l,i,) is the yp of technology r at time t, (l,i,g) is the
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category of technology i- at time t.

A Lebesgue measure,

m,M m=1,..,M is the random message index

is the actuarily fair lottery an agent with

beginning-of-the--period asset holdings a buys,

n ii is the aggregate labor input, n(l) is the labor ratio for technologies

on level 1,

N individual endowment with productive labor,

outs abbreviation for outsider,

P denotes "probability":

P(Fg) is the unconditional probability for growth rate Fg for a

particular technology,

P(g,i is the probability for growth rate and index

i, conditional on the level 1 of a technology r,

P( m g) is the conditional probability for receiving message if the

growth rate of a technology is Fg

r(l,i,g) is the assignment probability for category (1,i,g) due to the

"imperfect" random selection of stocks by agents, etc.

q q1(l), q2(1,i) and q3(l,i) are prices for one unit of capital (one stock)

of level 1 or type (1,i) during the period. q1 and q2 price "old" capital

(before investment) and q3 prices "new" capital,

0 0 = (P,7r) collects the probability parameters of an economy

R gross return on the mutual fund between periods,

p exponent of capital in the Cobb-Douglas production function for

output,
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s stock holdings, e.g. suS(a,l,i,m) are the insider holdings of the risky

stock, given his assets a, a stock of type (l,i) and the private message

m,

t time index,

r technology index. is the technology assigned to agent j at time t,

U sum of all expected, discounted utilities,

u period per period utility for consumption,

v value function,

w wage,

denotes the (aggregate) state of the economy in period t,

x x(l,i) is investment per unit of old capital of type (l,i),

is aggregate investment,

X X(q) (where defined) is the investment per unit of capital if the price

per unit of new capital is q, q 1, X(q) ) = 1,

= ( F1 / F0
)1

= if technology T is on level 1,

y y is output per individual technology,

is aggregate output,

Z is the random variable drawn for technology r at time t,

steady state growth rate of output.
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Appendix ifi.

Table 2: Structure of a period

Sequence of events.

part variables events and actions,

I r1,q1,a ante-signal trading (stock market 1), 'y is now

public information. We restrict agents to 2 O

II lottery. Agents decide wether to become an

"outsider" or an "insider". The agent specific

labor-productivity Nt is not known.

III N,y,d,n,w production of output. Wages w Nt are paid to

outsiders. Insiders are busy acquiring information.

IV Zrtm Agents "pick" a technology index
Tjt

technology

shocks/ technology signals are realized,

V q2,x,q3,i, physical investment and post-signal trading (stock

market 2). Mutual fund portfolio decisions. Noise

trades! informed trades.

VI consume c1.
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Appendix IV

We need to show that a solution to (3.6), (3.7) and the equation

preceeding (3.8), which we denote by (3.8) in the sequel, yields a solution to

(3.1) to (3.3) in steady state. Let be equal to the list of state variables

at time 0 in steady state. We denote by th the list of steady state variables

after growth by factor a, i.e. wages, aggregate output, aggregate capital and

so on are multiplied by factor a, whereas stock prices q1, q2, q3, investment

per unit of capital x and so on remain the same. Note that in steady state,

= t> 1. Let 1flS outs and denote a solution to (3.6) to (3.8).

Define

v( a, a) = a1 (a/a) + 1 a77 1 (A41)
1 -fl 1-77

ins outslikewise for v and v

TILEOREM A.4.1.

(A.4.1) delivers a solution to (3.1) to (3.3).

Note that (A.4.1) implies in particular, that v( a, ) = ( a ) at

the time-O steady state list
.

Furthermore, (A.4.1) allows for a simple

way of comparing steady states for different parameters by calculating how

much an economy had to grow to reach the same welfare level as the other
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economy. For suppose, economy 1 reaches the average welfare level v1 and

economy 2 reaches the average welfare level v2. (A.4.1) then implies, that

economy 2 would have to grow by the factor

1 1+ 1 - -
1 ______ I

(A.4.2)
v2+ )

to reach the same average welfare level.

Poo:
The proof for our claim now follows from the following simple

calculation, which has to be repeated likewise for and v. We have to

check wether the value functions defined by (A.4.1) satisfy the dynamic

programming problem equations (3.1) to (3.3). I.e. for vOtS, we have to

show that

v011t5(a,a) =

C

E(Nl)[max { 1 - + /3Ee[v(a',a) I
iJ

I

c ,b,s

c + q3(1,i)s + b a + awN,

0 K a' = Rb + q1(1+g)s }

Now, working from inside and using (A.4.1), the right hand side equals
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c1-i +r.h.s. = E(Nlj)[ max { i -c ,b,s

((a)1_17e[ (a'/(a())J i
(a)1

1-fl 1 - 17

c+q3(1,i)s--b<a+ awN,

0< a' = Rb +q1(1+g)s } I

(substituting ' = a/(a), a = a/a, b = b/a, = c/a and = s/a)

r.h.s. = E(Nlj)[ ma { + a77 1 +
1-17

1-17 1-a ( +
1-77 - 1 a1+ fi a7 - 1

1-fl 1-17 1-fl 1-77

0ã'R/C+q1(1+g)/ }I

1- l_171 1-i'
+= a E(Nli)[ - 17

a

+ -ii
1-fl 1-77

+ q3(1,i)+< a + w N,

0a'=Rb/(+q1(1+g)/ }]

+ 1

1-fl 1-77

1-17 OUtS(a)+ 1 a77 - 1=a V

1-/3 1-17
outs= V (a,a).
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This finishes the calculation and the proof. .
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Appendix V.

In this appendix, we discuss how to analyze the model by examining

its individual paxts. The key insight is that the analysis falls into two

separate parts: the analysis of the production side of the economy and the

analysis of the decision problem. At the ends, both parts have to be put

together.

We denote with (P,r) the probability parameters of our economy.

We assume that (P,ir) is "rich", i.e. that no probability equals 0. Equilibria

can only exist, if a certain consistency condition for the probability structure

(P,ir) is satisfied: we will derive this condition below. We will concentrate on

equilibria in which the mutual fund holds shares of all types in his portfolio.

A direct of this is equation

Rq3(l,j) = 7r(g=OJi) q1(1) + 7r(g=1i) q1(l+1).

We will prove below in Lemma A.V.2, that q1 is strictly decreasing in 1.

Thus, the identifiability condition (vi) in the definition of a steady state

equilibrium is met iff either i P implies ir(g=0i) ir(g=0i') or ir(g=0i)

does not depend on i at all. We make the assumption, that this is true for

the probability structure (P,ir).

We now proceed to "dissect" the model. The first step regards the

production sector.
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V.a. The Production Side.

In order to prove our results below, we will restrict the investment

function f to satisfy some further requirements:

AsSUMPTIoN A.V.1:

The investment function k'= f(k,x) satisfies the following list of

assumptions:

f is homogeneous of degree 1,

f is continous on

f is twice continuously differentiable on

f(1,O) > 0,

- f (lx)<Oforallx>O,xx,
- urn f(1,x) = D and urn f(1,x) > 0,

x-40 x-

- urn X(q) = 0, where X(q) is the (unique) solution to
q-+ 0

f(1,x) = 1/q for q> 0.

- f( 1 ,X(q))O(q0).
- The function

h(q) = q f(1,X(q)), h(0) = 0

is well defined and continuously differentiable on some

interval { 0 , 0 <

- h(0) = 0, h'(0) < 1,

- h'(q)>Ofora11qE(0,q).
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- h(q)-+cnasq_+q

This assumption can be justified by concidering its economic interpretations.

E.g. it requires that the marginal product of investment decreases, given a

constant level of old capital, and that old capital will be valued the higher

the higher new capital will be valued. The assumption is violated by the

usual linear investment function1, but there is a fairly common class of

functions that satisfies the assumption as the next lemma shows:

LEMMA A.V.1:

Let

f(k,x) = ( +
2
X

)1

be the CES - investment function with parameters
' > 0,

'
<

> 0 and 1/2 < a < 1. Then f satisfies Assumption V.1.

'Actually, for a linear investment function of the type (2.10), the model
becomes even simpler. It turns out, that investment will only be undertaken
in the type (0,i) of technologies for which ir(g = 0! i) is maximal. In
particular, all technologies with level 1 > 1 will be without investment
forever. Since this is a somewhat odd feature and also since this feature
creates great problems for versions of the model, where i is taken from a
continuum rather than a discrete set, we decided rather to use e.g.
CES-investment functions as described in Lemma V.1. For Lucas-trees (see
2.11), a steady state equilibrium typically does not exist since there will be
no steady state distribution of capital unless we allow = w. Both cases
can probably be analyzed as limiting cases with the CES-function described
in Lemma V.1, however, if we let a - 1.0 (for the usual linear investment
technology) and / or

2
0 (for Lucas-trees).
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ProoF:

Calculate that

and

X(q) = /
((q)k/(1) - frC2)

)1/

h(q) = q ,ç1/c (1+((h/aq)a/(1)_1)_1)(1_a)/a.

The rest is algebra as well. .

THEOREM A.V.1:

a wage w > 0, the following rules maximization

problem of the production firms:

n(l)=(10(i_p)/w)VP,

i/p
= ( i 'o

(1)(1P)/P l - 1/p

and

d(l) = p y(l)

PRoOF:

Calculate. .
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TuEouM A.V.2

Given the probability structure (P,r) and a gross interest rate R 1,

there exists a wage w(R) such that for every wage w > w(R) and

with the dividend rule above, there are strictly positive prices q1, q2,

and q3 as well as an investment rule x, solving the maximization

problem of the investment firm and the mutual fund.

Furthermore, this solution is unique (given the wage w) in the sense

that there is no other solution qj, q, q and x with the property

that 0 < q(1) <q* and 0 < q1(l) <q* for some and all 1.

PlooF:

For an interior solution, the two pricing resulting from the mutual

fund decision as well as

and

q3(l,i) 1, x(l,i) ) = 1

q2(1,i) = q3(l,i)
1k

x(1,i) )

from the first-order condition of the investment firms problem have to be

satisfied. These last two equations imply

q2(1,i) = h( q3(1,i) ).
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We proceed to prove that a solution exists to these equations for any

w> w(R), where w(R) is defined below.

Given w, let d(l,w) be d(l) as calculated from the rule in Theorem

A.V.1. Observe that we have d(0,w) > d(1,w) > 0 for all 1 e { 0,1,2, ... }.

Define

inf{q>OqR-h(q)>d(O,w)},

where h is the function defined in Assumption A.V.1 and where we let

(w) = , if the set is empty. Observe that (w) is monotonously decreasing

in w and 1 im (w) = 0, since d(w,0) is monotonously decreasing in w and
w-+

Jim d(w,0) = 0. Define
w-*

= sup{
I
h'(q)<Rforal1qe[0,]}.

It follows from Assumption A.V.1, that j > 0. Hence, let

w(R)= inf{w>0I(w)<}.

*
It follows that w(R) < n. Pick w> w(R). By construction, there is a q

* -
with q(w) <q < q, such that

* *

d(0,w) + h(q ) < R q
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and

*max{h'(q)Oq<q }<R.

Let be the space of all bounded sequences of real numbers q = (q(1))10

with the norm q 1 = sup
I

q(l) and the usual order structure, and let
1

be the space of all bounded sequences of (1+1)-dimensional vectors

q = (q(1,i))10 i'O with the norm q 1 = sup
J

q(l,i) and the usual order- ,- l,i
structure. Define operators Q1, Q2 and Q3 according to

where

Q1: D1 -

(Q1(q))(1) = d(1) + P(i I') q(l,i),

Q2: D2 -+

(Q2(q))(1,i) = h(q(1,i)) and

Q3: D3 -+

(Q3(q))(1) = (ir(g=O i)q1(1) + ir(g=1
I
i)q1(1+1))/R,

*D1={qEt1I0<q(1,i)h(q)},
*

I
Oq(l,i)q },and

*
}.
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It follows that all operators are well defined and that Q1(D1) c

Q2(D2) c D1 and Q3(D3) c D2. Furthermore,

II Q1(q') - Q1(q") q' - q" 'IIi,

Q2(q') - Q2(q") max * h'(q),
Oqq

by the mean-value theorem and

1
Q3(q') - Q3(q") q' - q" / R.

Thus define

Q:D3-'D3, Q=Q10Q20Q3.

*
It follows from the construction of q , that Q is a contraction mapping with

contraction factor ii = max * h'(q) / R < 1. It follows from the
0 qq

contraction mapping theorem that Q has a unique fixed point q1 E D3.

Define q3 = Q3(q1), q2= Q2(q3) and x(l,i) = X(q3(l,i)), where X is defined

in Assumption A.V. 1. Observe, that prices are strictly positive and that

q1(l) < It follows from the first order conditions of the investment firms

problem and the equilibrium conditions for the mutual fund that q1, q2, q3

and x are a solution. The uniqueness claim follows from the uniqueness of

the fixed point of Q and the properties of the first order conditions of the

investment firms problem. This concludes the proof of Theorem A.V.2. .
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LEADIA A.V.2:

PLOOF:

(w) (w)Given U and R, let qW) qW)
q3 and x be the solutions found

in Theorem A.V.2 for w> w(R). Then

(i) the mappings w qW) w qW)
w qW)

w (w) are

continuous and strictly monotonously2 decreasing,

(ii) 1
(w) . (w) 1 im qW)

0
(w)imx =limq2 = = ,limq1 =0,

W-4 w W-4 w W-,
(w) (w)(1) qW)(li) and(iii) Fix i and w > w(R). Then q1 , q2

(w).x (l,i) are strictly decreasing in 1 in the sense that e.g.

x(W)(l+1,j) < x(l,t), all 1, all i, all t. Furthermore,
(w).

.
(w).(w)(1) = ii m q2 (1,i) = 1 m q3 (1,i) =lim q1

l -w l -cu l -w
(w)lim x (1,i) = 0.

1-4

For w > w(R), let Q() and Q(W) be the operators Q1 and Q

introduced in the proof to Theorem A.V.2. Observe that the operators Q2

and Q3 do not depend on w. Note, that all operators are monotone, i.e. that

q' q" Q(W)q Q(W)q

similarly for "f'. It follows immediately from this equation and the fact that

2We introduce the notation q q' to mean q(l) > q'(l) for every 1, likewise for

q,q' E 4. Strict monotonicity then means strict monotonicity in every

entry, i.e. w> w' > w(R) implies qW') q(W) etc.
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Q is a contraction that

q)
Q(W)q

i q)
qW)

since then

q) Q(W)q> Q(W)(Q(W)q) Q(W)(Q(W)Q(W)q)
q

Pick w > w' > w(R). Following the notation in the previous proof, choose
* *

the same q for both, w and w' by choosing the q that works for w', since it

will also work for w: this way, the operators associated with w and w' and

any w" in between operate on the same domains and the operators Q(V")

for the same contraction factor ii = max * h'(q) /R. By
Oq<q

definition of QW) and the monotonicity of the dividend rule in Theorem

A.V.1, we have

Q(W)q Q(W)q for all q E D3.

Thus, we get the monotonicity claimed in (i), since we have
q(w') Q(W)q(W)) Q(W)qW) hence q') 4w) For the continuity,

choose an arbitrary, but sufficiently small c > 0. It is clear by the definition

of Q1 and Q and the continuity of d(1,w) in w, that we can find t> 0, so

that for any w" with w' w" <w + 8, we have
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Q(W)qW) + Q(W)qW) qW')

Define .(0) qW') and 4(n+1) Q(W).(I1)
q +e. Define (0) qW') and

(n+1) Q(W)..= q
(n) Observe that 4(1:1) E D3 for all n, if e is sufficiently

small. It follows the last equation and an analogue to the second inequality

above that

.(n) (w') ..(n)
q q

On the other hand, it follows from the contraction property and an induction

argument that

and

Thus,

qw")

(n) (w")
IIq' -q1 lIf/(1V).

w') -qW")
/ (1-

proving continuity from above. Continuity from below is proved similarly.

This completes the proof for claim (i) of the lemma for q1, the properties for

q2, q3 and x follow easily.
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*
For part (ii), fix some w> w(R). Fix the q corresponding to w and

contraction parameter v, which we are going to use for all w . Pick any

E> 0 and find wf > W, such that d(O,wf) (1 - ii) c. We claim that
(w) e for all w thus proving (ii). To prove the claim, pick any

w> wf. Define q 0 and q(+1) Q(w)q(n) By definition of Q(W) and

the monotonicity properties of d, we have q(1)
< (1 - ii) or

(w) (0) (0)
Q q - q II (1 Z) E. Hence,

Q(W) (n) (n) n
q -q IIii (1-v)E

for all n by induction. The triangle inequality together with q(fl) q(W) now

deliver the claim.

For the claims on limits in (iii), fix w and find the contraction

parameter v. Pick c > 0 and find l such that d(l,w) (1 - v) for all 1 >

Define d(l,w) = U for 1 <1 and d(l,w) = d(l,w) for 1> Define and Q

analogously and note, that Q is a contraction mapping on D3 with

contraction parameter v and a fixed point
.

Note further that by definition

of Q and Q, (1) = q1(l) for all 1 l. Define as in the proof of (ii) the

vectors = o, (n+1) (n). Note that
(0) (0)

< / (1 - v) and thus
1 II c. This proves the result,

that lim q1(l) = 0, the other Iiniiting results follow.
1-4 W

We finally derive the result about the strict monotonicity in (iii).
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Fix w. Note that Q has the following property:

q(l)q(l+1) for all 1 Qq(l)>Qq(l+l) for all 1

(n) (w) q(0) (n+1) (n)ince q -' q1 , where , and q = Q q , (iii) follows. This

concludes the proof of Lemma A.V.2. .

THEOLEM A.V.3:

The steady state growth rate has to satisfy

=

PRooF:

This follows directly from from the formula for y(l) in Theorem A.V.1 and

the definition of in the the definition of the steady state equilibrium .

We now need to impose a second technical assumption about our

investment function f and the probabilities involved.

AssuMPTIoJ A.V.2:

Given (P,ir) and given any R E (RmjnRm) 0 for some R.,
R the investment function f satisfies the following list ofmax'

conditions:

- P(g=O,ill=O)f(1,O)<,
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- 1 im P(g=0,il=O) f(1,x(0,i))> C
wlw(R) i=0

- If for some w> w(R)

P(g=O,i1=O) f( (w)1,x (O,i)) =
i=O

then for 1> 1, we have

P(g=0,il) f(1 (w),x (l,i)) < C
i=0

Tliis assumption is not very restrictive. The first inequality is

satisfied if F0 > 1 and f(1,0) 1, i.e. if there is no appreciation of capital

(e.g.
'

1.0 for the CES-investment function). The second inequality is

satisfied for the CES-investment function if is sufficiently close to 1 and

the probability P(g=0 1=0) is sufficiently close to 1, because x is monotone

in w by Lemma A.V.2 (i). Likewise, by Lemma A.V.2 (iii), the third part in

Assumption A.V.2 is satisfied if P(g=0,i 1) is independent of 1. However in

general we do not want to make this latter assumption up front (see the

consistency theorem below).

THE0LEM A.V.4:

If F0 > 1.0 and given (P,ir), R and aggregate labor supply ii> 0,

there is a unique3 level of aggregate capital 1, a wage w, a

3The phrase "unique" here means that we restrict ourselves to the prices and
investment rules from Theorem V.2, which are unique in the sense explained
there.
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PtooF:

distribution4 Fk, prices q1, q2 and q3 and an investment rule x,

such that the equilibrium conditions for the production side of the

economy are satisfied:

- Fk is stationary,

- firms maximize profit and

- the labor market clears.

