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based on electrochemical transistors. The neuromorphic properties reported in
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combining AI data analysis into skin-like wearable electronics for achieving human-

integrated/mimetic intelligent systems.
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PROGRESS AND POTENTIAL

The combination of wearable

electronics and artificial

intelligence (AI) technology can

benefit many application

domains, such as precision

medicine. Despite the rapid

development of wearable

electronics with skin-like form

factors and the paralleled

progress of AI technology, AI

computing has not been brought

into such a futuristic type of

wearable electronics for achieving

the highly desired near-sensor

data processing. The major gap is

the lack of devices that can

efficiently implement AI

algorithms with skin-like
SUMMARY

For leveraging wearable technologies to advance precision medi-
cine, personalized and learning-based analysis of continuously ac-
quired health data is indispensable, for which neuromorphic
computing provides the most efficient implementation of artificial
intelligence (AI) data processing. For realizing on-body neuromor-
phic computing, skin-like stretchability is required but has yet to
be combined with the desired neuromorphic metrics, including
linear symmetric weight update and sufficient state retention, for
achieving high computing efficiency. Here, we report an intrinsically
stretchable electrochemical transistor-based neuromorphic device,
which provides a large number (>800) of states, linear/symmetric
weight update, excellent switching endurance (>100 million), and
good state retention (>104 s) together with the high stretchability
of 100% strain. We further demonstrate a prototype neuromorphic
array that can perform vector-matrix multiplication even at 100%
strain and also the feasibility of implementing AI-based classifica-
tion of health signals with a high accuracy that is minimally influ-
enced by the stretched state of the neuromorphic hardware.
stretchability. Here, we report an

intrinsically stretchable

neuromorphic device that

provides all the desired

computational and mechanical

characteristics. Further

integration into a prototype array

successfully realized the

implementation of vector-matrix

multiplication even at 100% strain.

The intrinsically stretchable

neuromorphic device developed

in this work opens up a new

research direction for bridging

wearable electronics and AI

computing at the hardware level.
INTRODUCTION

Precision medicine, the future landscape of healthcare, can provide personalized

diagnosis and treatments to each individual by taking into account the underlying

differences in people’s genes, ages, health histories, and living environments.1 On

the technological level, this futuristic vision for healthcare requires the development

of two major capabilities: (1) the effective and continuous acquisition of multi-modal

health data during long-term daily activities outside of clinics, for which wearable

electronics emerge as the ideal solution,2 and (2) the high-throughput and intelli-

gent analysis of such complicated and large-quantity datasets for extracting the un-

derlying personalized health patterns, which is becoming one of the main applica-

tion directions of artificial intelligence (AI).3 For wearable electronics, the past

decade has witnessed the rapid development of a rich collection of skin-like, stretch-

able designs of functional materials,4,5 sensors,6 actuators,7 transistors,8 and

circuits9 that can adhere seamlessly to the human skin to provide on-body and

high-fidelity measurements of various types of health data. However, to further

incorporate AI data analysis, a major gap still exists on the hardware level. The effi-

cient and secure processing of such continuously generated health data demands AI

computation (Figure 1A) to happen physically next to the data-acquisition sites (i.e.,
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sensors) to minimize the need for wireless, long-distance data transfer that typically

comes with the problems of latency, insecurity, and extra power consumption.10,11

For such close-proximity integrations with on-skin sensors, the computing units for

implementing AI data processing also need to have soft and stretchable properties,

without incorporating rigid circuits, so as to achieve good wearing comfort and

avoid unreliable but potentially numerous interconnections between soft and rigid

parts. In particular, intrinsically stretchable designs are the most ideal choice for

achieving the highest possible skin conformability and high device integration

density.8,9,12

Recently, a new computing paradigm—neuromorphic computing—that mimics

brain operation has been created and developed as a more suitable platform for

AI, offering much lower system complexity, lower energy consumption, and faster

speed. Remarkable progress has been made in neuromorphic computing based on

a variety of device types, such as phase-change memory,13,14 atom switch devices,15

memristors,16,17 and electrolyte-gated transistors.18,19 However, there has not been

any report of intrinsically stretchable neuromorphic devices that possess the set of

neuromorphic performance metrics needed for the on-body processing of health

data,20–23 which include (1) a wide range of linear and symmetric weight updates,

(2) sufficient state-retention time (>1,000 s) for learning and inference, (3) excellent

write endurance, (4) low variation in weight update, and (5) over 100 separable

memory states. For providing all these performance characteristics, organic electro-

chemical transistors (OECTs) have been recently demonstrated as the most prom-

ising device platform.24–26 Toward the incorporation of stretchability onto OECTs,

despite some demonstrations based on strain-engineering (i.e., rigid-island or buck-

ling) designs,27,28 intrinsic stretchability has been rarely achieved.29,30 The very few

reports up to date share two major limitations (Table S1): incomplete OECT device

structures (i.e., without incorporating stretchable solid/gel-state electrolyte and

stretchable gate electrode), which is not compatible for circuit-level integration,

and inferior stretchableOECT performance from the use of engineered poly(3,4-eth-

ylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The combination of full-

device stretchability and desirable neuromorphic performance for on-body AI

computation has been hindered by the lack of stretchablematerials across the board

