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LIM domain proteins in cell mechanobiology
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Abstract

The actin cytoskeleton is important for maintaining mechanical homeostasis in adher-

ent cells, largely through its regulation of adhesion and cortical tension. The LIM (Lin-

11, Isl1, MEC-3) domain-containing proteins are involved in a myriad of cellular

mechanosensitive pathways. Recent work has discovered that LIM domains bind to

mechanically stressed actin filaments, suggesting a novel and widely conserved

mechanism of mechanosensing. This review summarizes the current state of knowl-

edge of LIM protein mechanosensitivity.
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1 | CELLS SENSE AND RESPOND TO
MECHANICAL FORCES

Mechanical force plays an essential role in the control of cell shape

and motion and serves as a key input in mechanotransduction path-

ways controlling cell survival, growth, and fate. Cells are subject to a

myriad of external forces, including those from neighboring cells, fluid

flow, or osmolarity. In addition to these, mechanoenzymes within the

cell interior generate forces that are transmitted across cellular scales

via the cytoskeleton. These internally generated forces enable

cell shape change and are critical to cellular mechanosensing

(e.g., environmental stiffness sensing; Trappmann & Chen, 2013). Cells

sense and convert mechanical stimuli into chemical signals to initiate

downstream signaling pathways (Wang, Tytell, & Ingber, 2009). Exam-

ples of force-sensitive chemistries of cytoplasmic proteins include

force-dependent changes in binding affinity (e.g., integrins, actin bind-

ing proteins) or enzymatic activity (e.g., myosin II; Greenberg, Arpa�g,

Tüzel, & Ostap, 2016; Jégou & Romet-Lemonne, 2021). These

molecular-scale transducers can then give rise to mechanical sensitivi-

ties of cytoskeletal arrays and/or regulate signaling and transcriptional

pathways. While mechanotransduction pathways are well appreciated

in cell physiology, we are just beginning to understand the diversity of

force-sensing mechanisms within the cytoskeleton.

2 | MECHANOSENSING IN
ADHERENT CELLS

Cells are mechanically coupled to their local environment through

adhesions to the extracellular matrix (ECM; e.g., focal adhesions, FAs)
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and surrounding cells (e.g., adherens junctions, AJs; Figure 1a). The

actin cytoskeleton connects adhesions and transmits forces across the

cell. Force sensitivity of adherent cells underlies adhesion regulation,

cellular force generation, and mechanical properties of cells and tissues

(Bieling et al., 2016; Courtemanche, Lee, Pollard, & Greene, 2013;

Fletcher & Mullins, 2010; Moore, Roca-Cusachs, & Sheetz, 2010;

Ohashi, Fujiwara, & Mizuno, 2017; Wang, Butler, & Ingber, 1993;

Yusko & Asbury, 2014; Zhong et al., 1998). The mechanical properties

of a cell's environment are reflected by the actin cytoskeleton archi-

tecture. For example, F-actin networks in cells that are growing on

rigid matrices, or within tissues that are being stretched, respond by

self-organizing into thick bundles and larger FAs, which is thought to

be important for generating and withstanding increased force (Smith

et al., 2010; Yoshigi, Hoffman, Jensen, Yost, & Beckerle, 2005).

The actin cytoskeleton includes many different actin filament

(F-actin)-based networks that vary in organization and composition.

The architecture of FAs and AJs is comprised of stratified layers of

distinct proteins that work together to transmit forces sensed by

membrane-spanning adhesion receptors to actin filaments (Chen &

Singer, 1982; Franz & Müller, 2005; Kanchanawong et al., 2010;

Zaidel-Bar, Itzkovitz, Ma'ayan, Iyengar, & Geiger, 2007). Both FAs and

AJs exhibit force-dependent changes to their composition and size,

which is typically mediated by myosin-II activity within the actin cyto-

skeleton (Kuo, Han, Hsiao, Yates Iii, & Waterman, 2011) but can also

be driven by external force (Riveline et al., 2001).

Stress fibers (SFs) are contractile bundles of 10–30 actin filaments

of mixed polarity and alternating regions of the crosslinker α-actinin

and nonmuscle myosin, reminiscent of the sarcomeric organization in

striated myofibrils (Cramer, Siebert, & Mitchison, 1997; Hotulainen &

Lappalainen, 2006; Tojkander, Gateva, & Lappalainen, 2012). While

sarcomere architecture allows for recurring contraction and relaxation

cycles, the less organized SF is built for continuous isometric

F IGURE 1 Mechanically stressed cells and LIM domain proteins. (a) Schematic of a layer of epithelial cells on top of an extracellular matrix

