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Central Bank Digital Currency or CBDC
In this paper: A CBDC is an (interest bearing) account held by
households at the central bank or CB (Barrdear-Kumhof, 2016)
Likely to be introduced by many central banks within a few years.
Disintermediation Threat: if HH hold CBDC rather than deposits,
banks cannot fund firms ...

1 ... unless CBDC is limited in scope and attractiveness (Fed) or
2 ... unless HH re-invest CBDC at banks (Duffie) or ...
3 ... Central Bank re-funds banks or projects (Brunnermeier-Niepelt).

This issue arises due to introducing a CBDC.
Here: third option / Consolidate CB+firm+banks+gov into CB
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The CBDC Trilemma
In our model: Only HH, CB, projects. CB is financial intermediary.

Key Mechanism

Nominal Diamond-Dybvig (1983) model for a CB and its CBDC.
Central bank can always deliver on its nominal obligations.
But: CB runs can happen: “spending run” on available goods.

Three competing objectives:
1 Traditional CB objective: commitment to Price Stability
2 Social optimum, optimal risk sharing: Efficiency
3 Absence of runs, financial stability: Monetary Trust

Key Result: CBDC Trilemma

Of the three objectives,
the central bank
can only achieve two.

Price
Stability

Efficiency

Mone-
tary
Trust
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The model: the real portion is Diamond-Dybvid, 1983

time t = 0, 1, 2.

Continuum [0, 1] of agents:
I t = 0: symmetric, endowed with one unit of a real good
I t = 1: types reveal: “impatient” λ, “patient” 1 − λ.

Impatient agents: have to consume in t = 1.
I u (·) strictly increasing, concave, RRA greater than one,
−x · u ′′ (x )/u ′ (x ) > 1.

Real Technology:
I long term: 1→ 1→ R
I storage t = 1→ t = 2, available to all: 1→ 1

Optimal solution:

maxλu (x1) + (1 − λ)u (x2) s.t. λx1 + (1 − λ)
x2
R

= 1

Unique solution, where u ′(x ∗1) = Ru
′(x ∗2)

With that: x ∗1 > 1. (Diamond and Dybvig, 1983)
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The model: the nominal portion introduces CBDC.

Definition

A central bank policy is a triple (M , y (·), i (·)), where M is units of
CBDC money per agent, y : [0, 1] → [0, 1] is the central bank’s
liquidation policy for every observed fraction n of spending agents, and
i : [0, 1] → [−1,∞) is the nominal interest rate policy.

t = 0: Agents sell goods to CB for M CBDC units in t = 1.
CB: invests all received real goods in projects.

t = 1: Agents learn type. Impatient agents spend M . Patient
agents may. Total fraction: λ ≤ n ≤ 1.
CB observes agg. spending fraction n.
CB liquidates fraction y = y (n) ∈ [0, 1] of projects.
CB sells goods y . Market clearing price P1.

t = 2: Remaining agents spend(1 + i (n))M .
CB sells remaining project payoffs R (1 − y )
Market clearing price P2.

Note: “spend” not “withdraw” (into what? No physical cash).
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A (boring) example for a central bank policy

A central bank policy is a triple (M , y (·), i (·)):
y (n) i (n)
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Set M so that P1 = 1 clears the market, if n = λ agents spend in t = 1.
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Equilibrium

Definition

Given a central bank policy (M , y (·), i (·)), an equilibrium (n, P1, P2) is
aggregate spending behavior n ∈ [0, 1], and price levels P1 and P2 such
that:

1 The individ. consumer’s spending decisions are optimal, given
aggregate spending n, the central bank’s policy (M , y (·), i (·)), the
price level sequence (P1, P2).

2 Given the aggregate spending realization n, the central bank
liquidates y (n) and sets the nominal interest rate i (n)

3 Given the realization (n, y (n), i (n)) and M , the price levels (P1, P2)
clear the goods market in each period;
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Market Clearing

nM = P1y (n)
(1 − n) (1 + i (n))M = P2R (1 − y (n)),

⇒ n, y (n), i (n) pin down the price levels P1, P2.