(including semiconductors, conductors, and dielectrics) with suitable properties for

high-performance OECTs. Moreover, toward coupling mechanical stretching onto

this new paradigm of analog computing and on-body AI analysis, a major challenge

also lies in the lack of knowledge on the mechanical strain’s influence on the imple-

mentation of artificial neural network (ANN) algorithms,which is pivotal for the further

co-design of suitable AI algorithms for stretchable neuromorphic chips.

Here, through a holistic innovation in material and device designs, we report the first

intrinsically stretchable neuromorphic device (Figures 1B–1F) that provides all the

desired computational and mechanical characteristics, including a large number

(>800) of memory states, quasi-linear/symmetric weight update, excellent switching

endurance (>108), low variation in weight update, good state retention (>104 s), and

high stretchability (100% strain). These computational properties are either compa-

rable to or even better than those of the state-of-the-art non-stretchable neuromor-

phic transistors (Table S2). The further integration of this device into a neuromorphic

array has demonstrated the ideal implementation of the basic computation in ANN

algorithms—vector-matrix multiplication (VMM)—under stretching to 100% strain.

We also implemented different types of neural-network simulations on a large-scale

array built from our stretchable neuromorphic devices, from which the training-

based classifications of a representative type of health data—electrocardiogram
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Figure 1. Stretchable neuromorphic devices for on-body processing of health data

(A) Overall role of on-body AI analysis for real-time health-data processing.

(B) Design of the stretchable neuromorphic device.

(C) Chemical structure of the stretchable redox-active semiconducting polymer, p(gT2).

(D) Organo-hydrogel with solvated NaCl salt as the stretchable electrolyte dielectric layer.

(E) Device working principle.

(F) Photos of a prototype stretchable neuromorphic chip attached to the human body with skin-like conformability.
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(ECG)—were realized. With the training and inference processes carried out on the

neuromorphic device operating under different strain levels from 0% to 100%, we

show that the computation outcome based on 1-layer convolutional neural network

(CNN) is not influenced by stretching. As a whole, these results from the device level

to the algorithm-implementation level demonstrate the promise and the possible

pathway for realizing skin-like, on-body AI computation.

RESULTS

Material and device designs of the stretchable neuromorphic device

Our stretchable neuromorphic device is designed with an extended-gate structure

(Figure 1B) that consists of four components: a redox-active semiconducting layer,

an electrolyte-type dielectric, source/drain (S/D) electrodes, and a redox-active

gate electrode. We successfully incorporated the stretchability of 100% strain to

each of the component materials that provide desired properties for OECT opera-

tions. For the semiconductor layer, stretchability is achieved on redox-active semi-

conducting polymers based on the polythiophene backbone and tri-ethylene-glycol

(TEG) side chain, namely poly-[3,30-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-

2,20-bithiophene] (p(gT2)) (Figures 1C, S1, and S2). It provides an OECT perfor-

mance close to the state of the art.31–33 For the electrolyte-type dielectric layer

that can form a continuous ion-transport pathway between the semiconductor layer

and gate electrode, we realized the stretchability by creating a hybrid organo-hydro-

gel, based on a polyacrylamide network swelled by a water-glycerol binary solvent

(Figures 1D and S3). The added NaCl inside the gel can be solvated by water and

can penetrate the semiconductor layer to dope the polymer semiconductor.
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Glycerol, which can form strong hydrogen bonding with water, is added to achieve

the long-term stability of the gel dielectric by preventing dehydration and lowering

the freezing point.34,35 The stretchable S/D electrodes in suchOECT devices need to

have electrochemical stability under the doping condition of p(gT2) and high con-

ductivity, which precludes the commonly used options of stretchable conductors

made from carbon-nanotube assemblies, Ag nanowire assemblies, liquid metal,

and stretchable PEDOT:PSS. We fulfilled such stability and conductivity require-

ments through a unique stretchable design for Au, which is a vertically grown nano-

wire array36 embedded in a poly(dimethylsiloxane) (PDMS) substrate (Figures S4–S9)

that can be stretched to 100% strain while maintaining a low sheet resistance of

�30 U/sq (Figure S9). A commercially available Ag/AgCl paste was used as the

stretchable redox-active gate electrode (Figure S10), which functions as a reference

electrode for providing a stable electrode potential. This paste is formulated to be

screen printed but can also be syringe dispensed, dipped, and sprayed. Also, this

paste is very resistant to flexing, creasing, and stretching. The device built by the

above set of materials enables voltage-driving redox reactions between the

p(gT2) layer and the Ag/AgCl gate (AgCl + [p(gT2)]#Ag+ [p(gT2)]+Cl�), which pro-
vides analog and non-volatile modulation of the channel’s conductivity (Figure 1E).