(ECM). (b) Simple schematic of a LIM domain: Two zinc finger motifs. The magenta circles represent the well-conserved residues (typically
cysteine or histidine) that chelate the zinc molecules. The remaining amino acid sequence varies between LIM domains. (c) Domain organization
of the 14 classes of LIM domain proteins. Magenta ovals represent individual LIM domains. Dotted lines are used to abbreviate a few rather long
structures. Other domain abbreviations: LD, Leucine rich aspartate domains; PET, prickle, espinas, testin; PDZ, membrane anchoring domain; HP,
headpiece domain for F-actin binding; M, Myo5B interacting domain; N, nebulin; SH3, Src homology 3; CH, calponin homology; HB, homeobox.
(d) Venn diagram showing the overlap of LIM domain proteins that associate with the three main networks: FA, Focal adhesions; AJ, adhesion
junctions; SF, stress fibers
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contraction (Burridge, 1981; Pellegrin & Mellor, 2007). SF formation,

growth, orientation, and maintenance are sensitive to both externally

and internally generated forces (Chrzanowska-Wodnicka & Burr

idge, 1996). The constant tension makes SFs susceptible to damage,

and localized damaged regions form spontaneously or in response to

the application of external forces (Smith et al., 2010). Thus, repair of

such SF strain sites (SFSS) is important for maintaining the mechanical

homeostasis of the actin cytoskeleton, allowing cells to maintain their

integrity and adapt to force fluctuations. It is likely that the

rearrangements of actin cytoskeleton networks in response to exter-

nal force may also be driven by a similar force-induced remodeling.

For instance, repeated cycles of uniaxial stretch results in both SF

thickening and reorientation perpendicular to the stretch axis

(Hayakawa, Sato, & Obinata, 2001; Kaunas, Nguyen, Usami, &

Chien, 2005; Kim-Kaneyama et al., 2005; Yoshigi et al., 2005).

Recent progress has elucidated the force-dependent biochemistry

of actin binding proteins (e.g., cadherins, vinculin, talin, alpha-catenin;

Buckley et al., 2014; Huang, Bax, Buckley, Weis, & Dunn, 2017;

Huveneers & de Rooij, 2013; Mei et al., 2020; Vigouroux, Henriot, &

Le Clainche, 2020). These studies have primarily considered how

forces applied to actin binding proteins (ABPs) alter their binding

affinity to F-actin. However, the actin filament itself can twist, stretch,

and compress, which may also alter the binding affinity of ABPs

(Galkin, Orlova, & Egelman, 2012). In this scenario, the actin filament

itself is the force responsive element and could confer mechanical

information about the cell and its environment to various signaling

and transcriptional pathways (Discher, Mooney, & Zandstra, 2009;

Engler, Sen, Sweeney, & Discher, 2006).

3 | LIM DOMAIN PROTEINS IN
MECHANOTRANSDUCTION PATHWAYS

Proteomic screens of mechanotransduction pathways have revealed

an abundance of proteins that contain one or more LIM (Lin-11, Isl1,

MEC-3) domains (Freyd, Kim, & Horvitz, 1990; Karlsson, Thor,

Norberg, Ohlsson, & Edlund, 1990; Way & Chalfie, 1988). The LIM

domain is a � 60 amino acid sequence that forms a double zinc finger

protein–protein or protein-DNA binding interface (Michelsen,

Schmeichel, Beckerle, & Winge, 1993; Figure 1b). LIM domains occur

in diverse multidomain protein organizations and are found in a wide

range of eukaryotic proteins (LIM proteins), including �70 human

genes that can be divided into 14 classes (Figure 1c; Koch, Ryan, &

Baxevanis, 2012). Early in the evolution of animal multicellularity,

there was a large expansion in the number of LIM proteins as well as

LIM “promiscuity”, that is, LIM has combined within multidomain pro-

teins with many other domains of different structure and function

(Basu, Carmel, Rogozin, & Koonin, 2008; Koch et al., 2012). This

domain promiscuity has resulted in a functionally diverse LIM protein

family whose members play roles in a variety of biological processes

but especially those implicated in generating and responding to

mechanical forces (Figure 1c; Table 1; Kadrmas & Beckerle, 2004;

Smith et al., 2014).

There are 41 LIM proteins found to be enriched at cell adhesions

and/or the actomyosin cytoskeleton (Smith et al., 2014; Figure 1d). To

date, 26 LIM proteins have been identified in FAs (including zyxin,

paxillin, and LIMD1), and the localization of 21 of these is sensitive to

myosin II activity (Kuo et al., 2011; Schiller, Friedel, Boulegue, &

Fässler, 2011). Similarly, at least 11 LIM proteins display force-

sensitive localization to AJs. Numerous LIM proteins co-localize to

both FAs and SFs, FAs and AJs, or all three organelles (Figure 1d).