By the continuity and strict monotonicity of in w and by

- 0 (w - ) from Lemma A.V.2 and by the first two equations of

Assumption A.V.2, there is a unique wage w, such that

P(g=0,i
I

l=O)f(l,xw(O,i))= (
1=0

Observe that this is necessary for the stationarity of Fk. Now define

Fk(0) = 1.0. For 1 > 1, define

Fk(l) = 1(l) Fk(l_1),

where

4The term "distributiont' always refers to "probability distribution", i.e. a
distribution yields nonnegative weights for measurable sets and integrates
out to 1.0 over the whole set.
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P(g=1,i J 1-1) f( 1 xw(ll,i)
)

i=O

- P(g=O,i
I

1) f( 1 xw( 1 ,i)

i=O

Observe, that Fk(l) is well defined and strictly positive because of third part

of Assumption A.V.2. Define = lim sup (l). With the help of Lemma

A.V.2 (iii), it is easy to see, that 1 / ( < 1. It follows that

< 'k i:0Fk1

since the tail is dominated by a geometric sum. Hence let

Fk(l) = F'k(l) / Fk.

It is easily verified that the stationarity condition in the definition of the

steady state equilibrium is satisfied. Also, Fk(.) is the only distribution

compatible with the formulas for stationarity at the beginning of this proof

and in the definition of a steady state equilibrium. Finally, let

Fk(l)n(l),
1=0

where n(l) is given by Theorem A.V.1. This completes the proof of Theorem
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A.V.4..

We now come to the second part of our analysis.

A.V.b. Analyzing the decision Droblems of the agents

We now want to analyze the decision problem as given by equations (3.6)

through (3.8), which we call problem (A). For that, we write the decision

problem in a simpler way.

First note, that the wage is simply a scale factor for everything, i.e.

denote by v(â;'), v'(a;*), vouts(a;*), cms(a,1,i,m;) and so on the

solutions to problem (A) for some wage ' and let a different wage w be

given. Let := w / i be the ratio of the two wages. It is then easy to see

that a solution for r can be obtained via

w1'i 11 ____ ___v(a;w) := w v(â/w;*) +
1-77 1-fl

______ 1ins 1-77 ins _________ ______v (a;w) := w v (a/w;w) + W _____

1-17 1-fl
ins, . ins

c a,l,i,m;w) := w c (a,l,i,m;*),

etc.. Heuristically, suppose is a time - path for consumption for the wage

= (t and c a time - path for consumption for the wage

w = w = w Calculate, that
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co

t ()_'-
1-77

'4J1-72
fit

1_Il_i w17-i

1t=O =O 1 -it

Thus we may assume w.l.o.g. that * = 1: for the problem in the text with a

given wage w simply use the translation rule above.

Secondly, we eliminate the possibility for outsiders to buy stocks

(and thus the uncertainty and expectation - formation that goes along with

it), keeping in mind, that we have to prove below at the appropriate point,

that the decision problem for the outsider does not look different, if we

- buying again.

Next, observe that we can write the decision problem for the insider

simply in terms of probabilities: let s and b a solution to his original

problem. Define a new security with price ir( g=O
I

i
),

which pays R, if g=O

happens and pays 0, if g=1 occurs. Let

- q1(l+1)
S

R

be the investment in this new security and

q1(l+1)
b=b+ s

R
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the corresponding new holdings of the mutual fund. Observe that by virtue

of the pricing equation (A.5.l), we have

c+ ir(0 i) + =c+q3(l,i)s+b,
R(b +(1-g) ) tb/( + q1(l+g)s/, g = 0,1,

i.e. we can rewrite the insiders problem in terms of the new security and use

the following translation rule to get the asset- and bond-holdings for the

original problem:

R -s= q1(1) - q1(l+1)

b -6
q1(l+1)- - q1(l) - q1(l+l) '

We formulate the implicit indifference of agents regarding the level 1 of the

stock that was picked for them in the following

TUE0LEM A.V.5:

PKO0F:

In part IV of the period, agents are indifferent between technologies

of different levels.

Consider two types (l,i) and (1',i) of technologies, which differ only

in their level. Given the type (l,i), suppose an agent chooses consumption c1,

stock holding s1 and holdings of mutual fund shares b1. Given type (l',i),
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define c1, = as well as

q1(1 ) - q1(1 +1)

si,= sand
q1(1') - q1(l'+l) 1

S i(') q1(1+1) - q1(1) q1(1'+l)

R q1(l') - q1(1'+l)

It is now easy to verify that

c1 + b1 + q3(1,i)s1 = c1, + b1, + q3(1',i)s1,

Rb1/( + q1(1)s1/( = Rb1,/( + q1(1')s1,/ = and

Rb1/( + q1(1+1)s1/ = Rb1,/C + q1(1'+1)s1,/= ä.

I.e. both portfolios ( s1 ,b ) and ( s1, ,b1, ) satisfy the same budget constraint

with the same level of consumption, and both portfolios deliver the same

next-period asset positions a6 with probability ir( g=O i ) (resp.

ir( g=O i,m ) for an insider) and ij with probability ir( g=1
I

i ) (resp.

ir( g=1 i,m ) for an insider). Thus, the agent must be indifferent.

Furthermore, the choice of the lottery ji will be particularly simple

and (in plain terms) of the form:

- choose and accept a fair gamble for a, which delivers one of

two values a0 0 or a. > 0.

- If a0 is delivered, become an outsider with a0.
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- If aj is delivered, become an insider with a.

Gambles which deliver a0 = a or a = a for sure are legitimate. In

formulating the decision problem, we can restrict agents to lotteries of this

simple type (as we already formulated in (3.8)), keeping in mind that we

have to prove that the availability of more general lotteries does not improve

the situation of the agent.

Finally, it is possible to eliminate the growth rate and the constant

term in the value function formulation. I.e. define

=

R = R / (,and

= 1.0.

-outs -ins s a solution to problem A with fi,R and replacing /3,R andIfv,v ,v i

(, we will find a solution to the original problem by using the same decision

rules and

1 /3 (1-77_i
orv(a) =(a)+

1 -1-
1 1 1v(a) =(a)+ -(

1 - 1 -(1_77fi1 -
/3

outs inslikewise for v , v
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Thus, instead of analyzing the problem A, we analyze the following

problem B. Problem B will yield a "tilda" - solution (with = 1) which

translates back into a solution to problem A via the rules above. Of course,

in order to formulate problem B, we leave the tildas away for the sake of a

more convenient notation. Denote the per - period utility from consumption

by U:

- 1u(c) = ______
1-17

with the convention that u(0) = - for 17> 1.

Then we have:

Problem B:

I M
ins, insv a) = ir(i) ir( m i ) vim(ai,

i=O m=O
1

ins
v. (a) = max { u(c) + fi ir(gji,m) v( a)i,m c,b,s g=O

c+7r(g=O
I
i)s+ba,cO,

a = R( b + (1 -g)s ) O, g=O,1 },

where the minimum - variance portfolio is selected, if

several choices of c,b,s deliver the maximum,

outs r outs
v (a) = Ve (a + N) dFN,
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outs
Ve ty)=max{u(c)+fiv(a')

c ,b

c+b y, c0,b0, a'=Rb },

v(a) = max { P0 vOUtS(a0) + Pj v(a)
a ,

either 0 a0 a a or 0 a a a0,

and p0
= a' i a' = a. a with the

convention for g, that P0=1.0, P=0.0 if

vtS(a) > vm(a) and P0=0.0, P=1.0 else },

where the gamble with the minimal distance a_ -a0 is

selected, if several choices of a and a0 deliver the

maximum.

We will have reasons to compare the solutions to solutions of the

following problem C, which is a generalization of the standard consumption -
savings - problem (see Stokey - Lucas, with Prescott (1989), p. 126) in that

there is uncertainty with respect to the labor - income: this is essentially

problem B without insiders. This problem C is an important benchmark to

prove equilibrium in the full model.

Problem C:

(a) = 1 + N) dFN,

= max { u(c) + 3 ( a' )
c ,b
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LEMMA A.V.3:

Ptoo:

c + b y, cO, bO,a' = Rb }.

Define a return it via

1T:=Rmax 7r(g i,m)
i ,g,m ir( g i )

Then R is the maximal expected return, an insider can earn on his

portfolio in problem B.

Let assets a be given and fix the consumption c for the insider,

0 < c < a. Let b and s be any portfolio choice in the insiders decision

problem, which finances c, i.e. we have

and

a-c a-c
ir(g=1i) - -ir(g=0i)

b = a - c - ir(g=0
I
i)s.

The expected return on that portfolio is then calculated to be
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1

R(b + (1 - )s)Ret(b,$) = 7r(g i,m) b + rg=O Ii )s
g=O

_Rb +ir(g=Oim)s- b +g=Oijs

If ir(g=Oi,m) ir(g=O(i), then

Ret(b,$) Ret'O a - C = Rl1°1' m)
" '7r(g=Oi)'

by definition of T{. If ir(g=Oji,m) < ir(g=Oi), then likewise

a-c c-a)Ret(b,$) Ret( ir(g=lji)' ir(g=lIi)
R g=1Ii,m)

= g=1i)

concluding the proof.

We make the following general assumptions:

Assumption (A.V.3):

(i) O</3<1,1R,

(iii) f N dFN = 1, f N2 dFN < j' N dFN

f N dFN = W and FN has a density F(N) with respect

to the Lebesgue measure which is strictly positive for all

N>O,
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(iv) i>1.

Observe, that (i) and (ii) are equivalent to the following assumptions about

our original problem via our translation rules above:

(i') O<fi(17<1,1<R,
(ii') The maximal expected return R max g

I
i,m ) an

i ,g ?r( g i )

insider can earn on his portfolio in the original problem, is

strictly smaller than R* := (/13, the benchmark interest

rate of the standard neoclassical growth model.

To analyze problem B, we define two operators Th1t5 and which will

map future value functions into present solution to the after - randomness

problems of the outsider or the insider. Let

W = { w: w is continuous, increasing, concave,

MIN < w(a) < MAX for all a },

be the set of "admissabl&' value functions, where

and

fN7dFN - 1
MIN=min{ ,O}

(1 - fi)(1 -
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1

MAX= >0.
(1 - )(i- 1)

1-i'
1Note for the proofs below that MAX > C

1 + fi MAX for all c E ER.

Define operators TUtS and T5 from W into the set of all functions from

ER+ into {-CQ} "ER via

and

(TtSw)(y) :max { u(c) + /3w(a')
c ,b

c+by, c0,b0, a'=Rb }

1

(T11w)(y) max { u(c) + fi ir(gji,m) w(a')
gc ,b,s g=O

c+7r(g=0
I i)s+ba,c>0,

a = R( b + (1 -g)s ) >0, g=0,1 }.

I.e. these operators deliver the function outs and v" if we plug in the

solution v of problem B for w.

LEIWA A.V.4:

Let f be concave, increasing. Let x < y and > 0. Then

f( y + ) -f( y) f( x + ) -1(x).
1ff is strictly concave, we have "<"
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Pt0OF:

or

By concavity, we have

f(x+ i ) Af(x) + (1-)f(y+ )

f(x+ z )-f(x) (1-) (f(y+ i )-f(x) )

and likewise

f( y + ) -f(y) ( f( y + )-f( x)),

where1-=
+ -x=h.s

LEMMA A.V.5:

outs, outsLet w e W and w Te w. Then
1-outs. outs(i) w is weildefined, w (y) > - 1 + w(0),
1-77

outs.(ii) w is concave and strictly increasing,

outs(iii) w (y) < MAX, all y E LR+,

(iv) the decision rules c,b are unique, (not necessarily strictly)

increasing and Lipschitz continuous.

outs.(v) w is continuous,
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PLOOF:

Let f(y,b) := u(y-b) + J3w( Rb ) and observe, that

outs
w (y) = max f(y,b).

b E [O,y]

(i) For the existence of observe that f(y,.) is a continuous

function (into ER {-T}) and [O,y] a compact interval. The

inequality follows from evaluating f(y,O).

(ii) Let b1 be an optimum for y1 and let y2 > y1. Monotonicity follows

from f(y1,b1) <f(y2,b1) Wouts(Y2). For concavity, let b2 be an

optimum for y2 and let ) e [O;1]. Then

outs,wou(y) + (1 - w y2)

= ) (ii) + (1 -.\) f(y2,b2)

f( )y1 + (1-A)y2 , )b + (1-)b2 )

outs
< w ( )¼y1 + (1 -

(iii) is clear from the definition of MAX.

(iv) Observe, that f is a strictly concave function in b since it is the

sum of a strictly concave and a concave function in b. Thus, the

maximizing b for a given y is unique. To prove that the decision

rule b is increasing, choose some y2 > y1 and assume to the

contrary, that b2 < b1. In particular, it has to hold that
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u(y2-b2) + fiw(Rb2) > u(y2-b1) + fiw(Rb1).

Since by the previous lemma (with = b - b2, etc)

we get

u(y2-b2) u(y2-b1) < u(y1-b2) - u(y1-b1),

u(y1-b2) + fiw(Rb2) > u(y1-b1) +

contradicting that b1 was the maximizing choice for y1. Thus, the

decision rule for b must be increasing. The proof for the decision

rule is similar that the roles of u and w are reversed and

the lemma above is applied to w instead of u.

By monotonicity of both rules, it follows furthermore that

o < b2 - b1 y2 - y1, implying Lipschitz continuity. The same

holds true for the decision rule in c.

(v) Continuity for follows immediately from (iv) and the

continuity of f.

LiIMA A.V.6:

ins insLet w E W and w i. w. Theni,m
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PLOOF:

Define

(i) wflS is weildefined, wS(a) a17 - 1 + w(0), and
1-17

w5(0) = urn - 1 + $w(0) E {},a\O 1-17
(ii) wH is concave and strictly increasing,

(iii) wms(a) MAX, all a E (R+,

(iv) the decision rules c,b,s are unique. The decision rules for

consumption c and for the total amount invested into the

portfolio inv(b,$) = b + ir(g=O i)s as well as the revenues

the portfolio delivers next period

rev(b,s,g) = R(b + (1-g)s), conditional on the true state g,

are monotonously increasing. The decision rules c,b,s, the

amount invested and the next-period revenues are Lipschitz

continuous functions of a.

(v) wus is continuous.

f(a,b,$):= u(a-b-ir(gOi)s) +
1

41 ir(gji,m)w(R(b+(1-g)s)),
g=O

where implicitely u(0) := urn u(a) and f(a,b,$) e ER '-' { -1D }. Observe, thata\ 0
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where

ins,
w a) = max f(a,b,$),

b,s ES(a)

S(a) = { (b,$)
I

Os+b, Ob, b+ir(g=Oi)sa }
a - C a - c= { (b,$)

I Oca, (g=1Ji)- -

b = a-c - 7r(g=OIi)s }

is the set of admissable (b,$) - pairs. S(a) is compact because of the

borrowing constraint that the portfolio must have nonnegative value under

all circumstances at the beginning of the next period: this puts a bound on

speculation. Given a, it is easy to see that f is a concave function in (b,$).

For some arguments below, it will be easier to consider the

maximization problem in two stages as follows:

where

Ins
w (a) = max u(y-inv) + g(inv)

i flvE[O,y]

g(inv) = max { fi w(R(b+(1-g)s))

b+ir(g=Oi)s = mv, b 0, b+s 0 }
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is a concave function.

(i) For the existence of wmS, observe that f(a,.,.) is a continuous

function (into IR s {-} ) and S(a) a compact set. The inequality

follows from evaluating f(a,0,0). The equality for a = 0 follows

from noting that S(0) = { (0,0) } and evaluating f(0,0,0).

(ii) Let (b1,s1) be an optimum for y1 and let a2 > a1. Monotonicity

follows from f(a1,b1,s1) < f(a,b,$) w"1(a2). For concavity,

let (b2,s2) be an optimum for a2 and let A [0;1]. Then

W'(1) + (1 - A) w1115(a2)

= A f(a1,b1,s1) + (1 - A) f(a2,b2,s2)

< f(Aa1+(1-A)a2, Ab1+(1-A)b2, As1+(1-A)s2)

+ (1 - A)a2).

(iii) is clear from the definition of MAX.

(iv) Since u is strictly concave, all maximizing portfolios must deliver

the same amount of consumption, i.e. cost the same. If

ir(g=0i) = ir(g=0i,m), the rest of the proof is identical to the

proof for the operator TUtS, because we assumed the

tie - breaking rule that agents choose the portfolio with the

minimum amount of variance if they are indifferent between

several portfolios, i.e. they would choose to only hold shares of the

riskiess mutual fund here.
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Thus, assume w.1.o.g., that ir(g=Oi,m) < ir(g=Oi). It is

then easy to see that the optimal portfolio has s 0, i.e. there is

short - selling. Assume otherwise, i.e. for some a and let
(b,$) e S(a) be some portfolio, where s 0. Define

b' = b + ir(g=Oi)s, s' = 0, observing that (b',s') finances the same

amount of consumption as (b,$), but has a sure rate of return. It

follows from Jensens inequality, that

f(a,b,$) w(b+ir(g=0i,m)s) < f(a,b',s'),

i.e. (b,$) cannot be the optimal portfolio (It is equally easy to see

that we must have S > 0, if ir(g=0
I
i,m) > ir(g=0 i) ). It now

follows furthermore from the tie - breaking rule that the

maximizing portfolio with minimum variance is unique.

Uniqueness, monotonicity and Lipschitz continuity for the

amount invested as well as for the amount consumed follows

exactly as in the previous proof (with g replacing w), using the

"two-stept' maximization via the function g introduced above.

We now continue to prove, that the revenue functions

rev(b(a),s(a),g) are monotonously increasing in a. Suppose not, i.e.

for some a2 > a1, suppose to the contrary that (w.l.o.g.)

rev(b2,s2,D) < rev(b1,s1,0). Find a difference portfolio (b0,s0) with

the price b0 + ir(g0i)s0 = inv(b2,s2) - inv(b1,s1) > 0, which
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pays rev(b0,s0,O) = 0. Since (b2,s2) is the portfolio choice for a2,

there can oaly be two cases: either we have

u(c2) + 0gm,i) w(rev(b2,s2,g))

> u(c)-f-fi ir(gjm,i)w(rev(b1+b0,s1+s0,g)),
g=0

or there is equality, but the variance for (b2,s2) is smaller, i.e.

< s2 0 with our assumption from above, that

ir(g=0 i,m) < ir(g=0 i) (the proof for ir(g=O
I
i,m) > ir(g=0 i) and

s1+s0 > s2 0 is very similar). Suppose first, that the inequality

Since rev(b2,s2,g=1) > rev(b1+b0,s1+s0,g=1), we have by

our lemma about concave functions, that

w(rev(b2,s2,g 1)) -w(rev(b2-b0,s2-s0,g1))

< w(rev(b1+b0,S1+S0,g1))-w(rev(b1,s1,g=1))

and thus

u(c1) +
g:

m,i)w(rev(b2-b0,s20,g))

> u(c2) + fi (gIm,i) w(rev(b1,s1,g)),
g=0
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a contradiction to (b1,s1) being a maximizing portfolio. Hence,

suppose secondly, that we have equality in both equations and that

s1+s0 < S2 < 0. But then s1 < S2 - S0 as well as s2 - S0 0, since

there could not have been equality in the last equation otherwise

(recall the argument of the beginning of the paragraph which

showed that a portfolio with s > 0 could be dominated by a riskiess

portfolio, if ir(g0i,m) < ir(g=0i)). This contradicts, that

(b1,s1) is the maximizing portfolio with minimum variance for a1.

This proves that the revenue functions are monotonously increasing

in a.