This stretchable device enabled the first realization of a skin-like neuromorphic

‘‘chip’’ with multiple devices (Figure 1F) that can function on the body with deform-

able and conformable properties.

Among all the materials, p(gT2) is the key enabler for both the high stretchability and

high computing performance of the neuromorphic device. As shown in Figures 2A,

S11, and S12, a p(gT2) film can be stretched to 100% strain without any cracks, which

should be mainly rendered by the relatively flexible polythiophene backbone. We

used the transfer-lamination method to measure the OECT performance of p(gT2)

under different strains (Figure S13). Starting from an ideal OECT performance (Fig-

ure 2B) with an on/off ratio over 103 and a normalized transconductance (Gm) of

(81G 14) S/cm, the stretching processes in parallel, and perpendicular, to the chan-

nel-length direction, respectively, lead to a slight increase and a slight decrease inGm

(Figure 2C). Upon releasing to 0% strain, Gm mostly reverts to the original value.

These trends agree very well with the changes of the mobility under these stretching

processes (Figures 2C, S14, and S15), with the onset voltage of oxidation (Vox, onset),

volumetric capacitance (C*), and the threshold voltage (VTh) remaining stable

(Figures S16 and S17). Such anisotropic response to stretching mainly comes from

the strain-induced chain alignment on this highly stretchable polymer, as confirmed

by the cross-polarized optical microscopy images (Figure S18), the increase of the

dichroic ratio from the polarized UV-visible (vis) spectroscopy (Figure S19), and the

change in the grazing-incidence X-ray diffraction (GIXD) with incident beams in par-

allel and perpendicular to the strain (Figures 2D and S20).The GIXD results also show

moderate crystallinity of the p(gT2) polymer, which should serve as a morphological

basis for the high stretchability. We can also observe the strain-induced change of

mixed face-on and edge-on packing to edge-on-dominated packing.

Neuromorphic computing performance at the strain-free state

With an ideal transistor-type transfer behavior (Figure S21) obtained from the fabri-

cated fully stretchable neuromorphic device, we tested its neuromorphic computing

performance through the two core neuromorphic properties—analog weight up-

date and state retention. Under an optimized pulsing condition, as many as 800

distinct conductance states can be obtained (Figure 2E), which is the highest number

of states reported so far for neuromorphic devices (Table S2). This is enabled by the

highC* of the p(gT2) semiconductor (227G 26 F/cm3). Following the weight update
3378 Matter 5, 3375–3390, October 5, 2022
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Figure 2. Core material characterization and neuromorphic functions of the stretchable neuromorphic device

(A) Optical microscopy and atom force microscopy (AFM) phase images of p(gT2) film under 100% strain.

(B) Transfer curves obtained from p(gT2) film in its original and stretched states.

(C) Normalized transconductance (Gm) and mobility of p(gT2) film as a function of strain. The error bar depicts the standard deviation over 10 devices.

(D) GIXD 2D patterns of p(gT2) film under 0% and 100% strains.

(E) Analog weight-update process with 800 discrete conductance states.

(F) Retention of the highest and lowest conductance states (i.e., fully potentiated and fully depressed states, respectively), with the gate disconnected

from the source electrode.

(G) LTP-LTD cycle under the optimized pulsing condition, giving the dynamic range over 100.

(H) Endurance with more than 108 writes/erase pulses.

ll
Article
(i.e., the ‘‘writing’’ process), the retention for both the fully potentiated and fully

depressed states in the ‘‘reading’’ condition (i.e., with disconnected source and

gate electrodes) can last for over 10,000 s (Figure 2F), which is sufficient for on-de-

vice training applications.20 When the ‘‘reading’’ period is further increased to 105 s,

the accumulated decay of the states should just come from the unavoidable self-dis-

charging behaviors of any electrochemical cells. In long-term potentiation-depres-

sion (LTP-LTD) cycles, a dynamic range (Gmax/Gmin) value greater than 100 was

achieved under the optimized pulse conditions (i.e., VLTP and VLTD) (Figures 2G
Matter 5, 3375–3390, October 5, 2022 3379
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and S22). Very high linearity and symmetricity are also obtained at the same time,

which, for accurate and efficient online training of ANN algorithms, could be even

more important performance characteristics than the dynamic range. To examine

the switching endurance of our device, we applied more than 108 pulses during

repeated LTP-LTD cycles, and no significant degradation of the device performance

can be observed (Figure 2H). We also investigated the switching speed of our de-

vice, and a decent response under the pulse with a width of 500 ms was observed

(Figure S23). The switching speed can be future improved by optimizing device ge-

ometry, reducing the ionic resistance of the electrolyte, etc.25 Moreover, with PDMS

packaging, the on-shelf stability of our device is demonstrated for more than

4 months (Figure S24).