P1(n) =
nM

y (n) and P2(n) =
(1 − n) (1 + i (n))M

R (1 − y (n))

Note: P2(n) can be “anything” per i (n), but i (n) does not affect P1(n).
Real allocation: only depends on n via y (n):

x1(n) =
M

P1
=
y (n)
n

and x2(n) =
(1 + i (n))M

P2
=

1 − y (n)
1 − n R

Given n, patient agents spend in t = 1, iff x1(n) ≥ x2(n).
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Three competing objectives of the Central Bank

The central bank picks a policy (M , y (·), i (·)) to achieve three objectives:
1 Price stability: assure stable prices for all/ most n.

I Key focus: Get P1 (n) to be close to some target P̄1 for all/ most n.
I Interpretation: Think of P̄1 = P0 ∗ (1 + πT ) for some un-modelled price

level P0 and some inflation target πT between t = 0 and t = 1.
I Paper also: Achieve some inflation target between period 1 and 2.

2 Efficiency: optimal risk-sharing. Achieve the socially optimal real
allocation x ∗1 arising from the Diamond-Dybvig portion.

3 Monetary trust and stability: no equilibria with n > λ.
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Objective 2: Efficiency

The social optimum (x ∗1, x
∗
2) is an equilibrium, if y (λ) = y ∗ = λx ∗1.
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Objective 3: Monetary Trust
A Run on the Central Bank is a Spending Run:

Definition

A run occurs if n > λ: patient agents also spend in t = 1.

Definition

Monetary Trust: a central bank policy, so that a run cannot occur in
equilibrium.

In a run, money looses its ‘store of value’ function.

Patient agents purchase goods now and hoard them.
Trust in the monetary system evaporates, monetary instability.
Compare to:
I temporary pandemic stockouts.
I hyperinflations.
I currency crises.

But: different from a systemic bank run, where HH turn deposits into
cash without spending it.
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No run

t=0 t=1 t=2
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Run

t=0 t=1 t=2
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Implementing Efficiency and Monetary Trust

Lemma

The central bank policy (M , y (·), i (·)) implements optimal risk sharing
(x ∗1, x

∗
2) in dominant strategies if the central bank

1 sets y (λ) = y ∗ for any n = λ.

2 sets a liquidation policy that implies x1(n) < x2(n) for all n > λ.
This is achieved with a run-deterring policy

y (n) < ȳ (n) = nR

(1 + n (R − 1)) .

Corollary (Trilemma 1: no Price Stability)

Run-deterring policies imply

P1(n) >
M

R
(1 + n (R − 1)), for all n ∈ (λ, 1] . (1)
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Run-Deterring Policies and Price Implications
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For y (n) ≡ y ∗: P1(n) = n My ∗ .
For y (n) = ȳ (n): P1(n) = M

R (1 + n (R − 1)).
These two policies violate the Price Stability objective for P1(n).
This arises “off equilibrium”. “Threat” of high inflation for n > λ.
Commitment / credibility vs sub-game perfection / time consistency:
if n , λ arises, will a price-stability oriented central bank follow
through on that threat?
What about P2(n)? It depends on i (n). Nothing else does. 16 / 24



Objective 1: Price Stability
Why price stability? 50+ years of extensive literature. Pick your poison.

Traditional CB objective.

Dual mandate. Maastricht treaty.

Efficiency loss with higher inflation.

(Fully) sticky prices in t = 1, fixed in t = 0: a constraint on CB.

Here: traditional CB objective of Price Stability. CB maximizes

V (y , n, P̄ ) = αW (y , n) − (1 − α) (P̄ − P1(n))2 (2)

where 0 ≤ 1 − α < 1 is weight on price stability goal and W (y , n) is
expected consumer utility, given liquidation y and spending fraction n,

W (y , n) = n u
( y
n

)
+ (1 − n)u

(
R (1 − y )
1 − n

)
(3)

Consider time-consistent or subgame-perfect equilbria: CB sets
optimal y (n), given n.