Let a2 > a and (b1,s1), (b2,s2) be the associated portfolio

choices. It now follows from the monotonicity of both revenue

functions that

o < rev(b2,s2,g) - rev(b1,s1,g)

inv(b2,s2) -inv(b1,s1) a2 - a1

- ir(gi) -

implying Lipschitz continuity of the revenue functions as well as of

the decision rules for b and s via

b(a)=rev(b(a),s(a),g=1),

s(a)=rev(b(a) ,s(a),g=0)-rev(b(a) ,s(a),g=1).
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(v) Continuity for w11 follows immethately from (iv) and the

continuity of 1.

Now let T0tS and T'5 be the operators "before expectation", i.e.

and

outs(T w)(a) EN [(T1t5w)(a + N) I

I M
mlflS /mlflS(i w)(a) = 7r(i)1r(ml1)imiw)(a).

i=0 m=0

Let finally T be the transition operator from choosing a1, a2, that is

(Tw)(a) = max {P0(T0UtSW)(a ) + P (T'118w)(a)
I

a , a

either 0< a0 < a< a. or 0< a. <a a0,

and P0 = = a
with the convention for

that P0=1.0, P=0.0 if vOUtS(a) v(a) and P0=0.0,

P=1.0 else },

where the gamble with the minimal distance a - a0 is

selected, if several choices of ai and a0 deliver the

maximum.
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LEL A.V.7:
outs outs- ins ins-LeteW,w =T w,w =T wandw=T. Then

outs ins - ins -(i) w and w are well - defined, v, w v and

both f outs insunctions, w and w , are increasing, concave and

continuous.

fN'7dFN_1
_____________________ ins,(ii) w(0) + /9(0) > w

1 -
(iii) The decision rules a(a) and a0(a) are welidefined, unique

and increasing.

(iv) If a(a)<a<a0(a), then a(a')=a(a) and a0(a')=a0(a) for all

a'E(a(a),a0(a)) as well as a(a(a))=a(a), a0(a0(a))=a0(a)

and a(a') a(a) for all a'>a. If a0(a)<a<a(a), the same

holds with the roles of a and a0 interchanged.

(v) w E W and w is strictly increasing.

Ptoo:
outs outs...(i) Let we = Te w. Note, that

N1- 1
1 - + fi(0) < wt8(a+N) MAX

and that

outs ' outs
w (a) = j W (a + N) dFN.
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This integral exists by our assumptions about FN and by the

continuity of outs For the continuity of wh1, use Lebesgues

dominated convergence theorem with MAX as upper bound for

wh1tS(a+N). AU other properties are trivial.

(ii) Observe, that by the lemma about T11tS and by the assumption

about FN having a strictly positive density for N> 0,

-1fN7dFN +fi(0)outs
w (0)

1-
a'- 1 ins,> lim . + (3(0) = w 0).

a-40
117

For a = 0, consider a0 = 0 and a 1 with P0 = 1 and the

inequality in (ii) follows.

(iii) We now show, that a0(a) and a(a) are well - defined. To that

end, we construct a0(a) and a(a) in a different way and show that

these rules solve the maximization problem for T. Choose some

a 0 and some ll big enough (see below). Consider the set

S(a) = { (x,A)
I

x < MAX and for all 0,

wtS(a) <x + )(a-a) as well as
ins,

w

Observe that S(a) 0, since (MAX,0) E S(a). Since S(a) is a
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compact set, let

x(a) = mm { x (x,A) E S(a) for some A}

and choose A(a) so that (x(a),A(a)) E S(a). Observe that we nevei

have A < 0, since w1 and are increasing. It is easy to see,

that x(a) equals the supremum over all

P0 (Tw)(a) + P1 (Tn5w)(a) in the definition of T. We have

to prove that it is actually a maximum for the right choices of a0

and aj. If x(a) = w(Jh1tS(a) or x(a) = wms(a), let a0(a) = a(a) = a.

It is obvious, that this choice is the solution to the maximization

problem in the definition of T.

line

outs insThe case of w (a) x(a) w (a) remains. Define the

1(a) = x(a) + A(a)(a-a).

For the proof to proceed, we need to show that the closed sets

and

outsA(a) = { a 0<aa, w (ala(a) or w5(a)=1 (a) }

outs Ins
A+(a) = { a aaw, w (a)=la(a) or w (a)=la(a) }
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are not empty.

Suppose first to the contrary, that A_(a) = 0. By the

compactness of [0 , a], we can find some .\ > )(a), such that we

have > 0, where

Let

outs= mm { x(a)+(a-a)-w (a),
Oa<a

ins,x(a)+A(a-a)--w a) }.

= mm { x(a)+)(a-a)-w°'t(a),
a

Insx(a)+)(a-a)-w (a) }

and observe > 0, since wOUtS(a) x(a) wms(a) and since e.g.

x(a)+\(a_a)_w011t5(a) > ) - \(a) for a a+1. Let

= min{ } > 0. But then

(x(a)-,\)ES(a),

contradicting the definition of x(a).

Suppose secondly to the contrary, that 0, but that

= 0. If .\(a) > 0, then we can find some a with
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(a) x + (A(a)/2)(a - a), all a a,

since urn = 0. The argument is then similar to the

argument for z above, except that we are looking for a ) with

< .A < )t(a) and that we replace the compact interval [0 , a]

by [a , a]. If A(a) = 0, choose some a e A(a) 0 such that
outs outs

w (a)=x(a) w.l.o.g.. Since w is Increasing, we have a

contradiction.

Thus A(a) 0 and A+(a) 0. Assume first, that

w0Ut5(a)=l(a) for some a E A_(a). Since wh1 is concave and

since w0tS(a) x(a) wS(a), we have w0tS(a)<l (a) for a> a.

Thus w"5(a)=la(a) for all a E A+(a) and by a similar argument

w"5(a)<la(a) for all a < a. We then define a0 = max A_(a) < a

and a = mill A+(a) > a. It is obvious that a. and a0 solve the

maximization problem in the definition of T, since e.g. for any

other choice of a, we have la(a) w"5(a) and thus the same has

to hold for the lottery - averages at a. It is also clear, that the

minimum distance choice is unique. Assume secondly, that

w"5(a)=la(a) for some a E A_(a). By a similar argument we find

a = max A_(a) < a and a0 = mm A+(a) > a constitute the

unique solution for the maximization problem in the definition of

T.

165



If w0uts(c)=1a(a), then the argument above also shows, that

outs,A(a)={aIO<a<a,w ia)=1()},

etc., that is the sets A_(a) and A+(a) and therefore also the

choices of a and a0 depend on a only via the values of the function

'a'

It remains to prove for part (ii), that the decision rules are

increasing. Suppose to the contrary that a < a' and that (w.1.o.g.)

< a0. Consider first the two cases that a0 = a = a, but

outs ins <w (a.i.w (a0) < w (at) or a = a = a', but w0h1t5(a) flS

1'

Restricting attention to the first of these two cases w.l.o.g., it must

be that a > a'. By virtue of the choices for a, we have

a -a . ai-a outs
w (a) a-a wlflS(ap + ai-a' (as),10

Ins
But then, concavity of w implies that

a'-a . a!-a'
ins ____ insw1115(a')-äw (a)+aa w (a)

1 1

a?-a'
1 outs?iW (ai) + a?-a' w (a),

10 10

which for ">" is a contradiction to maximization at a' in the
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definition of T and which for "=" is a contradiction to the minimal

distance choice tie - breaker in the definition of T.

Now consider the remaining case, that la(ao) = wOUtS(a0) and

la,(a) = w1tS(a). We showed above, that la(a) la,(a) would

imply a0 = a, a contradiction. Thus, 'a and 'a' are equal to each

other for a unique . It follows from the concavity of wh1 and

from a < a0, that la(a) <la,(a) for all a> and thus by

definition of x(a), we must have a . Likewise we have a'

contradicting the assumption that a < a'. Thus, a0 (and likewise)

must be increasing functions of a.

(iv) Suppose that for some a,

a(a) < a < a0(a).

Choose some a' with a(a) a' < a. If we had a(a') < a(a), then

> 1(a) for all a a(a) via concavity of wlS and the

dependence of the set A_(a') on the function 1, only. i

particular, we had x(a') = 1a'' > la(a'), a contradiction to the

choice of x(a'). Thus, a,(a') = a(a). Let in addition a' a(a).

Then we must have a0(a') > a'. Since la(ai(a)) = la,(ai(a)), we

have la(a') la,(a') if and only if 1a
1a'( By definition of

x(a), we must have 'a 'a' and thus a0(a) = a0(a') because A+(a)

depends on a only via I.e. we have shown that
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a(a')=a(a) and a0(a')a0(a) for all a'E(a(a),a0(a))

as well as

a(a(a))=a(a) and a0(a0(a))=a0(a).

Observe that a0(a0(a))=a0(a) implies that a(a0(a))a0(a). Hence,

if a' > a, then we have a(a') a(a) by the monotonicity of the

function a.

(v) Continuity of w follows easily now with (iv) by examining the

definition for pms and OUt5 at jump points for a and a0.

w is strictly increasing: let a' > a. Either a and a0 are the

same for both a' and a, but then the probability on the bigger of

the two numbers wms(a) and wouts(a0) strictly increases or a. or
ins outsa0 together with w (ai) or w (a0) strictly increases.

ins
Let Gins = { (a,x) E IRxLR x < w (a) and define GOUtS

hull be the convex hull of Gins outs
G and observelikewise. Let G

that every (a,x)EG'11 can be written as the convex combination of

ins iflS)EGiflS and outs outs
some (a ,x (a ,x )EGouts, since both sets are

ins
convex. Since x la(a' ) and x < a ), it follows that

ns outs
1a

outs

G1 c G, where G = { (a,x) 6 Dx x < w(a) }. On the other

hand, we obviously have G C Ghull. This proves that w is concave.



outsClearly, w MAX, since w MAX and MAX.

w MIN is equally easy to see with the inequality from (ii).

THEOLEM A.V.6:

There is a unique fixed point v of T in W, solving Problem (B) and

thus translating into a solution to problem (A). Let c0tS(y),

b0UtS(y), c(a), b'(a), s"(a), a0(a) and a(a) be the decision

rules associated with v. These decision rules and v have the

following properties:

(i) v is strictly increasing,
outs

,
boUtS(y), in S in(ii) The decision rules c (y c b m(a),

in S (a) as well as the amounts invested into portfolios andm

the revenue they deliver next periods are unique and

Lipschitz continuous,
outs outs

(iii) The decision rules c (y), b (y) and c" S (a) as well asi,m
the amounts invested into portfolios and the revenues they

deliver next periods are increasing,

outs, ins(iv) lim c y) = lim bOUtS(y) = urn c
a -'w

= urn (revins (a)) = lim a.(a) urn a(a) = , wherea, m,g
a-

= b"5(a) + (1 insrev. (a) -g)s. (a),i,m,g i,rn i,m
(v) If 7r(gi,m) = ir(gi) for all i,m, i.e. if messages contain no

information, then v = T4JUtSV and no agent will choose to
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PROOF:

become an insider.

(vi) If ir(gji,m) r(gi) for all i, i.e. if messages contain

information, then there is some cut - of level , such that

a0(a) = a(a) = a and PlflS(a) = 1.0 for all a

Endow W with the usual supremums - metric

d (w,w') = sup
I
w(a) - w'(a)I

a

and note, that (W,d ) is a complete metric space. It is easy to see that T is

a contraction mapping of W into itself by checking e.g. Blackwells sufficient

conditions. Thus there is a unique fixed point of T in W (see
Stokey - Lucas, with Prescott, 1989, Theorems 3.2, p. 50, and 3.3, p. 54).

Properties (i), (ii) and (iii) now follow immediately from the previous

lemmas.

outs outs(iv) We show first, that urn c (y). Suppose not, i.e. c (y)
a-'

for all y and some . Let S = min(u(c+1)-u(c)) = u(+1) -u().

Find big enough, so that v(y-) -v(y--1) < 8/13 for all y
.

Choose some y> 5. We now have

outs )+13v(bOutSu(c (y) (y))
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outs< u(couts(y+1))+fiv(b (y)-1),

outs bttSa contradiction to the optimality of the choices c and

The proof for bt5(y) -+ is identical, except for reversing the

roles of u and v and observing that v is strictly increasing. The

proofs for the insider decision rules are similar, except that we may

alter the payoff only for one of the two possible future states: to

alter the equations above appropriately, the

value - function - differences have to be weighed appropriately by

the respective probabilities. The details are left away since they

are trivial.

The divergence for the rules a and a0 follows immediately from

part (iv) of the previous lemma and the restriction in the definition

of T, that either a(a)<aa0(a) or a0(a)aa(a).

(v) is a direct consequence of Jensens lemma applied several times.

outs outs TOUtSv. Since vh1t5(vi) Let outs = T v and y = (y) is concave

and since v(a) fvouts(y+N)dF, it follows from Jensens
outs outsinequality, that v (a) Ve (a+1). Fix m and i. If we can

i flS outs(a+l) for all a a and some a, we areshow, that v .(a) > Vm,i e

done.
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To that end, find a difference portfolio (b,zs), which costs

-2, but delivers an expected revenue of 1, conditional on i and m,

by solving the two equations

-2 = ib + ir(g=0i)Ls,

1 = ( b + (1) s)

Such a portfolio can be found, since 7r(gi,m) 'r(gi), g = 0,1.

Find a level of consumption high enough so that

c + Rzb > 0, c + R(zb+Ls) > 0 and

u(c) (gji,m) u(c+R(b+(1)s)).

for all c . Such a level can be found, since the absolute risk

aversion is decreasing with c, i.e. eventually, the risk premium

demanded for taking on the fixed gamble R(zb + (1-g)A.$) instead

of receiving a sure pay of 1 must be smaller than 1. Using (iii), we

can now find an initial asset value a, so that c(a(a)) and

ét5(a+N) > for all i,m,N0 and aä. Finally find a so that

Rbouts(a+1) a for all a a. Observe that an insider with initial

wealth a , could follow the following strategy. He consumes one

more unit than couts(a+l) and invests (b0h1t5(a+1)+zb,zs) this

period. In the next period then, he saves as much as he would
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have, had he just saved b0tS(a+l) this period, i.e. consumption

will completely take care of the random payoffs of the

(Lb,z.$) - part. It is then easy to see that the present value of this

strategy his higher than the value vouts(a+l) I.e. formally

observe that for all i,m, we have (in the next period) first

where

and

outs OUt5(y)
ye (y)w
ins , ins (a')vi, m,( ) ' in'

outs fiv(Rb0t5w (y')= (y))+
1

outs,ir(gji,m)u(c y')+R(Lb+(1-g)zs))
g=O

1

ins ns
w m,(a')= (g i,m)u(c, ,(a')+R(Lb+(1_g)s))

g=O
1

ir ( g'
I
i',m')v(R(b'5 ,(a')+(1-g')s'1'5 (a')).

1 ,Ifl 1' ,rn'
g'=O

Thus, with

' outslw (aw(a) = P0(a)
' e 0(a)+N) dFN
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I M
ins+ P(a) ir(i')r(m' Ii )w, ,m,(ai(a))

i'=O,m ' =0

we find

outs u(c0UtS(a+ 1)+1)+fiw(RbOUtS(a+l))
11e

(a)<
ins

< V. (a),- 1,m

which we wanted to prove. .

In the sequel, we need the following notation: let x E ER, a e ER+ and

\ E ER. Define the line through x at a of slope ) by

= x + (a-a).

The following Lemma is rather obvious, but very useful.

LEwA A.V8: (A property of continuously differentiable functions)

Let f:ER+4R be continuously differentiable. Let t > 0 and

o < amjn < am < . Then there is D> 0 and for every

v> 0, 1 there is 8> 0 with the following propery.

Let a1 E [amin, am] and a2 E IR++ that a1-a1 <ii.

Let \ be such that \-f'(a1)Ic. Let X = lf(a1),f(a1),a1(a2). Then
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PRooF

there is some a> 0, a-a21=v, so that f(a) a (a) + 8.''2

Find >0, D<a . /3, so that Ia-a'I implies Jf'(a)-f'(a')I<c/4 for
mm

all a,a' e [ amjn/3, am + 2/3 an]. Choose zi>O, zi7 and let 8ve/2.

Fix a1,a2,) and x. We assume w.l.o.g., that Af'(a1)+e. Choose a=a2-,i.

Observe that by choice of ii and the mean - value theorem,

f(a) > f(a) - (f'(a1)+E/4)(a1-a)

= x + f'(a1)(a-a2) - E/4(a1-a)

> 1 (a) + E(a2-a) - f/4(a1-a)- x,,\,a2

>1 (a)+vf/2..- x,),a2

LEMMA A.V.9:

ins outsv, v and v are continuously differentiable for a > 0,
1urn v'(a) = urn v0uts(a) = im v (a) = 0 and urn v'(a) = w.

a- a-lw a -4w a -l0

outs . . outs(We use e.g. the notation v' to denote the denvative of v )

PRooF:

It is easy to see that ctS(y) > 0 for y> 0 and c'(a) > 0 for

a > 0, since urn u'(c) = w. The proof for the differentiability of is now
c-+ 0

completely analogous to the proof of Theorem 4.11, p.85 in Stokey - Lucas,

with Prescott (1989). For the differentiability of v0UtS for some given
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a0 > 0, we similarly have to show that the function

w(a) f u(c(a0+N)+a-a0) + /3v(b(aO+N))dFN

is differentiable at a0. Observe that

w(a)-w(a0) u(c(a0+N)+a-a0)-u(c(a0+N))
dFa-a0 a-a0 N

and that the function in the integral is dominated for a > a1 (for some

a1 > 0, a1 < a0) by u'(c(a1)). Lebesgues theorem yields the differentiability

of w(a) at a0. Differentiability of outs now follows in the usual way by

applying Theorem 4.10, p.84 in Stokey - Lucas, with Prescott (1989). In

particular, it follows that v;outs(a0) = fu(c0t5(a0+N)) dFN. Since

c0UtS(y) is a continuous, increasing function in y, another application of

Lebesgues theorem yields the continuity of outs The continuity of

can be shown with the same argument.

For the continuous differentiability of v, recall the definition of x(a)

in the proof for the existence of the decision rules a(a) and a0(a). If

a(a) < a < a0(a) (or conversely), it was shown in that proof that the

functions a(a) and a0(a) are constant locally around a, i.e. v is just linear

locally and thus continuously differentiable with

v'(a) = v0ut5(a0(a)) = v"5(a(a)). For the remaining possibilities, we can

concentrate w.l.o.g. on the case that v"(a) = v(a) for some a. Since
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v(a) vhIlS(a), an application of Scheinkmans result (Theorem 4.11, p.85 in

Stokey - Lucas, with Prescott (1989)) yields v'(ã) = VlrlS(a). We thus

already established that v is differentiable everywhere. Suppose, v was not

continously differentiable at a, i.e. there was some e> 0 and a sequence

a - a with Iv'(a)-v'(a)IE. Apply the Lemma about a property of

continuously differentiable functions to find ii = 7 and S with the claimed

properties. Let a be so that
J

a-ã < ii and let .A = v'(a). Find the point

a according to the Lemma. Let x = lv(a) v'(a) a(an), x v(a11). Thus,

lflS(v(a) v a)>l (a)+8>- x,\,a11

v(a)+S,

a contradiction. Thus, v is continuously differentiable. Finally the results

for the limits as a -4a follow from the fact, that all three functions are bounded

above by MAX. To get the result, that lim v'(a) = m, recall again that
a 0

vm1t8(a) = fu(c011t5(a+N)) dFN and that ch1 is Lipschitzian, i.e. for

some constant L > 0, we have c0ltS(a) < La. Note furthermore, that

a0(a) a for a small enough and that P0(a) 1 as a0, since

v011tS(0) > 1flS(0) We therefore get, that for a small enough,

vouts(a) > .5 L f(a+N) dFN -+ w by our assumption about FN and

Levi's theorem on monotone convergence. This concludes the proof. .