Neuromorphic computing performance under stretching

We then proceeded to characterize the stretchability of the device by measuring the

LTP-LTD cycles when the device is stretched stepwise from 0% to 100% strain and

then released, in both parallel and perpendicular directions to the channels. As

shown in Figures 3A, 3B, and S25, the most obvious influence of the strain is the

moderate decreases of the conductance level of each updated weight, which should

come from the combined effects of the device’s geometry change and the strain-

induced chain alignment in the semiconducting layer, as described above. Upon

releasing to 0% strain, these changes are mostly reversible. The further 100 cycles

of stretching to 100% strain caused negligible changes to the LTP-LTD performance.

On the other hand, the high degrees of linearity and symmetricity are well main-

tained during these stretching processes. This is quantitatively analyzed using two

extracted parameters: the non-linearity index (b) and the symmetricity index

(Figures S26 and S27). As shown in Figures 3C, 3D, and S28, the stretching leads

to minimal changes to the initial b around 0.2 and 1.2 (indicating high linearity) for

LTP and LTD and to the initial symmetricity index around 70 (indicating high symme-

tricity). In addition, the state retention of the device at 100% strain is largely unal-

tered (Figure S29). These behaviors indicate the device’s well-maintained capability

for implementing ANN computation under large strains.

We further analyze the linearity in detail from 50 repeated LTP-LTD cycles (Figures 3E

and 3F) under both 0% and 100% strain. At each conductance state (G) during

repeated LTP-LTD cycles (Figure S30), the weight updates (DG) from a single write

pulse are extracted and analyzed using the cumulative distribution function (CDF), as

CDFGðDGxÞ =

Z DGx

� 15

pGðDGÞdDGx ;

in which pG (DG) is the probability distribution for DG under a certain conductance

state G. As shown by the heat plots of CDF for the DG distribution (Figures 3G–

3J), our device maintains high linearity and repeatability (i.e., low weight-update dis-

tribution) under both pristine and stretched conditions.

Array integration and the implementation of VMM

Next, toward using our stretchable neuromorphic device to achieve integrated neu-

romorphic chips capable of implementing ANN algorithms, an important step is to

integrate the single device into an array (Figure 4A) that can carry out the VMMoper-

ation (Figure 4B), which is the basic computational step in most ANN algorithms. To

demonstrate this capability of our device, we fabricated a 3-by-3 prototype array

(Figures 4C and 1F) by patterning all the components: the p(gT2) semiconductor,

the organo-hydrogel, the stretchable Au nanowire electrodes, and the stretchable

Ag/AgCl reference gate (see experimental procedures and Figure S31). In our
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Figure 3. Neuromorphic performance under stretching

(A and B) LTP-LTD curves of the device under stretching in parallel to the charge transport direction from 0% to 100% strain and subsequently releasing

(A), and 100 continuous repeating cycles (B).

(C and D) Non-linearity index and symmetricity index under different (C) strains and (D) stretching cycles in the direction parallel to the charge transport

direction. The error bar depicts the standard deviation over 3 devices.

(E and F) Reproducibility of conductance change (DG) over 50 LTP-LTD cycles under (E) 0% and (F) 100% strain.

(G–J) The cumulative distribution function (CDF) heatmap shows the extract DG distribution from (E) and (F) at each conductance state G.
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design, the source electrodes from the three neuromorphic devices in each row are

connected as three output lines. The measured LTP-LTD cycles from each of the 9

devices in the array all show similar performances (Figure S32) to the single device

reported above. To demonstrate VMM operations, we first mapped a random set

of conductance states {Gij} (Figures 4D and S33) into the 9 devices in the array.

Then, different sets of input voltage signals (VIn,1, VIn,2, VIn,3) were applied to the

three input lines of the array (Figure 4A). According to Kirchhoff’s law, the three

output currents should be the inner product between the input voltage vector and

the conductance matrix, as

Ij =
X3

i = 1

Vi,Gij:
Matter 5, 3375–3390, October 5, 2022 3381
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Figure 4. Stretchable neuromorphic array and its implementation of vector-matrix multiplication (VMM)

(A and B) Circuit architecture (A) for the function of the neuromorphic device array in implementing VMM (B) in ANN algorithms.

(C) Expanded schematic of a 3-by-3 prototype stretchable neuromorphic array.

(D) The mapped conductance states in the array, with VIn,i as the reading voltage applied to the ith row of the crossbar and Ij as the readout current at the

jth column.