Let P ∗1 = M /x ∗1 be the price level at efficient outcome, when n = λ.
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Price Stability and Efficiency: P̄ = P ∗1 .
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Figure: subgame-perfect liquidation policies yα (n) and pricing implications.

At n = λ: All levels α reach y ∗ (because P1(α) = P̄ )

Forα near 1: run-deterring (for n < 1).

For α near 0: subgame-perf liquidation policies give rise to runs.

Trilemma 2: no Monetary Trust.
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Price Stability and Efficiency, α → 0.
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Figure: subgame-perfect partially price stable policies.

We call this “Partial Price Stability”.

Also arises for: fully sticky prices, unless all is sold.

Trilemma 2: no Monetary Trust.
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Price Stability and Monetary Trust
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For run-deterring policies: need to raise the price stability target P̄ .

Given α : Compute the smallest P̄ (α) ≥ P ∗1 so that the
subgame-perfect liquidation policy is run-deterring following every
subgame n > λ.

Trilemma 3: no Efficiency.
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Price Stability and Monetary Trust, α → 0
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Figure: Subgame-perfect fully price stable policies.

We call this “Full Price Stability”.
Also arises for: fully sticky prices, unconditionally.
Or: CB only invests in “storage”, i.e. short-term govt bonds.
Vollgeld, Narrow Banking, Chicago Plan.
Trilemma 3: no Efficiency.
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Why not change the money supply in t = 1?
Also allow for state-contingent M (n) in t = 1.
Suppose y (n) ≡ y ∗. To maintain price stability at some P̄ :

nM (n) = P̄ y ∗ = λM (λ) (4)

Total money spent in t = 1 is constant. Money spent per agent
decreases with n. CB commits itself to reduce quantity of money in
response to demand shock and spending spree.
Implementations:
I State-contingent money supply.
I Taxation of individual money holdings.
I Suspension of spending: only some of the money can be used.
I Change i (n)? Or OMOs, i.e. sell bonds? Won’t do the trick: i (n) does

not impact real allocation.

“Suspension of convertibility” becomes “Suspension Of
Spendability” or SOS.
No runs, stable prices! Problem solved?
Doubtful. SOS will undermine trust in monetary system.
With general y (n): run issues as before. Agents only care about real
allocation. Money is neutral. 22 / 24



Jacklin-inspired solution

Jacklin (1987) has proposed to issue “equity” instead of deposits.

Here: in period t = 0, do not provide agents with cash. Rather,
provide them

1 with a short-maturity bond, paying D1 = P̄ y
∗ in t = 1.

2 with a long-maturity bond, paying D2 = P̄ R (1 − y ∗) in t = 2.

Agents trade bonds in period t = 1.

Now, the liquidation policy y (n) ≡ y ∗ will be efficient, financially
stable and price stable!

Trinity resolved? Runs always avoided?

Not quite. Whether a “run” occurs or not, depends entirely on the
real liquidation policy, in contrast to Jacklin.

Not subgame perfect: given n, y (n) = y ∗ is not optimal.

For that and to get P1 ≡ P̄ , introduce a discount window at the
central bank, to obtain cash in t = 1 for the long-maturity bond.

Promising approach! Match CBDC bonds to asset side!
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Conclusions

In a nominal banking model for a central bank and its CBDC.

The central bank can always deliver on its nominal obligations.
But: “spending runs” can still happen.

We show the CBDC Trilemma

Implement social optimum, no
runs, but threaten inflation.

Keep prices always stable: no
runs, but inefficient
(“Vollgeld”).

Keep prices mostly stable:
efficiency, but runs may happen.

Price
Stability

Efficiency

Mone-
tary
Trust
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