LEMMA A.V.10:

Outsiders would not want to hold any stock.
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PROOF:

Risk - aversion, tie - breaking rule. .

LEMMA A.V.11:

Agents do not need more "general" lotteries than the choice of a1

and a2.

PROOF:

The resulting value function is already concave.

Finally, we link up the production side and the consumption side of our

economy.

A.V.c. Putting it Together.

We now proceed to combine our insights about the production side

of the economy with the knowledge about the decision problem of the agents.

We would like to show, that for sufficiently uninformative messages and

some other, minor restrictions, there is an equilibrium in our economy. The

idea is to first analyze the benchmark case of uninformative messages (which

amounts to a fairly standard steady - state neoclassical growth economy

with random income and a continuum of agents) and then perturb this

economy slightly to the case of informative messages, introducing some, but

not too many insiders. To make this idea work, we need to show, that
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everything depends in a continuous fashion on the perturbance parameters.

It turns out, that this is prohibitively difficult for the straight version of the

model. We will thus proceed by not analyzing exactly the model described in

the main body of the paper, but instead a slightly perturbed version of that

model. As a rule of thumb, it must be possible to make these perturbances

so small that they would not require a change in the computer code for any

program computing (approximate) equilibria for our original model

numerically on a machine with finite precision. While this pertubation

approach is not completely satisfactory from a pure mathematical point of

view (one would like to know, wether and when an equilibrium exists for the

original economy), this seems a reasonable approach from a numerically

oriented point of view, that two models should have similar conclusions, if

they result in the same computer code. way to motivate our

procedure is by noting, that there is always a way to modify the original

model in an economic sense in such a way that the perturbances we introduce

below become part of the model. While this approach might be more

satisfactory in a pure sense, it would make the model a lot more complicated

for purely technical reasons. We therefore chose, not to proceed in that

fashion.

We first introduce some mathematical notation and show the

continuous dependence of the decision problem on the parameters of our

model. This includes a proof for the existence of a stationary distribution of

assets for the perturbed model and the continuous dependence of that

distribution. Next, we show the continuous dependence of the production
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side under somewhat sharpened assumptions, and finally we combine these

for the final existence result.

Let A be a subset of ER and let f,g:A-+LR be two functions defined (at

least) on A. We denote by

d(f,g)=sup{ f(a)-g(a)
I

aEA}

the metric of uniform convergence on A. If A = IR+, we just write d. We

also introduce the metric of uniform convergence on compact sets in ER+ by

d(f,g) =
w d101(f,g)

1 + d,{O,n](f)
n=1

Likewise, we define the metric of uniform convergence on compact sets in

ER++ by

ER

(f,g) = 1
d{1/11](fg)

n=1 2" 1 +

Finally, we use a modified d - metric, defined by

dCt(f,g)=sup{ max{f(a),MIN-1 }-nax{g(a),MIN-1}
I

aeA}.

Observe that dCt is only a quasi - metric in the sense that dt(f,g) = 0



does not imply f g. This quasi - metric is suitable for our

value - functions to avoid problems below with Tins for very low a. These

problems then become irrelevant for T, since Toutsw(a) MIN for every

wEW.

In general we will use the metric d for decision rules and the

quasi - metric dt for value - functions. Note, that all metrices can take

the value +.

In the sequel we will keep the probabilites ir(g Ii) and ir(i) fixed and

we may want to choose them so, that ir(g Ii) are sufficiently close to each

other in order to satisfy assumption A.V.6 below. However, we will treat

( P(mg) )mg' the message quality,

( P(gi) )gj the fundamental growth probabilites,

R, the interest rate and

w, the wage

which we compactly write as

O ORw)

parametrically. Observe that C is finite - dimensional. C is admissable, if

the probabilities are non - trivial and if Assumption (A.0) holds (i.e. if

< 1 and 1 < R). We will subindex decision rules etc. by 0 to indicate the
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dependence on 0. We will implicitely solve for the probabilities 7r(l) and

P(i Ii). Finally, keeping 0 fixed (and thus also ir(g
I

m,i) according to

formula (3.10)), we will solve for 0, R and w in equilibrium. To solve for

the probabilities P(g i) is necessary because of the consistency condition

which relates 7r(gji) and P(gi). A lforward!t approach would be to fix

P(g i) and solve for ir(g Ii), but this would make the analysis more

cumbersome, since analysing continuity properties of e.g. the value function

would be more complicated. The backward - solving approach of fixing

ir(g i) and solving for P(g i) simplifies the analysis.

The wage is only part of the parameter 0, because it will be

important for the production side. Due to our normalization to a standard

wage of 1, the wage w as part of 0 is irrelevant for our subsequent analysis up

to Theorem A.V.14 (except for trivial recalculations of the actual aggregate

demand for stocks and bonds). We therefore ignore w as part of 0 until then.

We will restrict 0to satisfy either P(mg=0) = P(mjg=1) for all

m (the case of uninformative messages) or P(mg=0) P(mg=1) for all m

(the case of informative messages). Observe that this is equivalent to

assuming that

either ir(gji,m) = ir(gi), all g,i,m (uninformative messages)

or ir(gi,m) ir(gi), all g,i,m (informative messages).

This was the condition used above to prove that either nobody becomes an
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insider or everybody becomes an insider beyond a certain .

We now modify our operators T, TS and T0t5 slightly: this will

be the first perturbance of the original model. Let ue(a), a E be bounded

from below and above and twice continuously differentiable with u(a) > 0,

u'(a) < 0 for all a> 0 and where u is convex. If T, and Touts are the

operators used above, we now define

rfIflSW = Ue + TmSW,

riOUtS = ue + ToutsW and

= ue + T( p5w, ToutsW)

where T( rtinsw rOUtSW) is a short - hand notation for the operator T

being modified by replacing T'115 with rjlflS and TOUtS with touts Note,

ins outs -that all proofs above for the operators T, T and T also apply to T,

T'5 and Touts except that MIN and MAX have to be modified

appropriately.

This function ue is a purely technical device. What we have in mind

is e.g. ue(a) = e a / (1+a), where E > 0 is a very small number: this will

leave the operators almost unchanged. The mathematical advantage of

introducing Ue is, that our resulting functions outs and v are strictly

concave in a uniform way, enabling us to prove continuity for most of the

decision rules in the parameter 0. As for an economic interpretation, one

could introduce Ue as modelling envy before and after the lottery in part II of
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the period, i.e. that an agent cares about his wealth - position relative to

some benchmark - wealth amh1 = tabench i E is sufficiently small, this

envy would not be detectable observationally, i.e. the economy with envy is

in some sense close to the economy without envy which we described in the

paper. The factor e could be made small enough to be beyond the precision

of a computer calculating an equilibrium for the economy numerically, i.e.

introducing Ue would leave the computer code unchanged. We will now

proceed with the analysis of this ualtered5t economy, use the redefined values

for MAX and MIN and leave away the tildas. We will first use the new

properties resulting from
11e

in the proof for the continuity of the decision

rules.

LEMMA AV.12:

Tlt5, TJ115 and T0 are continuous in 0 in the sense that for every

admissable , every w  W and every e> 0, there is a 6> 0 so that

PRooF:

for every 0 with Euclidean distance - 0 < 6, we have

dt( Tl11t8w, TjtSw) < E,

dC11t( Trw, TSw) E and

dt( T0w, Tw)

Fix w and = ( (mg), (gi), ). Calculate (gi,m) and

(iIm). Observe that ir(gi,m) and 7r(flm) depend continuously on P. First

we show the continuity of Tlfls in P(mg) and P(gi). Let
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= mm Ei,m)/2. Let c > 0 be such that
i ,m mm

(u(c) + 8 MAX) <MIN -1.

Now find < 5, S > 0, so that

K1 7r(i,m)-lr(i,m)
I

+ 8 K2 7r(i,m,g)-i(i,m,g)
I

< /2
i,m i,m,g

for any 0 with 0-.- < 8, where K1=supflu(c) I CC<a } and

K2=max{ IMINI,IMAXI }. Let 0 be such that 0- < and R =

Note that by construction, we have

max{ ir ( i,m)(u(cjm)+/3 ir(g
I im)w(a,m,g))MIN_1} -

max{ (im)(u(ci,m)+fi (gj im)w(a,m,g))MIN_1}
I

<E/2

for any choices of c. a Since the price ir(gi) for stocks is fixed, wei,m' 1,m,g

have

nullS
) > (

i,m)( u(. (a)) +i9 wa - i,m
i'm

fl
(gji,m)w(R( '5. (a)+(1-g). (a) )) ).i,m

g

It follows that
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rT1flS /max{ T5w(a), MIN -1} > max{ i wa),MIN-1} - e/2.

By reversing the roles of 0 and , we get

cut ins insd (T0 w,T w)

as claimed.

Secondly, we show the continuity of Tt5 in R. Let be such

that II 0-OU < implies
I

- 1 < and R/R - 1 < where

= E/( 2fi(MAX-MIN+1)). Let Obe such that 0-]i < ¼ and let ii.> R

w.l.o.g.. Define (a) = w( /R a) and observe, that * e W.

We first claim, that dt(*,w) < e/(2/3). To show this, consider

any a 0 and find some A 0, so that w(a) 1w(a),A,a() fo all 0.

Since w  W, we have

Aa = w(a) - lw(a),A,a(0) MAX - MIN.

Furthermore,

w( ./R a) - w(a) A (/R - 1) a < AaER < f/(2/3),

which establishes our claim.
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Observe now that for any a 0, TtSw(a) < TtSw(a) =

Ttr(a). On the other hand, we find with our claim above and with the

decision rules outs and uits for TUS and , that

T'r( outs outsy)=u(c9 (y))+3w(b9 (y))
-outs outsu(c (y))+fiw(b9 (y))-/3/(2fi)

outsw(y) - e/2

and thus, after integrating over N, where y = a + N:

outs -T9 w(a) Tt8w(a) - E/2.

Hence,

dChlt( TutsW, T1tSw) /2,

proving dt_continuity of T09UtS in 0. The same argument goes through for

if 0 and only differ in R. Observe, that the radius does not

change with P for the argument for Tv's. Thus, with S min{ 8R 8P }, we

find joint continuity of TIS (and trivially for Tt5) with the inequalities in

the Lemma being valid. Observe finally for T, that for I° -II < 8, we have

outsT0w(a) = P00(a)T0 w(a00(a))

+ P0(a) max{ T'5w(a. 0(a)) MIN -1 }

< P00(a)Tt5w(a00(a))
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+ P0(a) max{ T"5w(a 9(a)) , MIN -1 } -
P0,_9(a)T4tSw(a0,(a))

+ P(a) max{ T'8w(a (a)) MIN -1 } -
= Tw(a) - e

and thus - by reversing the argument - the desired result. .

TIIE0tEII A.V.7:

PtooF:

The unique fixed point v9 of T0 is continuous in U in the metric d

on W.

Fix and let > 0 be given. Find S according to the previous

lemma to e = (1-fi). Pick some U so that O-i? < 8. We have

dt(T_0v0,v0) = dt(Tv9,T0v9) <(1-fl)

by the property of S and

dt(v9,v0) dt(Tv0,v0) / (1-fl) <

by the contraction mapping theorem, since T is a contraction at the rate fi.

This proves the Theorem. .

insObserve that this theorem and the continuity of the operators T0



outs ins outsand T9 imply that v9 and v0 are continuous with respect to 9 as

well.

THEogF.M AV.8:

The decision rules bOUtS in S in s and s areb0 i,m,O
continuous in 0 in the metric d.

PM.00F:

Fix = ( iP(mg) , (gi)
, ), > 0 and calculate (gi,m) and

(mji). Fix n. We have to find 5>0 so that dC[ofl](b°o"tb9't5) etc., for

all 0 with 0-J < 8.

For the outsider - decision rules, define

f0(y,b) = u(y-b) + ,8v0(Rb).

This function is strictly concave in b, given 9. Since furthermore bh1t5 is a

continuous function, we can find some v> 0 so that

f_0(y,bt8(y)) - f(y,b) ii for all y, 0 y n and all b with

Ibt5(y)_bI , 0 b y. Find S to E = v/(6/3) according to the Theorem

about the continuity of v9 in 0 and furthermore in such a way that
dt( v0( /R a), v9) L1J(613) for 0-Oil < 8, using the argument given in

the proof of the Lemma about the continuity of the T-operators in 0 for the
outs in R. For every y with 0 y n and every b withcontinuity of T9

outs
b-0 (y)-bf , we thus have



f0(y,b90tS(y))

- outsu(y_b2ts(y))
+ ,Bvo( Rb-0 (i)) - v/6

f(y,btS(y)) - v/3

f(y,b) + 2v/3

f0(y,b) + zi/3

> f0(y,b),

outshence b # bh1t5(y) or dc{on](btS,b91ts) . The claim for c0 follows
uts, buts(immediately from c iy) = y - ky).

For the insider decision rules we only show the continuity with

respect to variations in the probabilities P. To get continuity in all entries of

0, an argument like the one above for the outsider decision rules has to be

applied for R and pieced together with the argument below about the

continuity in P (cmp. the proof for the continuity of T"5 ins 0).

We concentrate on showing that s10 varies continuously with P

or, equivalently, with lr(mli) and ir(gi,m). For 81) sufficiently small and for

a0 sufficiently small, it is the case that 1/7r(g=0i) + 1/ir(g=1i) < / a0 for

all 0 with 0 -Oh < Sp. Hence, for aa0 and
1
0-OIl < 8, we already have

-s'l < . For aa0, observe that c -0(a) > c -0(a0) > 0. Fix i and

m. Let

f0(a,b,$) = u(y-b--7r(g=Oli)s) +
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i,m) v0(R(b+(1-g)s)).

Observe that f9 is strictly concave in b and s and continuous in all three

arguments, since v9 is strictly concave by our perturbation of introducing Ue!

Thus, there is some ii> 0, so that

fg(a,blhlS
ins- (a)i,m, u ,s m,(a)) -f(a,b,$) > V

for all (b,$) E S(a) := {(b,$)
I

0s+b, 0<b, b+?r(g=0i)sa } with

sim - si > , a0 < a < n. As in the proof for the continuity of TIS, find

> 0, 8 < so that

K1Iir(i,m)-(i,m)I +
i,m

f3 K2 ir(i,m,g)-*(i,m,g) I < /2
i,m,g

for any 0 with JIO- < S, where K1=sup{Iu(c)I
I c(a0)c<a } and

K2=max{ MINI
,
j MAXJ Furthermore, let be such that

d(v9,v) < v/(6j3) for all 0 with II0-O < 6. Let 0 be such that

< and R= . For a a0, a n and s with Is-s'1(a)I
and any b such that (s,b) E S(a) (which is independent of O), we have

> f9(a,b,$) in an argumentation which is analogous

to the argument above for bOUtS. Since we already argued that

Is0(a) -s'(a)I < for all a a0 and 0 with II-II < 6, we find
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ins ins -
that dC[Onl( Si 5im(a) ) < E. 

The following general theorem should provide to be useful in other contexts

as well: it states that derivatives of concave functions move continuously

with some parameter, if the functions itself move continuously with the

parameter. This is a somewhat surprising result, since it is obviously false in

general for other, non - concave functions functions. The theorem is

particularly useful in our context to prove the continuity of the decision rules

a0(a) and a00(a) which relies on the derivatives of the o0uts and

THEOREM A.V.9: (The continuity in function space of the derivatives of

continuously differentiable, concave functions)

Let f: be concave and continuously differentiable. Let E > 0

and 0 < amin < amax < . Then there is a 8> 0 with the following

property. If g: LR++1R is a concave, increasing and continuously

differentiable function with d (f,g) < 8, then

d [a . a 1(f',g') < c.
mm' max

In other words, the derivatives of concave, continuously

differentiable functions are continuous in function space (using the

metric dc of uniform convergence on compact subsets of ER++)

with respect to the d - metric on the functions themselves.
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Pt00F:

Apply the Lemma about a property of continuously differentiable

functions and find ii = ? and 5, which we relabel Let 8 = and

suppose to the contrary, that
I
f'(a)-g'(a) for some a E [amjn,am}.

Let X = g'(a), a1 a2 = a and apply the Lemma to find a. It then follows

that

g(a) f(a) - S

'f(a),X,a( + 28

>1 -- g(a),g'(a),a + 8

g(a) + 8,

a contradiction. s

We now redefine the functions a(a) and a0(a) which will leave the

properties of the transition measures Pj(a)Sa(a) + Po(a)Sa
(a) unchanged.

Note that v, vtS and ylnS are continuously differentiable and that e.g. for

a2 > a 0, we have

'ins,
v0 a1) - vbms(a2) u(a1) -u(a2)

a2

= -f u'(a) da> 0,
a1

i.e. is continuously invertible. Observe furthermore that v'(a) -+ 0 as
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a-, etc.. Thus, we define a(a) to satisfy

'insv'(a) = vs(ai(a)), if v (a) > v'(a) and

a(a) = 0 otherwise.

We proceed likewise for a0(a). Keeping the definitions for P(a) and P0(a),

where we use these new a(a) and a0(a) instead of the previously defined

functions, we note that these probabilities coincide with the probabilities

defined previously and that we changed e.g. a(a) only when P(a) = 0

anyways. Thus, the transition measures do not change.

TJIEOR.EM A.V.1O:

(i) If messages are informative at , then there is 8> 0 and

, E IR+, so that every agent becomes an insider for 0 with

II0-lI < Sandaa.
(ii) If messages are uninformative at , then for every E R+,

there is a 6> 0, so that every agent becomes an outsider for

U with 0- Oil < öand a < a.

(iii) The decision rules a9(a) and a00(a) are continuous with

respect to 0 in the metric d

PkO0F:

(i) Analyzing the proof of the Theorem about the existence and

properties of the unique fixed point v of T, that there is a cut - off
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level , beyond which every agent becomes an insider, and

furthermore using the fact, that the decision rules c9 and

bt5 are increasing and continuous in the dc - metric with respect

to 9, it follows that this cut - off level a can be chosen

independently of 9 in some suitable neighbourhood of , i.e. for all 0

with 0- 0 < S for some 8> 0.

(ii) It was shown in the proof for the continuous differentiability of v1115

and v1 that

,OUtS(v0 a) = f u(coQh1ts(a+N))dFN.

Since ch1tS(y) is increasing in y and d - continuous in 0, there is

some > 0 and z'> 0, so that vbollts(a) > ii for all a < a and all 0

with 0I < 6o Using a similar argument for v'1 and the fact

that c"(a) -' w (a-+), we can find a1 > a and 5 > 0,
6 6o SO

that vins(a) < ii for all a a1 and 0 with ll- < 81. Since

and vh1 are d - continuous in 9 and since vtS(a) -vS(a) > c

for some suitable e> 0 and all a with 0 < a a1, we can finally find
ins, outs, or all 0 with 0-0 < S and8>0, so that V0 a) < v0 a) f

all a with 0 a < a1. We claim, that S delivers the desired result.

Suppose, it does not, i.e. suppose that for some a a and 0 with
ins, outs< 8, Pü(a) # 0. By construction, v0 a) < v9 (a) for all a

with 0 a a1, i.e. we must have a. 0(a) a and a00(a) .1,

'insHowever, then we need to have vb1t(aoO(a)) = V0
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which is not possible by the construction of a1.