(E and F) Corresponding relationship between measured and calculated current values from the read output column, with the array at 0% strain (E) and

100% strain (F), respectively.
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As shown in Figures 4E and 4F and Table S3, the measured output currents for each

set of input voltage signals agree highly well with the calculated values from the

above multiplication equation, under both 0% and 100% strain on the array. This

confidently demonstrates that our stretchable neuromorphic array has an ideal capa-

bility in implementing VMM-based ANN algorithms, without being influenced by

stretching.Weexpect that the device number anddensity for implementing full-scale

ANN algorithms can be further improved by usingmore sophisticated additive print-

ing and photolithography methods for patterning each component in the array.12
Classification for ECG patterns simulated on the stretchable neuromorphic

platform

Finally, we tested the AI-based data analysis performance of a larger-scale intrinsi-

cally stretchable neuromorphic array and studied the influence ofmechanical stretch-

ing through the simulated implementation of different types of algorithms based on

the extracted performance of our device under different strain conditions (Tables S4

and S5). First, we compared the data analysis performance of our device with other

neuromorphic platforms on the standard AI benchmark Modified National Institute

of Standards and Technology (MNIST) for hand-written digits recognition. The

training accuracy (>95%) obtained with a simple 2-layer multilayer perceptron

(MLP) model is very close to the ideal training performance with stochastic gradient

descent (Figure S34). Next, to correlate our stretchable neuromorphic computing
3382 Matter 5, 3375–3390, October 5, 2022
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Figure 5. Simulated classification function for ECG patterns on the stretchable neuromorphic platform

(A) Schematics of five classes of human ECG waveforms: N, S, V, F, and Q.

(B) A 1-layer convolution neural network with 187 input neurons, filter = 32, kernel = 5, and 5 output neurons.

(C and D) Training curves at different strain conditions.

(E–H) Confusion matrixes for a classification test of the ECG patterns at different strain levels.
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devices with wearable health-monitoring applications, we applied AI data analysis

based on ANNs constructed by extracting parameters from our device to the classi-

fication of ECG signals using the Physionet’s MIT-BIH Arrhythmia dataset.37 The

source of these ECGs was obtained by the Arrhythmia Laboratory at Beth Israel Hos-

pital. Medically, ECGs can be classified into normal (N) and four abnormal classes

(S, V, F, and Q) based on the patterns in the timing and strength of the electrical sig-

nals (Figure 5A; Table S6), which can be utilized for the initial fast screening of cardiac

disorders. From the full ECG dataset, we created the largest possible balanced

subset for validation, with 3,200 training and 800 testing samples for each class.

We first applied a 1-layer CNN model to the ECG dataset (Figure 5B; experimental

procedures). With our model simulated on the neuromorphic platform under

‘‘stretching’’ from 0% to 100% strain (assuming a quasi-uniform distribution of strain

on the simulated chip), the final training accuracy (achieved after 100 training epochs)
Matter 5, 3375–3390, October 5, 2022 3383
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remains at a high level around 90% (Figures 5C and 5D), which reveals the algorithmic

robustness in the scaled device performance to changes from stretching. The training

accuracy could even be further improved by using the full dataset. Next, we studied

the effect of device stretching on inference accuracy for the ECG classification. This is

important because, for the practical scenarios we are envisioning, the stretch condi-

tions will fluctuate during use, and they will in general be different from the condition

under which the model was trained. The 5-by-5 confusion matrixes (Figures 5E-5H)

illustrate the high classification accuracies on all five classes of ECG signals. Notably,

this performance was consistently achieved whether the training and inference took

place on the neuromorphic chip under the same or different strains. This, for the first

time, clearly demonstrates the feasibility of running an ANN algorithm on a stretch-

able neuromorphic platform with the AI function minimally influenced by mechanical

stretching on hardware, which is enabled by the linearity at both the device and algo-

rithm levels: the neuromorphic transistor maintains high weight-update linearity un-

der different strains; and the AImodel in use, CNNwith the rectified linear unit (ReLU)

activation function, processes data in a piecewise linear fashion.

Besides CNN, we also built and tested a long short-termmemory (LSTM) model (Fig-

ure S35A), which is more suitable for processing time-series signals such as ECG and

other types of physiological signals. Under static strains from 0% to 100%, LSTM

indeed achieved an even higher training accuracy of �95% (Figures S35B and

S35C). However, unlike CNN, when the strain-state difference between inference

and training is greater than 20%, LSTM’s inference accuracy is observably compro-

mised (Figure S36). This is due to the use of the non-linear tanh function as a part

of the internal dynamics of LSTM’s cell and the recurrent nature of this architecture.

This comparison suggests the emerging need for innovations in AImodels for accom-

modating the linear weight scaling from the stretching of wearable neuromorphic

chips while achieving high recognition accuracy for health-data-type time-series sig-

nals. This is a unique research opportunity in hardware-software co-design.
DISCUSSION

From the redox-active semiconducting polymer to the neuromorphic device and

array and, finally, AI algorithmic functions, the high stretchability needed for on-

skin integrations has been successfully combined with the neuromorphic computing

performance that is on par with the state of the art. This streamline of research opens

the path and lays the foundation for incorporating neuromorphic-computing-based

AI analysis into wearable healthcare devices, in a skin-compatible and -conformable

form factor. Besides the neuromorphic devices, full neuromorphic systems typically

also require peripheral circuits, for which stretchability could be realized based on

the ongoing developments of stretchable field-effect transistors (FETs) and cir-

cuits8,9 toward achieving more complicated circuit functions. Therefore, in future

research, further improvements of the integration level, the combination with other

stretchable circuit components (e.g., switches, hardware-based neurons, and FET-

based periphery circuits), and the co-design of new algorithms can lead to the real-

ization of wearable devices for personalized, precision, and closed-loop healthcare

and also benefit other technology domains such as soft intelligent robots.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Sihong Wang (sihongwang@uchicago.edu).
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Materials availability

p(gT2) (Mn = 79.5 kDa, polymer dispersity index [PDI] = 2.69; Figure S2) was synthe-

sized according to a reported method in literature.38 Polymethyl methacrylate

(PMMA; 495 A6, Micro-Chem Corp); (3-aminopropyl)trimethoxysilane (APTMS;

97%, Alfa Aesar); gold(III) chloride trihydrate (HAuCl4; Acros Organics); sodium

borohydride (NaBH4; 99%, Acros Organics); trisodium citrate dihydrate (99%, Alfa

Aesar); 4-mercaptobenzoic acid (4-MBA; >95%, TCI); L-ascorbic acid (L-AA; Fisher

Chemical) acrylamide monomer (TCI); N, N0-methylene(acrylamide) (99%, Sigma

Aldrich); ammonium persulfate (R98%, Sigma Aldrich); N, N, N0 N0-tetra-
methylethylenediamine (TEMED; �99%, Sigma Aldrich); benzophenone (Sigma

Aldrich); silver/silver chloride (Ag/AgCl) silicone paste (Creative Materials); PDMS

elastomer base and curing agent (Sylgard 184, Dow Corning); ethyl alcohol (200

proof, R99.5%, Sigma Aldrich); and trimethylchlorosilane (TMS, Sigma Aldrich)

were used as received.

Data and code availability

The data that support the findings of this study are available within the paper and its

supplemental information files. Additional data and files are available from the cor-

responding author upon reasonable request.

Synthesis of Au-nanowire electrodes on a PDMS substrate

The Au nanowires were synthesized according to the reported methods36 with some

modifications (Figure S4). Firstly, the PMMA solution (495K A6) was spin-coated on a

plasma-treated silicon wafer at a speed of 1,500 RPM for 60 s, and then the sample

was baked at 180�C for 10 min. After that, a polyethylene terephthalate (PET)-tape-

based shadow mask was laminated on the surface of PMMA, and then the sample

was processed in plasma for several minutes. Subsequently, the shadow mask was

removed, and the sample was immersed in an absolute ethanol solution of APTMS

(6 mL/mL) for 2 h. After rinsing with ethanol and drying in a stream of nitrogen, the

sample was immersed in the gold-seed solution for another 2 h to anchor the gold

seeds on the surface of the plasma-treated area of PMMA. The initial Au seed solu-

tion for Au-nanowire growth was prepared by reducing 0.25 mM HAuCl4 with 6 mM

NaBH4 and 0.5 mM trisodium citrate dihydrate in an aqueous solution. After Au seed

deposition, the sample was washed with deionized (DI) water and dried with nitro-

gen flow. Then, the sample was immersed in Au-nanowire growth solution

(ethanol/water: v/v = 1), which contained a ligand MBA (1.1 mM), L-AA (16.4 mM),

and HAuCl4 (6.8 mM). After several minutes of growth, the samples were rinsed

with ethanol and dried naturally under ambient conditions. PDMS base and curing

agent were mixed (w/w = 15:1) and spin coated on the sample at 400 RPM. After de-

gassing, the sample was heated at 80�C for several hours. The PDMS was peeled off

the sample, and the patterned vertical gold nanowire electrode was embedded in

the PDMS film.

Preparation of organo-hydrogel dielectric layers on the surface of PDMS

A prepared PDMS (base/curing agent: w/w = 15:1) thin film was washed thoroughly

with methanol and DI water. Then, the surface of the PDMS thin film was pretreated

by immersing the sample in a benzophenone solution (10 wt % in ethanol) for 3 min

at room temperature. After that, the PDMS thin film was washed three times with

methanol and dried with nitrogen gas. The organo-hydrogel was synthesized at

the surface of the benzophenone-treated PDMS. Briefly, 1.42 g acrylamide mono-

mer, 4.5 mg N, N0-methylene(acrylamide) cross-linker, 2.3 mg ammonium persulfate

initiator, and 1.8 mg TEMED accelerator were dissolved in 10 mL DI water. The

mixed solution was bubbled with nitrogen gas before we injected the solution
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into the mold at the surface of PDMS. After injection, the sample was put under UV

light. After curing, the mold was removed, and the synthesized hydrogel was

bonded firmly on the surface of PDMS. The sample was immersed in DI water for

about 24 h and then immersed in a glycerol/water (3:1 v/v) mixed solution (contain-

ing 0.1 M NaCl) for 24 h to obtain the final organo-hydrogel.