(iii) If messages are uninformative at 0, the claim follows directly from

(ii). The case of informative messages remains. Let £> 0 and

n> 4/f w.l.o.g.. We need to find a 8> 0, 50 that

d[l/nn]( a0, a-9) E and

d,{1/]( a09, a0) e

for all 0 with J0- < 8.

For convenience of notation, define two continuous,

monotonously decreasing functions g1(.A) and g()) for ) > 0 as

follows. Let

'insgX) = (v0 )1()

if the inverse exists, and g'\) = 0 otherwise. Define g likewise.

I.e. we have a0(a) = g(v(a)) and a00(a) = g°0(v(a)). Now let
'ins,= v -9'(n)/4 > 0. Find a > n, so that v am) Vj andmax -

0UtS(
a ) < ii . Let a = 1/n. Since Ue is twice Continuouslymax - 0 nun

differentiable with u' > 0, we can find V1 > 0, ii < u0, so that

1a
u'(a)da>2v1
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for all a E [an,amax]. Finally, apply the Theorem about the

continuity in function space of the derivatives of continuously

differentiable, concave functions to find 8> 0, so that

d[aia](v'vb) < 1/1,

,ins , insdw{aia](v ,v0 j < v, and

,outsdw{aaJ(V ,v0) < 111

for all 0, 0-7 < 6. We claim, that S has the desired properties.

To that end, let a e [1/n,n] and choose 0 with 0-O < S. We will

show that a9(a) -aI e. The proof for a00 is analogous.

'ins,1Let X = v'(a) and ) = v0'(a). Let max = v h/n) and
,flSt

). Thus, wemin{ ,\, .X }. Observe that > v amaxmax
ins,= v' 1/n)have a1 := g-0(\1) {amjn,amax]. Likewise, let 'max 0

and = min{ ) ) }. Observe thatmax

ins
i vb(n) > v'(n) - 3v0 > v' (a ) + 2v0- max

lflS(a) + v > v,mns(a
0 0 'max'

and hence a2 g(1) [amjn,amax]. Let = vms(a2). Note

that
I "i' I 111 and maxmax I "i.

by

construction of 8. It follows, that
I

2v1.
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We claim that
I
a1-a1 < e/2. Suppose not. Assume

w.l.o.g. that a2> a1. We noted above, when introducing Ue that

,ins ,ins= v (ai)-v (a2)
a2

-f u'(a)da>2z'1
a1

by construction of ill in contradiction to
I I

2v. Thus, the

claim that a1_a2 < /2 is established.

Finally note, that a,(a)_ai 1/n < /4 and likewise

Ia9(a)-a2I < 1/n < E/4. It follows, that Ia0(a)-a(a)I < E as

claimed. This finishes the proof. .

We now need to make the second perturbation of our model. This

perturbation forces continuity on the probabilities of becoming an outsider or

an insider. To that end, we first have to choose functions z'(a;O) and

a(a; 0) with the following properties.

ASSUMPTION A.V.4.

(i) z(a;O) is continuous in a an 0,

(ii) V(ä;0) > 0 for all a,0,

outs ins
(iii) 2L'(a;0) < v9 (a) - v0 (a), if messages are uninformative,

ins, outs
(iv) 2z(a;0) < v0 a) - v0 (a) for a a0, some a0 < , if messages

are informative,
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(v) a(a;O) > 0, all a,0,
outs ins(vi) 2&T(a;O) <v9 (a) - v0 (a), all 0 and all a < a(a;0).

It is not difficult to find such a function La(a;0) (only the last condition puts

some constraints on it, which are easily satisfied with the proper choice of tY

in light of Lemma A.V.7, part (ii)), but we need to show the existence of a

function tY.

LEA A.V.14:

Pioo:

Functions tY and a, which satisfy assumption A.V.4 exist.

We only concern ourselves with the properties (i) through (iv). Fix

some E (0;1/3). With 8 as the space of all possible parameters, let be

the subset of all U's with informative messages and be the subset of all

U's with uninformative messages. Note, that we assumed that is an open

set. It is therefore possible to find a sequence of compact sets n e EN,

whose union is and where is contained in the interior of

Consider first any compact subset of 8un Construct for U E an insider

bound a0 exactly as in the proof of Theorem A.V.6 and note, that then

1 outsu(ctt5(a+1)+1)+13wO(Rbt8(a+1))_ve (a) > U

for all a by the last line in the proof to Theorem A.V.6.. Note that the

construction of a0 rests on properties of the decision rules and value
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functions, and thus, by monotonicity in a and continuity in 0 of these rules

and functions as well as a finite cover argument for 8c' we can choose some

so that a9 < a(Hc) for all 9 E Thus construct a = a(B) in such a

way, that a is monotonously increasing and an

We now define a9 in a continuous way recursively in such a way,

that a0> a0 for all 0 E Suppose, we have already defined a0 on in

such a way, that a9 n+1 on the boundary of H. Define a0 9n+28n+1
to be equal to an+3. By Hausdorffs extension theorem, we can thus find a

function on all of n+2' which coincides with a0, where it is already

defined. Now let a0 be the maximum of and it is easy to see that

a0 is continuous, a9> a9 and a9 !n+3 on the boundary of - the

induction can continue.

Define now

outsV(
0) = (a))

for 0 and a a0: observe that AV(a;0) satisfies parts (ii) and (iv) of our

assumption.

Let

ins
= ( v'(a) - v0 (a))
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for 9 E Since a9 - w as 9 -* it is easy to see that (a; 9) can be

continuously extended to all of x 9.

Note, that by choosing E (0,1/3) small enough in the proof, we

can make L (and likewise a) smaller than the numerical accuracy of any

computer for the calculations that now follow, which again leaves the

computer code to calculate this perturbed model unaltered from a program

for the original version.

We now redefine P, P0, a and a0 as follows. First define functions

a9(a)-a09(a)I
} andAa(a;O) = min{ 1;

a(a;O)
ins OUt5(a)V0 (a) - V0

)/2.V(0) = (1+ outs AVmax{Iv'5(a)v9 (a)I; (a;O)}

Observe, that 0 )a 1 and 0 )V 1 and that

Now let

Aa(a;g) = 1 for la9(a)-a00(a)I a(aO),

(a;O) = 1 for v'5(a) vuts(a) +
ins outs= 0 for v0 (a) v0 (a) -

= Aa(a;o)p 0(a) +
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,
0(a) = Aa(a; 0)P 0(a) + (l_Aa(a; 0))( 1-A"(a; 0))

= 1-f9(a)
â0(a) = a + f0 0(a)(a 9(a) -a00(a)) and

ã00(a) = a - 0(a)(a 9(a) -

Note that as a consequence,

- if Ia0(a)-a0ü(a)I > then Pü(a) = Pg(a),
= P09(a), ã0(a) = a9(a) and ã00(a) = a00(a),

- a0(a) -a00(a) = ã.0(a) -
- f11ã0(a) + f0 0â0 0(a) = a,

- if a 0(a) = a = a0 0(a), then ä 0(a) = a = 0(a). If furthermore

Iv(a)_vts(a)I a;0), then 1 0(a) = P 0(a),

p00(a) P0a),
- all four functions P. P , a. and a are continuous in a: this

i3O o,0 i3O o,0

follows from the continuity of P00 on

{a
I a 0(a)-a0 0(a)

I 2 0 } and the fact that we have

)a(a 0) - \a(ã;O) = 0

for any a and a11 -+a with Ia0(a11)-a00(a11)I 0: exactly, when P0

or P00 might have a discontinuity, this discontinuity is smoothed

away with a

LEMMA A.V.14:

202



(i) The new dedsion rules â and are continuous with

respect to 9 in the metric d

(ii) i09(a) -' 1 as a 0 and 0 -+ 0 for some 9

(iii) Theorem A.V.1O, parts (i) and (ii) remain valid for the new decision

rules â 9and a,,0.

PLO0F:

(i) follows from tracing through the construction of the altered decision

ins outsrules above. Note that v0 and v9 are d - continuous in U by

the remark after Theorem A.V.7 and that the unaltered decision

rules a and a0 are d -continuous with respect to U by
,++

Theorem A.V.1O (iii). The only difficulty could arise at some 0, ,

where a -9(a) = a00(a) and v'5(ã) = vt8(a), since then the

unaltered decision rules P0(a) and P09(a) may not be continuous

at 0, a. But since they are bounded above and below by 1 and 0

respectively and since Aa(a;O) -4 0 as a -+a and U0, if a > 0, we get

continuity there as well.

(ii) Observe that )(a;O) 1 as a -'O and 0-40. Furthermore P0 0(a)-4 as

aO and O -'O: this can be seen from the definition of P00(a) and from

the continuity of v8 and v' together with v11t5(0) >

delivering the fact, that locally a0(a) a > 0 for some suitable a, if

P00(a) < 1.

(iii) is a direct consequence of Lemma A.V.13.
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It is clear, what this perturbation does: it avoids sharp transitions in

the choices of whether to become an insider or an outsider, if the lotteries

become small in distance (for example, if the agent chooses to just retain the

original asset holdings with certainty), and if the value - functions v'5(a)

and vuts(a) get very close to each other. So instead of switching 100 %

from outsider to insider e.g. for no - gamble - cases, if a small change in the

assets a (or in the parameter 0) brings vf8(a) just above vh1t5(a), the

agents make that transition more "carefully". The model could be altered to

make a feature of that type happen as the solution to the optimal program of

different agents, if we generalize the concept of the utility functions ue

introduced above by making these extra utilities different and independently

random across agents and across the outsider - insider - branches. That

would have the effect, that some agents with the same assets end up choosing

to become an outsider and others choose to become an insider, where the

relative fraction of these two populations changes, as the underlying
outs inscommon value functions v and v move. These fractions are then,

what utimately matters for the population asset distribution via a law of

large numbers. Again, writing these changes out in detail would make the

model unnecessarily complicated just for purely technical reasons.

We now write a0 for j0, P0 for P, etc., and proceed with these

perturbed decision rules.

With these new rules and given some 0, define the transition

probabilities
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QOUtS(a;A)
= 1' 1A,(Rb (a+N) dFN,

QlflS(aA) =

I M

ir(i)ir(m i)r(g
I

m,i)1,(R(b(a)+(1_g)s'
i=O m=O g=O

(a)),

Q(a;A') = P0(a) QOUtS(a (a)A') + P(a) QlflS(()A)

where 1A(a) = 1, if a e A and 1A(a) 0, if a 0 A (we left away the subindex

O for clearer notation). Note, that only the definition for Q, but not the

definitions for Qouts or QIflS are affected by our perturbing the decision rules

P,0, etc..

We finally introduce our third and last perturbation of the model,

which allows us to apply Doeblins condition or a strengthening thereof to

prove existence and in particular uniqueness of a stationary asset distribution

(see Stokey - Lucas, with Prescott (1989), p. 345 and p. 348): we introduce a

small probability for bankrupcy, where the assets of the bankrupt agents are

redistributed to all other agents in proportion of their asset holdings.

That is, we fix some > 0 and alter our transition probability Q to

(a:A') = (1-i) Q(a;A'/(1-)) + - QOuts(OA)

i.e. with probability E, the agent goes bankrupt and starts anew as outsider.

Again, choosing small enough should allow us to stay with the same
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numerical computations as for the original version of the model before.

Again, we proceed writing Q instead of Q and use it in place of the original

transition probabilities Q.

It should be mentioned, that this bankrupcy probability is not

necessary in order to prove existence of an invariant distribution: the Feller

property (see Stokey - Lucas, with Prescott (1989), p.220 and p.376),

appropriately modified to work on all of IR, will suffice. However, we need

more here: we also need that the invariant distribution moves continuously

with the parameter vector 0: to this end, we want to apply a version of

Theorem 12.13 in Stokey - Lucas, with Prescott(1989) and for that, we need

uniqueness of the invariant distribution. This is proved in the following

Theorem. For that Theorem, let

C0(ER+) = f is continuous, bounded, urn f(a) exists }
a-4

with the d - metric and

A(LR+) = is a probability measure on +'

with the weak topology a(A(ER+),C0(ER+)) induced by the space C0(!R+) and

where is the set of Borel sets of

THEOREM A.V.11:
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(i) There is a unique, invariant probability measure to Q0 on FR+,

(ii) the map ü is continuous (in the weak topology

a(A(!R+),Co(IR+)) on A(FR+)),

(iii) the maps 9i-.
1ns and 0 1uts are continuous in the weak topology

a(A(LR+),Co(FR+) on A(IR+), where

,4ns(A)
= f P10(a) 1A(a 0(a)) di9 and

,uts(A)
= f P0(a) 1A(aOO(a)) d1i0.

Note, that these invariant distribution 4flS and 1uts were called Fa

FflS and Futs in the definition of an equilibrium in part IV of the main

text.

PROOF:

(i) It is clear, that Q9 is a transition function on (FR+, in the sense of

Stokey - Lucas, with Prescott (1989), p. 212. Observe, that

condition M on p. 348 in Lucas - Stokey, with Prescott(1989) is

satisfied for E = and N = 1: if A' E then Q(a,A') if 0 E A'

and Q(a,AC) > , if 0 0 A'. The existence and uniqueness of an

invariant probability distribution on now follows immediately

from Theorem 11.12 in Stokey - Lucas, with Prescott(1989).

(ii) We want to apply Theorem 12.13 in Stokey - Lucas, with

Prescott(1989). To that end, choose some strictly monotone,

continuous map b:R+ {+} -. [0;1], which is onto (take e.g.

= x/(1+x) ). Now define transition probabilities P9(s,A) on
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{O;1] by transforming onto [O;1), i.e. for s E [O;1), A' E [O;1]),

let

P0(s,A') = Qo(?r1(s),LR+

and for s = 1, let

P9(1,A') = f 1,(0) + (1-i) 1A,(1)

(please note, that for this proof, we use P to denote some transition

function on [O;1] and e.g. the signalling probabilities P(mg),

etc.). Observe, that by repeating the argument under (i), we have

-1

as the unique invariant distribution for P0. Observe furthermore

that C0(tR+) corresponds to C([O;1]), the space of continuous

functions on [O;1] via the transformation and that the weak

topology a(A(IR+),Co(ER+)) corresponds therefore to the usual weak

topology (in the language of the probability theorists; in the

language of the functional analysts: weak-star) on the space of

probability measures on [0; 1] with the usual Borel sets.

Thus, all that remains to check to prove (ii) by applying the

above - mentioned Theorem 12.13 is that



(s11,011) -()

implies that

P0 (s11;.) -+ P-9(;.) wealdy.
n

For , this can easily be checked: observe that at 0, we have

a(a) - (a-+ti),

a0(a) - w

bOUtS(y) -4 a) (y-) and
in 5rev.i,m,g -4 (a-so)

and that furthermore these functions are increasing for any 0 and

dc - or d - continuous respectively in 0.

For 1, we rewrite the conditions above in - space in

terms of the transition function Q: we need to show for a E FR and 0,

that

(an,On) -4 (a,0)

implies that
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Q9(a11;.) -, Q(a;.) in the topology o(A(ER+),Co(ER+)).

Using Theorem A.V.8 and the continuity of the outsider- and

insider - decision rules by Theorem A.V.6, we can see that

outs oUtS(_ ) andQ0 (a0;.) -4Q

I.iflS( ins
'

aon;)_Q (;.)

for any sequences a011 -'a0 and ain+ai: to prove that, all that is

needed to show is the convergence of S0t5(f)(a0) to S11t5(f)(a0)

and S'8(f)(aon) to S'5(f)(a0) for any I e C0(LR+), where

outsStS(f)(a)
= f f( Lb0 (a + N)) dFN and

I M 1

in SS(f)(a) = f(R(b'0(a)+ (1_g)sj0(a)).
i=O,m=O, g=O

For SJ"8, this is immediately clear with the continuity of the

decision rules in 0 and a; for StS, this follows additionally from

Lebesgues theorem on dominated convergence. Thus, it remains to

be checked that for f e C0(ER+), we have

S0(f)(an) -+ S-0(f)(a),
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where

outsS0(f)(a) = (1-)P00(a)0 (f)(a(a)) +
qOUtS(1-)P9(a)S5(f)(a0(a)) + (f)(0).

But this follows immediately from Lemma A.V.13.

Observe that for f C0(IR+), fl 1, we have

outsj f(a) di0 = f P0 9(a) f(a0 9(a)) di

and we have to show that this expression is continuous in 0. Thus,

given C and e>O, find first a neighbourhood and a> 0, a > 0, so

that < c/8 and /i([a,w)) < e/8 for all 0 within that

neighbourhood and where a, a are continuity points of Apply

Lemma A.V.13 to shrink that neighbourhood even further, so that

for all 0 within,

1P00(a)f(a00(a)) -POC(a)f(aOC(a))I < E/4, all aE[a,aJ.

Finally shrink that neighbourhood to those 0, such that

if P0a)f(a0a)) d0-

< f/4
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by part (ii) and the fact that a and are continuity points of It

now follows that

If P0 0(a)f(a 0(a)) dp9 -f P0-9(a)f(a0 (a)) dp0

+ ([.,w))

+ +

+
a

P0 9(a)f(a0 0(a)) -P0(a)f(a0-0(a)) d1t0

+ I f P0a)f(a00(a)) d9 -f P0(a)f(a0(a)) d0

< C.

ins.The proof for is analogous.

We now aim at showing that certain aggregates like

M

D50(i,g) = ir(i,g) P(mg) .(in 0(a) di"5 andi,m,
m=O

outsB80(i,g) = ir(i,g)( ff b0O1t5(a+N)dFN di9

M
i ns+ P(mg) .f b'1 0(a) dp0 /

m=O

are continuous functions of 0. The key to proving this assertion is to prove

that
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ad lflS
fLg -+O(a-+)

locally uniformly in 0: note that the integrand function is unbounded! This

and another important continuity property are established in the next

Lemma.

However, in order to prove this Lemma, we need a property of the

value - functions involved, which seems intuitively clear, but can only be

formulated here as a conjecture: suppose, that instead of giving agents

choices between becoming an outsider or an insider, we give them zero

income, but a sure rate of return of ft on their assets. We want, that agents

would then receive more as a result of their savings next period, given a

certain amount of disposable income this period, than in the model.

CONJECTURE A.V.1:

Consider the solution to the following dynamic programming

problem

c1 17_i -
v(a) max { 1-17 + f3v (R(a-c)) }

C

and let â'(a) = (a - ê(a)), where ê(a) is the decision rule to this

problem (Note, that R is the maximal return, an insider can earn on

his portfolio). Then
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1

ifl S U)ã'(a) ir(gIi,m)(R(b11(a)+(1_g)sj
gO

for all i,m, all a and

ã'(y) Rb0tS(y)

for all y.

LEioa A.V.15:

(i) The fraction of outsiders
ii

= f P 0(a) d/20 is a

continuuous function of 0.

(ii) If conjecture A.V.1 is true, then ja d1115 exists and

converges locally uniformly in Oto 0 as a -fm.

PROOF:

(i) Follows from the fact that P0
o

-+ p in the dc - metric and

from
-+

a-: separate the integrals into three parts, where we
a

observe that f di0 < E and f d0 < E in a neighbourhood of 0

for suitably small a and suitably big a.