Fabrication of stretchable neuromorphic devices

First, p(gT2) solution (6 mg/mL in chloroform) was spin coated on octadecyltrime-

thoxysilane (OTS)-functionalized Si substrate at 500 RPM for 30 s, followed by an-

nealing at 110�C for 1 h in the glovebox. Stretchable Ag/AgCl paste was blade

coated onto the PDMS substrate with patterned vertical Au-nanowire electrodes. Af-

ter the curing of the Ag/AgCl paste, the sample was plasma treated for 30 s. Then,

the p(gT2) film was transferred onto the channel area of the patterned vertical Au-

nanowire electrode. Finally, the organo-hydrogel/PDMS thin film was laminated

onto the top of the semiconductor and the gate. The packaging of the device was

fabricated by pouring the PDMS solution (base/curing agent: w/w = 15:1) on the sur-

face of the device and curing at room temperature.

Fabrication of neuromorphic device array

The manufacturing process of the array electrode is shown in Figure S5. The silicon

wafer was treated with oxygen plasma and placed in a container with a small vial

(1–2 mL) of TMS in a fume hood. The container was then sealed tightly, and the sil-

icon wafer was exposed to TMS vapor for 2 h at room temperature. The sample was

then taken out and washed with isopropyl alcohol (IPA) and DI water followed by

blow drying with nitrogen gas. Subsequently, S1813 was spin coated on the surface

of the sample at 2,000 RPM for 60 s, followed by baking at 115�C for 60 s. Electrode

patterns were formed via a conventional photolithography process. After exposure,

the sample was immersed in developer solution for 60 s, followed by immersing it in

DI water for 60 s. Subsequently, the substrate was rinsed with DI water and dried by

nitrogen flow. After that, the sample was treated with oxygen plasma for 4min. Then,

S1813 was removed by immersing the sample in absolute ethanol solution for 5 min.

After that, the sample was directly immersed into the absolute ethanol solution of

APTMS (6 mL/mL) for 2 h. After rinsing with ethanol and drying in a stream of nitrogen

gas, the sample was immersed in the gold-seed solution for another 2 h. After Au

seed deposition, the sample was washed with DI water and dried with nitrogen

flow. Then, the sample was immersed into an Au-nanowire growth solution. After

several minutes of growth, the samples were rinsed with ethanol and dried naturally

under ambient conditions. PDMS base and curing agent were mixed (w/w = 15:1)

and spin coated on the sample. After degassing, the sample was heated at 80�C until

fully cured. The PDMS was peeled off the sample, and the patterned vertical gold

nanowire electrode was embedded in the PDMS film. The patterned organo-hydro-

gel was fabricated on a PDMS substrate with a mask (see Figure S31). Briefly, a pre-

pared PDMS (base/curing agent: w/w = 15:1) thin film was washed thoroughly with

methanol and DI water. Then, the PDMS thin film was pretreated by immersing the

sample in a benzophenone solution (10 wt % in ethanol) for 3 min at room temper-

ature. After that, the PDMS thin film was washed 3 times with methanol and dried

with nitrogen gas. Then, a PET-tape-based shadow mask was laminated on the sur-

face of PDMS. Organo-hydrogel precursor solution was added to the patterned

area, and then another PET film was laminated on top. After UV curing, the mask

was removed, and the sample was soaked in DI water for 24 h and then soaked in

a glycerol-water binary solution (containing 0.1 M NaCl) for another 24 h. The

p(gT2) film was fabricated by spin coating p(gT2) solution (6 mg/mL in chloroform)

on top of the OTS-functionalized Si wafer at 500 RPM for 30 s, followed by annealing
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at 110�C for 60 min in the glovebox. After that, the p(gT2) film was patterned

through physical isolation by a razor. The device array was fabricated by firstly blade

coating the Ag/AgCl paste onto the gate area of the array electrode. Then, the Ag/

AgCl paste was cured at 80�C for 40 min. Subsequently, the sample was treated with

oxygen plasma for 30 s. After that, PDMS was used to transfer the patterned p(gT2)

film to the channel area of the array electrode. Finally, the patterned organo-hydro-

gel was laminated on the sample to complete the array manufacturing.

Device characterization

The basic OECT performance was done by using a Keithley 4200 semiconductor sys-

tem. The neuromorphic performance was measured by using a Keithley 4200 semi-

conductor system, two dual-channel Rigol DG 4162 function generators, a Keithley

6514 Programmable Electrometer, a National Instruments NI-DAQ, and custom-

built circuits using commercial off-the-shelf components. Specifically, the stretch-

ability and the long-term storage-stability tests of the neuromorphic transistors

were done by using the Keithley 4200 semiconductor system. During testing, a

10 MU resistor was connected in series with the gate of the neuromorphic device

to ensure that no unintentional loss of state occurred. The devices were tested by

applying 400 consecutive potentiation pulses in �2.5 V and 200 ms, followed by

400 consecutive depression pulses in 1.3 V and 200 ms, to the gate through the

resistor. Before testing, all devices were programmed to have similar initial conduc-

tivity. Other neuromorphic performances, including dynamic range, switching

endurance, reproducibility of conductance change, and array performance, were

collected by using two dual-channel Rigol DG4162 function generators, a Keithley

6514 Programmable Electrometer, a National Instruments NI-DAQ, and custom-

built circuits using commercial off-the-shelf CMOS switches (MAX4522ESE+).

Machine-learning-model architecture

The training and inference of the deep neural networks in this work were imple-

mented using deep-learning frameworks TensorFlow39 and PyTorch.40 The MLP

model for the MNIST classification task includes two hidden layers of sizes 64 and

32 and an output layer with size 10, consisting of 50,240 + 2,080 + 330 = 52,650

weight and bias parameters. The LSTM model for the ECG signal-classification

task includes a standard LSTM module and an attention head over the time dimen-

sion, consisting of 40,800 + 9,505 = 50,305 parameters. The CNNmodel for the ECG

signal-classification task includes a convolution layer with 32 filters and kernel size 5,

followed by a flatten layer, a hidden layer of size 32, and an output layer of size 5. It

consists of 192 + 187,424 + 165 = 187,781 parameters. All model parameters are

trainable. For reference performance, these models were trained using standard

backpropagation with the stochastic gradient descent (SGD) algorithm41 imple-

mented in the deep-learning frameworks.

Weight update with Manhattan Rule

Neuromorphic devices use conductance to encode model parameters.16 Because

conductance cannot be negative, two conductance values are needed to express

the full range of a synaptic weight. In our simulation, following the convention in

analog training, we encode the weight as the difference between the conductance

of two devices (W =G+ –G�). The synaptic weight can thus be updated by adjusting

the corresponding pair of conductance states through potentiation or depression.

For example, if the weight needs to be strengthened, G+ increases and G� de-

creases at the same time with the application of LTP/LTD pulses, thereby increasing

the synaptic weight. However, unlike the SGD algorithm, the Manhattan Rule42 for

analog training only uses the sign information for the needed weight update;
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the magnitude of weight change is fixed following an update pulse. For our neuro-

morphic device, the change amount depends on both the device’s strain state (i.e.,

strain) and the current conductance value. Specifically, the increase and decrease of

G+/G� is determined by the following equations:43

Gn+ 1 = Gn + DGP = Gn +ape
� bp

Gn �Gmin
Gmax �Gmin ; ðG+ or G � [ Þ

and

Gn+ 1 = Gn + DGD = Gn � aDe
� bD

Gmax �Gn
Gmax �Gmin ; ðG+ or G �YÞ;

whereGn andGn+1 stand for the synaptic conductance before and after the nth pulse

is applied, and the material parameters a and b help model the conductance change

amount and the non-linearity, respectively (Tables S4 and S5). All the parameters in

these equations (a, b, Gmin, Gmax) were extracted by fitting the LTP-LTD curve of our

devices.

Weight update with cumulative Manhattan Rule

TheManhattan Rule is a weaker version of the backpropagation algorithm: by using only

the sign of the gradient,42 it is ineffective at dealingwith situationswhere the needed up-

date amounts differ substantially among all the parameters in a network. To combat this

problem, we designed a variation of theManhattan Rule, called the CumulativeManhat-

tan Rule, to simulate the training of the neural network. The key intuition is to improve the

resolution ofweight updates by accumulatinggradients across batches.Our variant uses

the sign of the sum of all gradients during the current training period. Whereas the orig-

inalManhattanalgorithmdiscardsmagnitudebetweenbatches,ourspreserves this infor-

mation. For example, if a largepositivegradient is followedbymany small negative ones,

theoriginalmethodwould applymorenegativechanges, resulting inanoverall update in

thewrongdirection.Ouralgorithm, incontrast,wouldkeep the rightdirectionby tracking

the aggregategradients. Simulation results show that our algorithmgenerally converges

faster and achieves better performance on all models we experimented with. Therefore,

all simulation results in thisworkwereobtainedbasedonourCumulativeManhattanRule.

Simulation of the strain impact on machine learning

Under different strain conditions, the device conductance responds to pulses differ-

ently. This relationship is modeled by the equations in the previous section on

weight updates. By subjecting the material to a wide range of strain conditions

and recording the pulse response curves, we extracted the parameters (a, b, Gmin,

Gmax) for each strain condition and stored them in a lookup table. Thus, to simulate

the impact of a constant strain, we only need to look up the parameters from the ta-

ble and apply the conductance updates accordingly in the simulation of model

training. If the strain changes, all weights will be affected. The new conductance

value is obtained by scaling the original value by a constant factor, which is roughly

estimated from the transfer curve measured under different strains (Figure S21). The

scaling factor between two strain conditions is derived by averaging the ratio of

experimentally recorded conductance values in the same range.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.matt.

2022.07.016.
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