(ii) Note first, that since R < 1/fl, we have ã'(a) ' with 'y < 1 in

Conjecture A.V.1 (a can be calculated directly: a'(a) = (Rfl)h/17a).
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Consider first the case that is informative. Denote with a'(a)

the expected assets of agents next period, given asset holdings a now.

a'(a) = E 0 + (1-)P0(a) f Rb01t5(a0(a)+N) dFN +

(1-)P(a) 7r(i,m) ir(gji,m)

i,m g

R(b'5(a.(a)) + (1-g)s(a.(a))).i,m i i,m

Note, that by our conjecture,

a'(a) (1-i) P0(a) :f 'y(a0(a)+N) dFN +

(i-)P(a) ir(i,m) 'ya(a)

i,m

'ya+ 7

Choose high enough, so that everybody with a a becomes an

insider for every U in a neighbourhood of and so that

'ya + 7 va

for some ii < i, all a a. Given e > 0, find a, so that

Q0(a,[a;w)) < (l-v)c/( + 'y)

and so that a(a) < for all a a in the same neighbourhood
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w.l.o.g.. Note then that we have

a d' = a d.

It is therefore enough to show, that the latter integral is smaller

than in the neighbourhood of . For that, note that Theorem

11.12 in Stokey - Lucas, with Prescott (1989), which we used to

prove existence of a stationary distribution for Theorem A.V.11, also

implies, that the iterations of any initial measure with the

transition probabilities Q0 converge to in the norm - topology on

A(LR+), induced by the supremums - norm on C0(FR+) (again, using

the a 1-1 transformation of onto [O;1] ). Thus, choose some

initial measure which places zero mass on a . It follows from

the calculations below and Levis theorem, that fa d4 < c: we

therefore proceed, using this fact. We find by definition of and

by the properties of ., a

f a d1i' = f a' (a) d4
a'(a)>a

= a' (a) d4 + f a '(a) dji

a'(a)a a'(a)a
aa a<a

I a'
d1i74 + ('ya+'y) (1-v)c/(+'y).

Thus, we can establish via induction that
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a d4 (1-1/) f

It now follows quickly from Levis theorem that

adt0 ,

since convergence of the iterations imply that

f min(a;C) dti9 <

for all constants C. s

THEOREM A.V.12:

If conjecture A.V.1 is true, then D50(i,g) and B50(i,g) are

continuous functions of 0.

Ptoo:

We only show the result for D50(i,g), the result for B30(i,g)

follows similarly. Note, that by Theorem A.V.6, the functions s50 are

Lipschitz continuous. An analysis of the proof to Lemma A.V.6 reveals, that

the Lipschitz constant can be chosen to be

L- 1- min{ir(g=Oi), ir(g=1i)}
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Note, that s'ilO(0) = 0 and hence Is9(a)! La. Thus, given e> 0 and

, choose a neighbourhood of and high enough, so that

ad illS
i e/6L

in that neighbourhood, where a is a continuity point of Furthermore,

apply Theorem A.V.8 to shrink that neighbourhood, so that for all 0 within,

we have

sh1S (a) _sS (a)I < e/3,i,m,

all a < a and so that

l(s5 -(a) ins ins d45I < /3s -(a)1 i,m,0 d0 - i,m,0
o o

It follows, that for 0 in that neighbourhood,

1 d118 - fs 1r_(a) d%1181 <

which we had to show. .

Recall now, that, given a wage w and prices q1(l), the actual insider

demand for stocks can be calculated according to the proof of Theorem A.V.5
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and the wage - standardization at the beginning of the analysis of the

decision problem of the agent as

(i,g)D9(l,i,g) = w R Dstd 9/ (q1(l) - q1(l+1)),

where Dstd
o

does not depend on the wage - part of 9 because of our wage

normalization for the agents decision problem.

We now find as a consequence of the stock market clearing condition the

announced consistency condition,

THEOREM AV.13: tThe Consistency Condition)

PRooF

At 9, a necessary condition on the probabilities 0/ for the

equilibrium to exist is that for all categories (1,i,g), we have

P(g l,i) = (1 + x(l,i)ir(1-g i)( D(O,i,g)-D(O,i,1-g) )) ir(g Ii),

where

ir(1) 71(i) q1(0) - q1(1)
X(1,i) =

k Fk(l) P(i 1) f(1,x(i,l)) q1(1) - q1(1 +1)

Stock market clearing and Theorem A.V.6 imply
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Fk(l) P(i,gl) f(1,x(l,i))

(l,i) ir(l) ir(i) ir(gi)

+

q1(0) - q1(1)
ir(1) 7r(i) ir(gi) D(0,i,g).

q1(l) - q1(1+1)

Observing, that ço(l,i) does not depend on g yields the conclusion.

The key for proving the existence of an equilibrium is now to solve

for consistent fundamental probabilities P and ir(1) "backwards" in the spirit

of Sims (1984,1990) in order to satisfy the consistency condition. We aim at

probabilities 7r(1), P(ill) and P(gJl,i) = P(gi), which satisfy

and

_q1(1)1(l+1) Fk(l)
ir(l)=x

q1(0)-q1(1) ir(t) / f(1,x(l,t))

I
P(ijl) = ( r(i) / f(1,x(1,i)) ) / ( ir(t) / f(1,x(1,t)))

P(g l,i) = (1 + ir(1-g i)( D(O,i,g)-D(O,i,1--g) )) ir(g ji),
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where is chosen such that ir( 1) = 1. There is quite a bit of freedom

in choosing equations for the backsolving of the probabilities. The particular

choices made here are justified in the numerical appendix.

To satisfy these equations in equilibrium, we will solve directly for

probabilities ir(l) and P(i 1) via a variation of Theorem A.V.4 under

somewhat altered assumptions. All that then remains are the probabilities

P(g Ii) and the wage w, which are part of our parameter vector 0: we will

solve for these probabilities and the wage jointly with the interest rate R in

the final theorem, which employs a fixed point argument.

We now adapt Theorem A.V.2 by simultaneously solving for

I

P(ill) fç(l,i)) / :::
ir(t)

f( 1,x(l,b))'

t=O

which we simply substitute out in the formulas and recheck the conditions

for contraction. Note, that starting with the following theorem, we need the

wage - part of our parameter 0.

THEOREM A.V.14:

Given O0 and R, there exists a wage r(80R) so that for

every wage w > (OO1R) and 0 = (00,R,w), there are strictly

positive prices q10, q20 and q30 as well as an investment rule x0
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Ptoo:

and probabilities P 9(i,1), solving the maximization problem of the

investment firm and the mutual fund as well as the equation for

P(ill) above.

The proof is similar to the proof of Theorem A.V.2 except that we

proceed directly from q3 to q1 and substitute out P(i Ji) in the formulas. To

that end, fix Oand R. Keep the definition of (w), but define via

where

0 I=sup{I8(q,..,q)I<RforaJlq0,..,q1e[O;]},

0 I P1(0S(q ,..,q) . q ,..,q) (h'(q') +
I

df(1,x(q) ) i
0qq ((q ,..,q )( h(qt)) -h(q')))

1f(1,X(q )

and where

P1(
0 1 0 I

. andq ,..,q ) = o q ,.. ,q)
f(1 ,X(q'))

I

(0 I ______qq)= 7r(t)

t=0
f(1,X(qt))'

that is, P1(
0 I iq ,..,q ) = P(ill), if q = q3(1,i). Observe that d > 0, since by
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assumption A.V.O (or by the assumption, that > 1/2 in our CES capital

d-11 ,X(q))
production function), we have -' 0 as q 0 (as well as h(q)-+0,

f(i,X(0)) > 0 and a(q°,..,q')-'l/(f(l,X(o))) as q' -'O, i = 1,..,I). Find * and

q as before. Skip the operator Q2 to define directly

Q1: D1 -

I

(Q1(q))) = d(l) + P(q(l,0),..,q(l,I)) h(q(l,i)),
i=0

*
= {q E £+1 0 q(l,i) < q }.

Define Q3 as before and Q : D3 via Q = Q1 o Q3. Some messy algebra

reveals, that

a
öq(l ,)(Q)(l) =

and as before, we conclude, that Q is a contraction mapping. The rest of the

arguments go through as well.

ThEOREM A.V.15:

On flfl 13.

Let C be such that isr> Then the rules q10, q20, q30

and P0 are continuous amd w> 'W(OOR) in an

LR2M + 21 + 2 - open set of U's around .
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This follows from the usual continuity argument for contraction

mappings: given E > 0, given , we can choose a ER2M + 21 + 2 - open

neighbourhood of , where we still have w> *(00,R) and where we can

choose the same q for all 0's in the proof above. Since Q1 and Q3 only use

continuous functions of 0, we can shrink that neighbourhood even further, so

that within it,

II Q0(q) -Q(q) 1 < E(1 -I1),

where ii is the contraction factor to . But then observe that with q0

denoting the fixed point to Q0, we get

n-i
IQ(q0)-q0II

k=0
n

= 1

Q0(q0) - 00(q0) II

and thus q - q0 < . This delivers the continuity for c11, the continuity

for the other pieces follows from the continuity of the operators which

calculate them from q1. .

Contrary to Lemma A.V.2, we may no longer have monotonicity in

the wage w, since the relevant derivatives 8 may or may not be negative.

Note, however, that part (ii) and part (iii) of that Theorem are still valid for

fixed (00R): the proof for part (ii) still works verbatim and for (iii), we
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can just take the solution to P(i Ii) we get and apply Lemma A.V.2, using it.

In particular, note that for fixed 0,

I
ir(i)

1(1 ,x ( 1 ,i))
i=O

is strictly monotonously decreasing, since x0(l+1,i) < x(l,) for all 1, all i, all

t. Thus, in order to prove an analogue of theorem A.V.4, let

B C Bma where

7r(i <( forumax = { 01 P(g=Oi) ir(i) / f(1,x0(1,i))
i=O i=O

1>1, w > T(00,R), 1 < R < (11/13, is either

informative or uninformative, 0 and 0 are are
1fl /

probabilities and not triviai}.

In light of Theorem A.V.15, we assume

ASSUMPTION A.V.5:

2M+21+2- B is an open, nonempty set in FR

- foranyQB ={OEB
I

0 = U }isaconvexset,
911 911 911

- if i is uninformative, then B {OEB 0 = }.911 max 91i

For the following version of Theorem A.V.4, in which we backsolve for
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P(i 1), we leave out the level -O - stationarity condition

I I
r( i')P(g=0i) ir(i) /

f(1,x0(O,i)) =
i=0 i=0

which we will enforce instead in the final fixed point theorem.

TnEOLEM A.V.16:

Pioo:

(i) For any U E B and with the rules given by Theorem A.V.15,

there is a capital distribution FkO and aggregate capital k0,

so that Fkg satisfies the stationary condition for all levels

1> 1 (i.e. except possibly for level 1 = 0) and so that the

labor market clears.

(ii) Fko(l), 1=0,1,.., k, and x0 are continuous in 0, where

co

X91/ ir9(l)and
1=0

lro(l)
1i,o(+1) Fk, ( 1 )k0

I ir(i)
1(1 ,x0(I,iJ)

i=0

As in the proof to theorem A.V.4, let
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ir( i)P(g=1ji)(i)
i=O f(1,x0(l-1,i)i=O

I
7r(i)( - P(g=Oi)7r(i) /

. f(1,x0(l,i)

where we substituted out (or "backsolved for")

I
_ir(i) _________ R(t)P0(i I') f(1,x0(1,i)) / f(1,x1JJ

Note that by our definition of H, b(1) is well defined and positive. Note

furthermore, that x0 is £ - continuous in 0 and that 1 / is

monotonously decreasing in 1 with x0(l,i) 0 (1-stu). We can thus find l, so

that in a neighbourhood of in H, we have 1) ii, where

(l+)/(2) < 1. As in the proof to Theorem A.V.4, define FkO(0) = 1

and Fko(l) = t'(1) k,o(1_1) for 1 1. Since

FkO(l+l& LI' 'k,O)' 1 = 0,1,..,

it is now easy to see that Fko(l) as well as

FkO = Fko(l)

are continuous functions in of U around since Fko(l) converges to zero
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as l-cu at the locally uniform geometric rate ii. Thus,

Fko(l) = Fko(l) / FkO

has to be continuous in 0 as well and it is easily checked, that the same is

true for

= 0 / 0Fk,l n1)

(recall, that is continuous in 0 by Lemma A.V.15, part (ii)) and for

because of the locally uniform geometric convergence of Fko(l) to zero as

1-.v..

Fixing 0 we have to solve for the following remaining I + 2

unknowns of 0 in equilibrium:

- P(g=O i) i E {o,..,I},

- R, the equilibrium interest rate

- w, the wage.

To solve for them, we need to satisfy the following 1+2 equations

(E.1) The Consistency Conditions for i=1,..,I:
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P(g=O Ji) = (l+x9ir(g=l
I

i)(D0(O,i3O)-D9(O,i,1)) r(g=O Ii),

(E.2) The Market Clearing Condition

ASUP - Adem
0 0

where the supply of assets is given by

wI 1

= ( q3 0(l,i)P(gli)7r(i)

1=O,i=O , g=O
I

Fko(l) / :: f(1,x9(l,t)) )
t=O

and the demand for assets Arm is given by

Ii
Aem w4 7r(i,g)(B50(i,g)+7r(g=oIi)D 0(i,g))

St d
i=O,g=O

(E.3) The stationarity condition for level-O capital

I I
71( i 'P(g=Oi) ir(i) /

f(1,x0(6,i)J

i=O i=O

It is important to note, that we have an equilibrium, once these 1+2

equations (E.1), (E.2) and (E.3) are satisfied. The consistency condition
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(E.1) enables us to solve for mutual fund share holdings o(l,i) and at the

same time guarantees the stock market clearing conditions by construction.

The asset market clearing condition is equivalent to the mutual fund market

clearing condition, conce the stock market clearing condition holds: this

follows from substituting out (1,i) in the mutual fund market clearing

condition of the equilibrium definition in part IV of the main text via the

stock market clearing condition. All other conditions are already satisfied by

construction except for the consumption goods market dearing condition.

However, this market clearing condition can be shown to hold as well (after

some messy algebra) from the other equations (including (E.l), (E.2) and

(E.3)): this is just Wairas' law.

Thus, all that remains to be shown is that the 1+2 equations (E.1)

through (E.3) have a solution in the 1+2 unknowns listed above. We will

show this in the last theorem under certain assumptions, using a fixed point

argument.

To that end, we first consider the case of uninformative U's. In that

case, (E.1) collapses to P(fll) ir(i), i.e. we only have to solve for the

interest rate R and the wage w, using the market clearing condition in the

assets and the stationarity condition on capital: everything can be

parameterized just by R and w.

We have to impose the following variation of Assumption A.V.2.
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AsswIPTIoii A.V.6:

(i) For some interest rate Ri0, 1 Ri0 < (l/3, and all

R E [Ri0, /fi], there is a wage w(R), which solves (E.3) for

P(gji) = ir(gi). Furthermore, this function w(R) can be chosen to

be continuous on [Ri0, /fi],

(ii) There is some 1W> 0, so that for fixed P(g Ii) = ir(g i), fixed

and any fixed R e [Riow /13], the function

I

g(w) - _________- f(1,x0(ô,i))
i=0

is strictly increasing in the wage w E [w(R)_W,w(R)+&], where

0 = (0 ,0 ,R,w), 0 uninformative and 0 defined via911/ /
P(gi)=ir(gi).

Again, the restrictiveness of this assumption is similar to the restrictiveness

of assumption A.V.2. Note, that is irrelevant on the production side,

once P(gi) as well as the interest rate R and the wage are given. Also, the

continuity of w(R) is not a severe restriction: consider the benchmark case,

that all ir(gi)'s are the same. In that case, x0(i,l) does not depend on i (or,

equivalently P 0(i 1) = ir(i)) and Theorem A.V.2, Lemma A.V.2 and

Theorem A.V.4 apply directly. With a generalization of Lemma A.V.2,

monotonicity in the interest rate R can be established. Finally, analyzing

the stationarity condition (E.3), we can see, that we can choose w(R)

monotonously. Continuity then follows, because all functions involved are

231



continuous. If we move away from the benchmark assumption, that all

ir(g J i)s are the same, continuity of w(R) should continue to hold at least as

long as the ir(g i)'s stay sufficiently close to each other and at least for some

interval [Ri0, (/fi], as considered in the assumption above, by checking the

way w(R) changes around R = /fi as we change the 7r(g
I
i)'s. The same

logic applies to (ii) and (iii): for the case, where all r(gi)'s are the same, the

function g is already a strictly increasing function of w and AUP is a

decreasing function of R.

LEMMA A.V.16: (Properties of specific value function operators)

(i) Let U: I1 be differentiable and finite on with u'

continuous, strictly convex, strictly positive, strictly decreasing and

urn u'(y) = . Let w: be differentiable, where w' is
y-+ 0

continuous, convex, strictly positive, strictly decreasing. Let R> 0,

fi>O. Then

Tw(y) = max { u(c) + 3 w(R(y-c)) 0 c y }

is differentiable and (Tw)' is continuous, convex, strictly positive,

strictly decreasing. If additionally lim w'(y) = , then (Tw)' is
y -,o

strictly convex with urn (Tw)'(y) =
y -+o

(ii) If additionally u(c) c1-1 in (i) and > 0, then the decision

rule c(y) is strictly concave.
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PtooF:

(i) We first proceed with the proof for the second case, that

urn w'(y) . The proof the for differentiability of Tw, the
y -4O

applicability of first order conditions and the proof for the fact, that

(Tw)' is strictly increasing with lim (Tw)'(y) = , are standard and
y-' 0

can be omitted. It remains to show strict convexity of (Tw)'. We

have for the decision rule c(y), that

(Tw)'(y) = u'(c(y)) = fiR w'(R(y-c(y))).

Now, let 0 <y0 <y1 and ) e (0;1). Let = .Ay0+(l-A)y1 and

c = Ac(y0)+(1-.\)c(y1). Let =

we need to show that > (Tw)'(y). By our assumption about

concavity, we get

1)k > u'(c,) and

flit w'(R(y-.c))).

There are now two cases: if c(y) c, then

(Tw)'(y) = u'(c(y))) u'(c,\) <

and if c(y) < cA, then
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(Tw)'(y) = /3Rw'(R(y-c(y))) <fiRw'(R(y-c)) < r.

The general case can now be derived by properly taking care of the

boundary cases, where c(y) = y.

(ii) Note, that c(y) = ((Tw))_h/17(y), where (Tw)' is strictly convex

according to (i). The claim now follows easily from the general

observation, that for any strictly convex, strictly positive function f

and any a < 0, the function 1a is strictly concave: if x < y,

..\ E (0;1), z = Ax+(1-\)y, then

Af(x) + (1-A)f(y) > f(z), hence

(Xf(x) + (1_A)f(y))a < fa(Z) and

(_)fa()) (Xf(x) + (1))f(y))a

by concavity of x xa.

LEMMA A.V.17:

Let messages Obe uninformative and R e

(i) Consider the benchmark case, that agents receive a sure wage of 1

(or, equivalently, that FNbeflch is the distribution, which assigns

unit mass at N = 1) and that there is no perturbation Ue Let i be

some asset distribution on with 0 a dp < w. Then there is

some scaling factor u so that the economy is in equilibrium at

R = /13, P(gi) = ir(gi) and with asset distribution

=
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(ii) Let Cbench(Y;R) bbeflch(y;R) be the decision rules for part (i), if

y = a + 1 is total disposable wealth, and C(a;R), B(a;R) the

integrals over FN of the decision rules bh1tS(a+N) for our problem

(at the assumed asset distribution FN, satisfying assumption A.V.3,

and with the perturbation ue) Then B(a;R) > bbench(a+l;R) and

B(. ;R) is strictly convex.

(iii) there is a solution 0 = (0,0,R ,w) with R < (1/3, which solves

(Ed), (E.2) and (E.3), i.e. delivers an equilibrium for the case of

uninformative messages.

PROOF:

Note first, that since messages are uninformative, there will not be

any insiders and both parts 0,0 are not needed any further in the

analysis of the decision problem of agents. Fix 0 at P(gi) = ir(gi) as

implied by (E.1) throughout.

(i) Transform the decision problem back to = 1, R = R/, =

and iir = 1 as outlined at the beginning of the analysis of the decision

problem of the agent. The solution for the value function is now a

standard problem (see e.g. Stokey - Lucas, with Prescott (1989),

chapter 5.17 for R < 1/fl) and can also be obtained from a

straight - forward generalization of Theorem A.V.6 above for any

f> 0 (note, that the assumption on the interest rate, that R < 1/

was not needed there). Let c(a;R) denote the decision rule for this

problem and note, that we get from the first - order conditions and
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the envelope theorem at R = 1/fl (which corresponds to R = c/fl in

the untransformed problem)

= ft c( .(a-c(a)+1) ),

which is satisfied, if

or

a = (a - c(a) + 1)

1>0.c(a)= a+

I.e. the agent exactly eats the interest payments to his assets as well

as his wage and saves a/I.. His savings become a = .(a/) next

period, i.e. his asset holdings remain constant. Thus, any

distribution over assets is stationary. Let R = = /13 and solve

for the equilibrium wage w(R) according to assumption A.V.6.

Calculate aggregate asset demands (from the retransformed decision

rules, which are integrated with ii). Note, that (E.1) and (E.3) are

satisfied by construction. Choosing the scale factor a right, it is now

easy to see, that (E.2) can be satisfied as well, establishing the

equilibrium.
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(ii) Again, transform the decision problem back to

= 1, a = and * = 1. Fix the interest rate R. To

make the notation clearer, we leave away the superindex "outs", we

subindex solutions to the benchmark problem of (i) with bench, and

subindex solutions to the model problem with 0, which is the

parameter vector containing R, among other things. First note for

the value function Vbench of the benchmark problem under (i), that

starting from a bounded value function v0, which is differentiable

and where v6 is strictly decreasing and convex, and iterating on

v(a) = (Tvn_i)(a+1), where T is the operator from the previous

lemma, we find from the usual contraction mapping argument and

with Theorem A.V.9, that v is differentiable, concave and thatbench

is convex. We now use V00 = Vbeflch as a starting point tobench

find v0, the value function for our problem via

vg(a) = S(Tv0,_1)(a),

where T is the operator from the previous Lemma and where

S(w)(a) = 2ue(a) + w(0) + ;fw(a+N) dFN.

(note, that we included our perturbation ue)

Note that since v00 is differentiable, strictly concave,

strictly increasing, where vbo is convex, the same now holds for
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v0
1' except that we also get urn v 1(a) = w through our operator

a -

S. Reapplying the previous lemma and proceeding through the

standard contraction mapping argument delivers that v0 for n 1

as well as v9 itself are differentiable, strictly concave, strictly

increasing and in particular, that v11 and v as well as (Tv9n)' and

(Tv9)' are strictly convex.

We now show by induction, that

v' (a) > vbeh(a)O,n

for all > 1. Note, that we get by Jensens inequality and because

FN has a density

v11(a) 1' (Tv 1)'(a+N) dFNO,n-

> (Tv )'(a+l).O,n-1

Since vb (a) > Vbench(a) (either via induction hypothesis or,n-1 -

trivially for n = 1), we must have c,n_i(y) Cbench(Y)1 where

these are the decision rules derived from the operator T, when

applied to or 'bench respectively. Since (Tw)'(y) = c(y)7,

it follows that

(Tv0 )'(a+l) > (Tv '(a+1) = vbench(a),n-i - bench1



establishing our induction hypothesis.

Via a limit argument (use e.g. Theorem A.V.9), it now

follows that

v(a) > vbh(a).

Applying the previous Lemma to we find that the decision rule

b0(y) = y -c() delivered by the operator T applied to v9, is

strictly convex and that furthermore

b9(y) > bbeflch(y) = y -cfl(y).

It follows, that

B(a;R) = fb0(a-4-N) dFN > b0(a+1) = b (a+1R).bench

This finishes the proof. .

In light of the previous lemma, it is clear, that R = cannot be an

equilibrium interest rate in our model. For if agents own assets a at the

beginning of the period, they will save more than in the benchmark model

and therefore have more than a at the beginning of the next period. In other

words, the only stationary asset distribution would have J'a di = and

demands for assets must exceed supply.
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On the other hand, observe that for the benchmark model with any

interest rate R < (/fi, agents will eventuafly eat their "cake" completely

(see e.g. Stokey - Lucas, with Prescott (1989), chapter 5.17) and the only

stationary asset distribution would have fa dp 0. Through the

distribution FN, this is avoided in the model, since heuristically, agents

would never risk eating all they have. Thus, the following assumption, which

is essentially an assumption on FN is reasonable, although it is admittedly a

complex assumption and not an assumption on the fundamentals underlying

the economy.

ASSUMPTION A.V.7:

FN is such that for the case of uninformative messages, there are

interest rates 'min"max E [Ri0,C7/3), min < max' so that

Aem
( . <A11 ( .

0 . mm' 0 . " mm'mm mm

and

Aem max> AUP
maxmax max

where 9min =

= (0 ,0 RmaxW( ') with 0 uninformative, 0max1max

defined via P(gi) = ir(gi).
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Judging from the numerical experiments, a standard exponential distribution

for FN seemed to work.

We now prove our last and final theorem. It is important to note, that we

made eight assumptions (A.V.1 through A.V.8), three perturbations to the

model and one conjecture to prove this result.

THEOJLEM A.V.17:

PRooF:

If Conjecture A.V.1 is true and all assumptions hold, then there is a

parameter vector U E B, so that (E.1), (E.2) and (E.3) are satisfied,

i.e. we have an equilibrium.

It follows Assumption A.V.6 and A.V.7 and the reasoning below,

that we can choose interest rates R., R withmax

< R . < R < R, a wage distance 0 < 6w W probabilities
mm mm max

P . (i) < ir(g=Oi) < Pmax(i), distances > 0, > 0 and a factor ii> 0
mm

so that we have

- 8sub ={ O O=(O 0 ,R,w)with

R E [RiRax]
w 

P(mjg=O)-P(mIg=l) < E,a1lm,

P(gi) -ir(gi) < c all i,g }

is a subset of B,
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- 11,i0  [ P (i) P (i)
1' wherenun ' max

x9ir(g=1
I

i)(D9(O,i3O)-D9(O,i,1)) ir(g=O Ii),

- f2(0) E [R.,R} for all

f2(0)= R+ V(AuP_Aem),

- f3(9) E [w(R)_o\v,w(R)+8w] for all

I I

= (1 +

Asb where

0 E 8sub' where

?r( i)f3(0) = w + u( P(g=O(i)r(i) - ( f(1,x0(1,i)))
i=O i=O

Note, that for uninformative 9's with P(g=Oi) e [Pmin(1)Pmax(i)]

R e [RminRmaxI and w E [w(R)_t5w,w(R)+o\vJ, we have f1 .(U) = 7r(g=Oi),
,1

which is strictly in the interior of [P
. (i),Pa(i)] Rmin <12(0) <mm

and W(R)_6r < f3(0) <w(R)+6W by proper choice of ii> o and the

assumption about the monotonicity of the functions involved.

Thus, if we fix informative P(mg)'s, but where P(mg=O) is

sufficiently close to P(m(g=1), these properties continue to hold for these 0's

as well by the continuity in 0 of all functions involved.

Now rewrite (E.1), (E.2) and (E.3) as fixed point equations

according to

(F.1) P(g=Oi) = f1(0),

(F.2) R = f2(0),

(F.3) w = f3(0),
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Again, by continuity in 0 of the functions f1, f2 and f3, it follows directly

from the Brouwer fixed point theorem (see e.g. Stokey - Lucas, with

Prescott (1989)), that our equations (E.1), (E.2) and (E.3) have a solution.

This finishes the proof and the analysis of the model. .
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Appendix VI. The Numerical Analysis of the Mode!.

1. Overview.

The computations were done on a SPARC-station, using the

programming language C and a source code of roughly 4000 lines. The

computation of one experiment took usually between 40 and 90 minutes of

CPU-time for the economy with the insiders and 6 to 8 minutes for the

economy without the insiders.

Structurally, the program consists of several nested loops and models,

the hierarchy of which can be Seen in the following overview.
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Program Structure

1. Input and Initializations,

2. R-Loop,

2.1 Decision Problem Module,

2.1.1 Value Function Loop,

2.1.2 Asset Distribution Loop,

2.1.3 Calculation of Aggregate Demands at the

Normalized Wage = 1,

2.2. Probability Adjustment Loop,

2.2.1 Wage Loop,

2.2.1.1 Price Loop,

2.2.2 Calculation of Capital Distribution,

Aggregate Capital and Aggregate Demands,

2.2.3 Update Probabilities "Backwards"

2.3. Calculation of Remaining Aggregates

3. Output

Many of the strategies and structures for the computations are in

common with the theoretical analysis of the model in appendix V. The key

difficulty (here as well as in the theoretical analysis) is to disentangle the

maze of interdependencies between the different modules of the program into

a tree - type hierarchy. There are two key insights, which make the
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hierarchy described above possible. The first insight is to use the

backsolving idea in the spirit of Sims (1984,1990) and to fix the

pricing - probabilities ''r for the entire program rather than solving for it.

Since these pricing - probabilities are important parameters for the decision

problem, computation time is cut down considerably and the decision

problem can be solved, once given only one additional parameter: the interest

rate R. The wage is not needed as a parameter, since the solution for any

wage can be obtained by direct calculation from the solution for the standard

wage = 1.0, see appendix V. Then, given R, and the solution to the decision

problem, the production side of the economy can be solved separately. This

identification of the interest rate R as the only common link between the two

sides of the economy - the decision problem side and the production side - is

the second key

We now introduce briefly each individual loop and their

interdependencies. The value function ioop uses a value-function iteration

approach for the value function, defined by interpolation over a logarithmic

grid on the assets, to compute the value functions, the decision rules and the

transition probabilities. It assumes a normalized wage of 1, fixed stock prices

ir(gi,m) and the given interest rate R from the R-loop. The asset

distribution loop iterates on an asset-distribution, defined by interpolation

over a logarithmic grid on the assets, using the probability transitions on

assets as calculated in the value function ioop. The probability adjustment

loop adjusts iteratively in 2.4 the fundamental transition probabilities

P(g (1,i) and P(i 1) via the consistency condition (relying on a contraction
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mapping property of that condition), using a fixed interest rate R as given by

the R-loop, aggregate demands at the normalized wage = 1 as calculated by

module 1.3 and the wage from the last pass through (for the first pass, we use

P(gl,i) ir(gji) and P(iIl) = 7r(i)). The wage ioop adjust the wage, until

the capital stock on level 0 replicates itself exactly, using the transition

probabilities P as given by the probability adjustment ioop and the

investment rules calculated within by the price-loop. The price-loop

calculates prices q1, q2 and q3 as well as the investment rule x via iteration,

taking as given the interest rate R, the transition probabilities P and the

dividends calculated from the given wage.

Only the wage loop and the R-loop iterate until a criterion reaches a

degree precision. All other loops iterate for a fixed number of

iterations. There are several reasons for that approach. First, fixing the

number of iterations allows us to control the computation time of the

program, which becomes important when running many experiments.

Secondly, since the R-loop uses an interval-dissection method to find the

next R, it is important that the calculation inside the R-loop yield similar

results if given similar values for R: this is automatically ensured with

iterations of fixed length (for the wage - loop, the precision can be made

high enough so that no problem is created there), which always start from

the same initial conditions. Finally, and most importantly, it is easier to

compare results of different experiments with a fixed number of iterations.

For suppose, that instead of terminating the value function ioop after a fixed

number of iterations, we chose to terminate it after the change of the value
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function after an additional period is not too big. Suppose, we want to

compare the results of two experiments. Effectively then, the program would

sometimes solve a finite - horizon problem for e.g. T = 60 periods in one

experiment and for T = 200 periods in another experiment. To compare the

average welfare levels, the degree of precision needs to be so sharp, that the

difference between termination upon reaching the desired precision and the

theoretical infinite - horizon limit of the computation is small compared to

the differences in the average welfare levels (computed as the

infinite - horizon limit) between the two experiments. In other words, we

need to ensure that the value function iteration terminates only after a very

high number of periods so that the (excluded) future is discounted

sufficiently much. By contrast, fixing the number of iterations will always

result in comparable results, since every experiment effectively calculates a

finite-horizon decision problem version of the model, where the horizon T

does not vary across the experiment. By choosing that horizon far enough,

one can ensure that e.g. the decision rules come reasonably close to the

theoretical infinite - horizon limit of the computation, but even if the

mistake is noticable, it will be of the same systematic kind and therefore

roughly of the same size across different experiments, making the results

comparable. Evidence for this claim is delivered e.g. by the smoothness of

the curves in figures 2.1 through 2.7. We provide further insights for judging

the precision of the computation below by looking at intermediate results of

the experiment with spread .4 and signal quality = .7 in figures 6.1.1

through 6.7.2.
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We proceed to describe the parts of the program in greater detail.

2. The R-Loop.

The R-loop is the global loop of the program, all other parts (except

input and output) are internal to it. It computes the equilibrium by

searching for the equilibrium interest rate R. The criterion used is the excess

supply zB for the mutual fund, defined by the difference of the supply and

the demand for the mutual fund. The other parts of the program take care of

the other equilibrium conditions except for market clearing on the goods

market. By Walras' law, the goods market has to clear simultaneously with

the market for mutual fund shares: this is checked.

The loop starts from the benchmark neoclassical growth model interest

rate R0 = (//3. It proceeds with

R = R . + (Rti - Rmin) / 1.3,t him

where we used Rmin /3, until the relative excess supply becomes positive

(it was negative in all calculations for R0). This procedure delivers two

interest rates < R, where the excess supply LB1 > 0 is bigger than zero

for R1 and smaller than zero (LB < 0) for R. The program then calculates

) so that

A zB1 + (i-A)zB = 0
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and readjusts .A to be in the interval [.05, 95} (otherwise there is some

danger, that the iterations get stuck for a long time at one side of the

interval, if the LB - function is very steep at the other end). It then uses

Rt = ) R + (1 -

for the next round of computation. Depending on whether the resulting zB

is negative or positive, R11 or is replaced with Rt and the computation

enters the next cycle. The procedure terminates, when the absolute excess

supply LtB relative to the total demand for the mutual fund is less than

1.0 %.

2.1 The Decision Problem Module.

The decision problem module consists of the three parts listed in the

overview above. It takes as given the interest rate R given by the R-loop as

well as the fixed parameters 7r(gi), ir-(gi,m), ir(mli), fi and i. Note that the

parameter 7r(g i) is the information revealed by prices in equilibrium: to fix ir

parametrically rather than solving for it is a backsolving approach following

in spirit the technique developed by Sims (1984,1990). Since the value

function loop below is the most computation intensive part of the program

and since it needs ir to compute its results, this backsolving approach saves

time in a crucial way: a forward approach would have to iterate over various

choices of ii to get convergence to an equilibrium, effectively multiplying the

computation time of the entire program by the number of these iterations.

Even if these iterations are combined with a search for the equilibrium
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interest rate, the number of iterations necessary is likely to be much higher

than just from the search for the interest rate alone as done in this program.

2.1.1 The Value Function Loop.

In the value function ioop, the value function and the decision rules are

computed. This is the most computation intensive part of the program.

We used a value function iteration approach, where the value functions

and the decision rules are defined by interpolation through the computed

values on a grid in the underlying state space, starting from V0 0. For

functions defined on the asset holdings a (such as the value functions v,

vIs, but also the insider - decision rules s'(a), etc., with the

additional dimensions of the state space i = 0,1 and m = 0,1), the grid used

was a logarithmic grid with 26 grid points, where the first grid point

corresponds to a = .01 and the last grid point corresponds to a = 999.0

(these values are to be understood as multiples of the average wage). The

outsider - decision rules are defined on a logarithmic grid of total disposable

income y with 51 grid points, where the first grid point corresponds to

y = .02 and the last grid point corresponds to y = 1998.0. We then use a

logarithmic grid on N with 21 grid points ranging from .01 to 999.0 to

integrate out the random wage for the outsider - part, using an exponential

distribution for N with mean equal to 1: the formula is given below.

Given initial asset holdings a (i.e. some number between .01 and 999.0

from the logarithmic grid) and values i E {0,1}, m e {0,i} for the other
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dimensions of the state - space for an insider, the decisions for and b are

computed by a speed - enhanced grid - maximization method as follows.

First, a coarse grid for possible values for c is defined by partitioning the

entire possible range [ 0, a] by selecting 15 equally spaced grid points. For

each grid point c, the possible range

a-c. a-c.
_________

J

ir(g=1i) ' ir(g=0i)

of stock - positions (resulting from the constraint, that the total value of the

agents assets have to positive in the next period, regardless of whether g = 0

or g = 1 is drawn) is partitioned into a coarse grid of 13 equally spaced grid

points sk. The purchases of the mutual fund shares b and the next - period

asset holdings a6 (if g = 0) as well as aj (if g = 1) is then calcuiated from the

budget constraint

C + 7r(g=Oi)s + b = a

and the interest rate R for each pair (cj)sk). We then determine the value of

the objective function

f(c,$) = u(c) + /3(7r(g=O!i,m)v(a)+ir(g=1li,m)v(a))

* *

for each grid point and select the maximizing pair (j ,k ), where the value

function v(a) is evaluated by interpolating the calculated values for v on the
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grid points from the previous round of the value function ioop by linear

interpolation of v over log(a), i.e. by interpolating linearly between grid

points (and thereby domain - logarithmically over the corresponding grid on

asset values).

Now, a second round with a finer grid on c and s is started by applying

the same algorithm again, but using the range {c*_1, cj*+l] for consumption

and, given a consumption grid value c, the range

a-c
[Sk*_1, Sk+1] a - c.

3

for the stock position s. Special care of course is taken for the cases, where

(j,k) is on the boundary of the coarser grid by not subtracting or adding in
* *

the boundary - crossing direction from the index j or k when calculating
*

the new intervals. This finally delivers optimizing values c and s in this

finer sub - grid together with step sizes zc and zs of this finer grid. It need
* *

not be the case that c and s would have been the optimizing values, if we

used the finer partitioning on the entire initial range for c and S. Because of
* *

concavity of the objective function, this would typically result in c and s

being on the boundary of the finer grid: a warning message is printed in that

case (and was printed at most for some of the initial iterations on the value
* *

function in the experiments performed). If C and s are not on the

boundary, we have
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* * * * * *f(c ,s -is)<f(c ,s )>f(c ,s +s) and
* * * * * *f(c-tc,s )<f(c ,s )>f(c +c,s ).

For the final round of maximization, a quadratic function is therefore fitted
* * * * * *

through the three points ( c , s -as), ( c , s ) and ( c , s +is) with the

values given by f. The maximizing of that quadratic function is calculated

and satisfies

* *

S-Ls<<S+LS

because of the inequalities above. We proceed likewise to find the decision

for and finally calculate b from the budget constraint. This also delivers
ins insthe value - function v. (a) for the insider, given i and m. v (a) itself isi,m

now found by calculating

1ins, insv a)= lr(i) 7r(m ivim(a).
i=O m=O

To calculate vOUt5(a) we proceed similarly: first we find v1t5(y),

c0ut5(y) and btS(y) in very much the same manner as the decision rules for

the insider described above, except that we only need a one - dimensional

grid (for consumption), since the outsider only faces a consumptions/savings -
tradeoff. Then we calculate the integral

f
vh1(a + N) dFN
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by evaluating instead the sum

OUt5(a) =V

1 outs, outs
FN[OJV la+.O1)+(1_FN[20])ve (a+999.0) +

20
OUtS(a+N() outs(v )+ve (a+N(n)-1)) (FN[n]_FN[n_1})/2

n=1

U

where N(n) delivers the value of N to the index n and where we used the

square brackets [] rather than the round brackets () for FN to indicate, that

the values inside the brackets are to be interpreted as indices rather than

values for the exponential distribution function, which has been calculated

once at the initializations of the program. This numerical calculation of the

integral amounts to the integration of a linearly interpolated function with a

step-function type density function.

Finally, the value function v itself needs to be calculated. The model

itself requires, that the agent chooses some lottery over his initial asset

holdings and then finds himself to either be an insider or an outsider,

depending on the outcome of the lottery. Furthermore, these lotteries might

vary as the initial asset holdings a vary, with the agent for some assets a

choosing to become an insider when he ends up with assets after the lottery

below a and for other assets, when he ends up above. In fact, while a great

chunk of the difficulties of the theoretical analysis in appendix V stem from

the complications arising from these lotteries (which were only introduced in
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the first place to make the resulting value function concave), we cut through

this knot in a very pragmatic fashion and demonstrate below, that this

approach is indeed legitimate in our calculations. First, we only search for

some cut - off level a, so that

outs( insv a) > v (a, for all a < a and
outs( ins(v a)<v a)foralla>a.

Whether such a cut - off level a exists, is an open theoretical question. For

our program, we simply assume, that it does and calculate it as the first

value of a, where v'115 crosses vtS. For values a on the logarithmic grid, we

then completely ignore the possibilities of lotteries and set

outsv(a)=v (a),ifa<aand

v(a) = v(a), if a> a.

There is no reason yet from a theoretical perspective, that this technique

works. Since lotteries were introduced only to generate concave value

functions, we regard this technique as numerically justified, if for our

calculations, we have

ins outsa) the value functions v , v and v are concave and
ins outsb) the value function v crosses v only once.

That this is indeed the case can be seen in figures 6.1.1, 6.1.2 and 6.1.3.
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Figure 6.1.1 demonstrates the concavity for the value - functions hh1s and

vh1 by plotting the slopes

fl5(
) - (

fl5(
)

insv a v a -v (a.D -

and likewise Dv0h1t5(a), where j counts through the grid points for the assets

holdings a. The value functions are (numerically) concave if these functions

Dy1"5 and DV0tS are monotonously decreasing: they are. Figure 6.1.2 does

the same for the value function v. The concavity of this function is the

critical, desired property. Figure 6.1.3 finally plots vs(a)_v0uts(a) and

demonstrates that this difference crosses the value 0 only once. After

crossing 0, it bends back to 0 somewhat of course, since vhh15(a)_v1t5(a) -' 0

as a-m.

Thus, while this approach to calculate the value function v without

lotteries and with just one crossing point lacks a theoretical justification, it is

numerically justified. It is numerically sensible, since numerically

calculating the lotteries would rely on properties of the slope of the

value - functions and therefore introduce numerical instabilities, the

mistakes of which might be greater in the end than leaving the lotteries away

altogether. Finally, the approach also makes intuitive sense: since agents

have decreasing absolute risk - aversion, and since richer agents have more

assets to "speculate" with, there should be increasing returns to information,

i.e. the richer an agent, the greater should be the advantage of becoming an

insider rather than an outsider. tJnfortunately, this argument cannot be
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made firm theoretically, since the value - function can have linear parts by

the introduction of the lotteries. It is then conceivable, that a relatively poor

agent may want to become an insider (since he faces the linear, i.e.

risk - neutral parts of the value function with his asset - speculation for the

next period) whereas a somewhat richer agent decides to become an outsider

again (since now, he has to face a strictly concave, i.e. risk - averse part of

the value function next period). Figure 6.1.3 shows, that effects of this type

do not matter in our calculations. Lotteries, however, would only become

trivial everywhere (as we assumed in our calculations), if the derivative of

vouts(a) coincides with the derivative of vhIS(a), whenever the functions

themselves coincide: we could not find a proof for that conjecture. The

numerical calculations and the figure 6.1.1 and 6.1.2 suggest, that these

derivatives coincide well enough with each other at the crossing point(s) to

make lotteries superfluous in the context of our calculations.

Our approach of using iterations on interpolated functions on a grid is

similar to Colemans (1990) technique except that we iterate on the value

functions instead of on the Euler equations. Iterating on the value function

directly is more suitable for our purposes, since we want to compute average

welfare and since agents have to make a decision, whether to become an

insider or an outsider in part II of the period, i.e. agents have to compare

absolut values and not just margins. A combined approach is conceivable,

but was not tried. We used a grid - method, since the state space is fairly

small, so that grid - methods are still feasible, and since we are interested in

the behaviour of the population over the entire range of the state space and
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not just around some steady state.

The number of iterations was fixed at 40, which seemed to be a

reasonable compromise between computation time and precision. The last

ten of these 40 value function iterations (for the last pass through the

R-loop) are plotted in figure 6.2.1 (Note, that the value functions do not

appear concave, since they are plotted over the index a, which provides a

logarithmic scale for the asset holdings). While differences between the

iterations are still quite visible, these functions might not be far from the

theoretical infinite - horizon limit. To analyze this, we fitted an exponential

trend (see explanation below) for each index afld = 1,..,26 through all ten

iterations and plotted the extrapolated next 190 iterations in figure 6.2.2. In

that figure, convergence is clearly visible and the distance between the limit

and iteration 40 is roughly of the same size as the distance between iteration

40 and iteration 30. Figure 6.2.2 demonstrates that for a comparison across

experiments without a fixed number of iterations, we would need a higher

degree of precision than available after 40 iterations. When fixing the

number of iterations, however, 40 iterations deliver comparable results, since

the mistake made in different experiments is roughly of the same size and not

too big.

To fit an exponential trend through points x, n = N1,..,N2, as done

for figure 6.1.2, we need to estimate x, c and \ in the equation

x = x -a e. We used the estimators
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x -xn+1 n
= N2-N-1

N2-i
log -x

n n-in=N1+i
N-i x -x

a_N N 2 n+i 1' and

n=N1

1

N2-N1+1

N2
X +

n=Ni

In all cases, where we checked the quality of the interpolation by plotting the

actual and the fitted data as functions of n, the two curves where virtually

indistinguishable. The suggestion of this experience to use exponential

extrapolation to find an estimate for the theoretical infinite - horizon

calculations has not been tried.

In figure 6.3.1, we plotted the stock-investment decision rules

for the normalized stocks as described in appendix 5, problem B, for

= m = 0 and the last ten iterations n = 31, .., 40. Note, that there is

virtually no more change in the decision rule! To make the differences better

visible, we plotted and exponentially extrapolated the percent differences

100*(s0m(a) -s'm(a)) I S0m(a)

of the decision rules, relative to the last decision rule S°m in figure 6.3.2.

The curves with positive percent values are the (fitted) calculated iterations

n = 31,. .,40, whereas the negative values are the next 190 exponentially

extrapolated iterations. Figure 6.3.2 demonstrates, that the deviation of the
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last decision rule 40m(a) from the theoretical infinite - horizon limit of the

calculation is unlikely to exceed 5 %. Again, since the number of 40

iterations is fixed across the experiments, this error is systematic, making the

results comparable.

2.1.2 The Asset Distribution Loop.

The asset distribution ioop calculates the distribution FA of assets

across the population. Since we ignored lotteries in the value function loop,

there is no distinction between the pre - lottery and the post - lottery asset

distribution. The loop starts from a distribution with point - mass of 1 at

the lowest asset value .01 and iterates 200 times on the distribution, using

the transition probabilities calculated in the value function ioop.

One iteration consists of two parts: one to calculate the transition for

the outsiders and one to calculate the transition for the insiders. Suppose,

we have calculated F and want to calculate F4' of the (n+l)st iteration

at some target asset level a. We need to calculate

F1(a) pouts +

where

POuts
= f f l{a0UtS(a+N) a} dFN dF and

a<a N
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nplflS ir(i,m) f 1{a' S (a) < a} dFA
a>a i,m -

and where a is the cut - off level determined in the value function loop.

The probability for the outsider is calculated in two steps. First, the

transition probability, conditional on a starting level of assets a, is calculated

as

POUtS(a) = FN(
outs, -a.
I flV

outs -where a9Ut8() denotes the level of income y so that a (y) = a. It ismv

calculated by first determining the grid points y and so that

outsa0Ut5(y) a < a

and then using linear interpolation between y and to solve for
a9t5(a). The integration up to the cut - off level a of these probabilities

then follows according to the formula

FJO]*PtS[O] +

r(pOutS[k]+pOUtS[klJ)*(Ffl[k]Fn[kl])/2 +

k=1
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where brackets [] contain indices and brackets () contain values, where k is

the index of the last asset grid point below the cut - off level a, where

.A E [0,1] is defined to be the difference between the (real) index - value of a

(i.e. after the logarithmic transformation) and k and where F() is found

from linear interpolation of FA[k+l] and FA[j. This summation procedure

essentially amounts to integrating a linearly interpolated function with a

step-function type density function.

To calculate the probability for the insider, find inversion functions

a1 S in the same way as a?hlt 5-functions above. P11 is then simplyi,m,g,Inv mv
given by

flj S (a))-F(a); 0}.pins ir(g,i,m) max{FAajmgmnv

Special care for the various boundary cases has to be taken in all of the above

calculations.

To judge the precision of the computations, the differences

F°°[j] -F[jJ have been plotted for the last ten iterations n = 191,.. ,200 in

figure 6.4.1 and exponentially extrapolated for 190 more iterations in figure

6.4.2. It is obvious from these figures, that the convergence is extremely

good.

2.1.3. The Calculation of Aggregate Demands at the Normalized Wage = 1.

The last part 2.1.3 calculates aggregate demand for bonds and stocks,
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using the decision rules computed in the value function ioop and the asset

distribution from the asset distribution ioop. The integration routines used

are similar to the integration routines described in the asset distribution loop

to calculate pOUtS only that a similarly complicated formula has to used as

well to calculate integrals of the type

ir(i,m) ( b S

(a) dFA.J i,m
i,m a>a

Also, we calculate the aggregate labor supply at this point as

= F(),

where a is the cut - off level, where agents switch to become insiders.

2.2. The Probability Adjustment LooD.

Recall that the probabilities 71( g i), ir( i ) as well as P( m g ) are

fixed parameters for the entire calculations. We need to calculate

probabilities P( g
I

l,i ), P( i 1) and ir(l) (which denotes the distribution of

agents across the different levels), making use of the consistency condition as

stated in appendix V. As starting point, we chose P0( g 1,i ) = 7r( g i )

and P0( i 1) = ir( i ). After each pass through the loop we finally update

these probabilities backwards in the module 2.2.3. The number of iterations

of the price - loop are fixed at five. To judge the quality of the convergence

of these five iterations, the differences
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P( i=O
I

1) - P5( i=O
I

1), n =

(for the last pass through the R-loop) are plotted for 1 = 1,.. ,6 in figure 6.5:

the rapid convergence should be obvious. Likewise, we plotted the five

values of Pn( g0
I

l,i0) (which is independent of 1, see the comments below

in the description of module 2.2.3) for n = 1,..,5 in figure 6.6: again, the

convergence is very rapid. Therefore, it did not seem necessary to use more

than 5 iterations in this loop.

2.2.1. The Wage LoQp.

The wage loop calculates the equilibrium wage, given the interest rate

R and the fundamental growth probabilities P. The wage ioop is the only

other ioop in the program besides the R-ioop, which iterates until a degree of

precision is reached, since convergence is computationally is very fast. The

algorithm for the wage ioop is almost identical to the algorithm of the

R-loop described above. The criterion used is

stat
=

P( g=Oi,l=O) P(iIl=o) f(1,x(1=O,i)),

i.e. the fraction of capital on level 0 this period, which arrives on level 0 next

period, divided by the steady state growth rate. ç has to be equal to 1.0 in

equilibrium to get a steady - state distribution for capital: if stat equals 1.0,

the distribution will replicate itself. To find the equilibrium wage, we use as

starting point the wage calculated from the benchmark neoclassical growth
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model (with one consumer, no randomness, but otherwise the same

parameters), multiplied with the factor 100.0. The minimal wage is 0.0. The

adjustment speed is 2.0 instead of 1.3 until a right and a left wage are found,

noting that stat is a decreasing function of the wage (appendix V contains a

proof of that assertion). The minimal and maximal .A allowed are .2 and .8.

The calculation terminates when stat differs from 1.0 by less than .00001.

2.2.1.1. The Price Loop

The price loop performs a fixed number of 100 iterations on the prices

for 1 = 0,.. ,40 via the formulas

1

n-iq(l) = d(l,wage) = P( i 1) q2 (l,i),

i=0
q(l,i) = ( 7r(g=0i)*q(l) + ir(g1i)*q(l±1) )/R,

x11(1,i) = i , i/( .0000001 + q(1,i) ) and

q(1,i) = x"(l,i) )*q(l,i),

for iteration n, level 1 = 0,..,40 and i =0,1, where dividends are calculated as

1 - i/pd(1,wage) = ( i
)l/P (1)(1P)/P wage

and where f and 1k are the partial derivatives of the CES - function

f(k,x) = ( .94 k1 + 1.0 x7 )1/.7
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see appendix V. As starting point, we have q(l,i) 0. Note that we need to

declare q1(l) for 1 ranging from 0 to 41 instead of just 0 to 40, we set

q1(41) = 0 throughout.

To judge the precision of these calculations, the last ten relative

differences

100

100 *
q1 (0) -q(0)

100
q1 (0)

for the last ten iterations n 91,.. ,100 (for last pass through the R-loop and

the last pass through the wage - loop) have been plotted in figure 6.7.1 and

exponentially extrapolated in figure 6.7.2, demonstrating the high precision

of the convergence. The convergence for higher levels of 1 was even better.

Likewise, we plotted and extrapolated the last ten x(0,0)-iterations in figures

6.8.1 and 6.8.2, demonstrating the high degree of precision here as well.

2.2.2. The Calculation of Capital Distribution, Aggregate Capital and

Aggregate Demand

The capital distribution can now be calculated directly, using the

formulas given in appendix V. That is, we set

Fk(0) = 1.0 and

Fk(l) = t(l) Fk(l_1), 1 = 1,..,40,
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where

1

P(g=1,fl 1-1) f( 1 ,x(l-1,i))
i-O

C - P(g=O,i
I

1) f( 1 , x(1,i) )
i=O

Find the sum

sum

=
Fk(l)

and calculate finally

Fk(l) 'k(' / sum.

Aggregate capital is calculated via

= h / Fk(l) n(1),

where ii is the aggregate labor supply calculated in module 2.1.3 and where

the labor - demand n(l) for one unit of capital is given by

n(1) = ( l ü
(1-p) / wage )l/P



see appendix V. Aggregate insider demands D(0,i,g) for stocks of level 0 at

the current wage, which appears in the updating rules in module 2.2.3, is

found from the aggregate demands D5(i,g) calculated in modul 2.1.3 for the

standardized wage = 1.0 and the standardized stocks (paying R, if g=0 and

nothing if g=1) via the formula

D(0,i,g) wage*R*D5(i,g)/( q1(0) - q1(1) )

Aggregate mutual fund shares demand for all agents on level 1=0, and

aggregate consumption is similarly found by applying the formulas

B(0,i,g) wage*(B5(i,g) -D5(i,g)*q1(1)/(q1(0)__q1(1)) and

C(l,i,g) wage*C5(i,g).

2.2.3. Update Probabilities flBackwardstt

The remaining probabilities are updated according to

-q1(1)-1(1+1)
= x

Fk(l) 1

t=0
/ f(1,x(l,t))

for 1 = 0,.. ,30, where is chosen such that
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and

I
P (iii) = (ir(i)/f(1,x(l,i)))/( r(t)/f(1,x(1,t)))n+1

L.=O

P1(gIl,i) = (1+ir(1-gi)(D(O,i,g)_D(O,i,1_g))) ir(g i).

Here, D is the actual aggregate insider demand for stocks, calculated for the

prevalent wage in part 2.2.2.

Since there is quite a bit of freedom a priori in choosing the updating

algorithm for these probabilities, the appeal of the formulas above should be

explained. Firstly, note that

P( iI )-+ir(i ) as1-,

since f( 1, x(l,i) ) - f( 1, 0 ), as l-. This is an important property, since we

should not make big errors for the levels 1 which are not included in the

calculations. Secondly, the value of P( g
I

l,i ) does not depend on 1, a

property shared with ir(g Ii) (which had to be independent of 1 to make

insiders indifferent between different levels of the stock). The advantage of

this is that it indicates that the error made by the mutual fund is of the same

size, regardless of the level 1, i.e. the bias of the wheel of choosing bad stocks

over good stocks is the same, given the price, regardless of the level 1.
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Finally, a consequence of the formulas above and some algebra is that

the conditional growth probabilities

P(i
I') f(1,x(l,i ))

P(gl) P( g
I

i,l)

1 P(i'Jl) f(1,x(l,i'))
i,

(where we integrate over the new capital on each level after prices are

observed, i.e. take account of the different levels of production of new capital

for different indices i's) and the unconditional growth probability P(g) (that

is, P(g 1), integrated over the capital distribution Fk(l)) compute to

P(g1) P(g) =

ir(g) + ir(i,g)( D(O,i,g)-D(O,i,1-g) )).

That is, the growth probability P(g1) is also independent of the level 1,

which is again a property shared with ir(g) and is therefore appealing for the

same reason as the independence of P(g
I

l,i) outlined above.

2.3. The Calculation of Remaining Aggregates

The remaining aggregate variables (such as aggregate output, aggregate

investment, etc.) can now be computed either in a straight - forward manner

or following techniques similar to the ones above. We only give the formula

to calculate actual average welfare from the average welfare
std of the

standardized, wage = 1 - problem in module 2.1.3. The formula is:
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1 1= wage'( Vstd + (1-)(1-) ) - (1-fi)(1-

3. Concluding Remarks for the Numerical Analysis

While there is room for improvement (most notably, a method which

keeps track of the derivative of the value functions as well as the level to

improve on the value function ioop, possibly introducing lotteries in the way

the model demands), we have demonstrated above and with the smoothness

of the relevant graphs in figures 2.1 through 2.7, that the program delivers

reasonably sharp answers to the questions asked of it, i.e. to questions of the

type

"flow does aggregate output and aggregate and individual

welfare change between steady states when moving from the

no - insider economy economy to the with - insider

economy?",

- "How does the answer vary with variations in the parameters,

most notably the assumed probabilities ir and P(m g)?"

- "How do other interesting aggregates, such as the equilibrium

interest rate, the average return on the insider portfolios, the

fraction of assets hold by the insiders and the fraction of stocks

demanded by the insiders, change with these parameters?"

More tests of the accuracy of these answers (e.g. along the lines of the

analysis in Taylor - Uhlig (1990)) are desirable.
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Several techniques used here are useful for other types of calculations as

well. The three - step procedure to solve for the decision problem of an

agent is a good speed - improving technique for grid - methods and deserves

further evaluation in other models. Also, this is the first model to our

knowledge, which does not use a linear reproduction function for capital and

which uses different types of capital with random growth rates of the

productivity. For further models, which use one or both of these elements,

the techniques found here to compute prices as well as the formula developed

above to compute the capital distribution is a useful computational tool.

Finally, the overall approach of untangling the mesh of interdependencies

between the various elements of the economy into a computable hierarchy by

concentrating on and backsolve - reducing the number of parameters

relevant for the decision problem is a powerful vehicle for thinking about how

to compute equilibria in reasonably complicated models.
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