Some LIM proteins contain known actin binding domains (e.g., the

[CH] domain) that could drive their localization to F-actin networks.

However, many that localize to the actin cytoskeleton lack these.

Standard biochemical approaches have not detected binding of LIM

domains to actin filaments. One notable exception is the CRP class,

which canonically binds and bundles actin filaments via their LIM

domains (Grubinger & Gimona, 2004; Hoffmann et al., 2014; Thomas

et al., 2006). CRP is an ancient class as it is the only mammalian LIM

protein class also found in plants, suggesting the possibility that

canonical actin binding could be an ancestral function of the LIM

domain. For instance, Muscle LIM protein (MLP) is a CRP class protein

that has been implicated in mechanoresponse to muscle sarcomere

stretching (Vafiadaki, Arvanitis, & Sanoudou, 2015).

Several studies have implicated LIM proteins in cell signaling and

gene expression mechanotransduction pathways (Ibar et al., 2018;

Martin et al., 2002). For instance, four-and-a-half LIM domains

2 (FHL2) is implicated in mechanical regulation of the cell cycle. On a

soft matrix, FHL2 dissociates from F-actin networks and becomes

more concentrated in the nucleus where it acts as a transcriptional

cofactor to increase p21 gene expression, which regulates cell cycle

progression and inhibits growth (Nakazawa et al., 2016). Most force-

sensitive LIM proteins display nuclear shuttling raising questions as to

whether detection of forces via LIM proteins is connected to localiza-

tion and function inside the nucleus (Figure 2). Similarly, several LIM

proteins in the Ajuba/Zyxin classes exhibit force-dependent binding

to AJs to regulate hippo and Yap/Taz signaling pathways (Rauskolb,

Pan, Reddy, Oh, & Irvine, 2011; Rauskolb, Sun, Sun, Pan, &

Irvine, 2014).

4 | FORCE-SENSITIVE LOCALIZATION OF
LIM PROTEINS IN ADHERENT CELLS

The LIM domain-containing region (LCR) has been found to drive the

subcellular localization for a large number of LIM proteins (Brown

et al., 1996; Hoffman et al., 2012; Smith et al., 2013). This has been

dissected most carefully for the LIM protein zyxin, which localizes to

SFs, FAs, and AJs in a force-dependent manner. Zyxin is necessary for

stretch-mediated SF remodeling, SFSS repair, and FA maturation

(Hoffman et al., 2012; Smith et al., 2013, 2014; Yoshigi et al., 2005).

The LCR of zyxin resides at the C-terminus and contains three

LIM domains in tandem separated by short unstructured linkers. The

LCR is required for zyxin recruitment to SFSS and FAs. For full length

zyxin, any one of the individual LIM domains are not sufficient for its

localization (Uemura et al., 2011). Recent results demonstrate that at
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least two tandem repeats of LIM1 or LIM3 are sufficient for LCR local-

ization to SFSS (Winkelman, Anderson, Suarez, Kovar, &

Gardel, 2020), but further work is needed to demonstrate this suffi-

ciency for the full-length protein. Once localized, zyxin's N-terminal

functionality mediates SFSS repair by recruiting factors that promote

actin filament polymerization (Ena/VASP) and crosslinking (α-actinin;

Smith et al., 2014). Therefore, the LCR regulates force-sensitive

recruitment, while the functional role is dependent on the additional

domains (Smith et al., 2010).

5 | LIM DOMAINS FROM DIVERSE
PROTEINS BIND STRESSED ACTIN
FILAMENTS

Recent research has made progress in understanding the mechanism

of LIM protein force-sensitive localization to the actin cytoskeleton.

Two studies used complementary experimental approaches to screen

LIM proteins for force-sensitivity in cells. One employed cell

stretching experiments to systematically quantify the enrichment of

full length and LCR constructs of LIM proteins on stretched SFs (Sun

et al., 2020), while the other quantified LCR recruitment to SFSS

(Winkelman et al., 2020). Together, these studies identified force-

sensitive LCRs in 18 LIM proteins from Zyxin, Paxillin, Tes, and

Enigma classes from both animals and yeasts (Sun et al., 2020; Win-

kelman et al., 2020). These complementary experimental approaches

revealed that cytoskeletal strain sensing via the LIM domains is wide-

spread in cells and existed in the last common ancestor of yeasts and

animals.

To isolate the force-sensitive substrate of LIM, both groups used

in vitro approaches to reconstitute force-sensitive recruitment with a

minimal set of purified components (Sun et al., 2020; Winkelman

et al., 2020). Two types of in vitro reconstitution assays were utilized

to test the stress sensitivity of a subset of LIM proteins, and both

TABLE 1 A subset of LIM domain proteins and their corresponding mechanotransduction pathways

LIM

protein Localization

LCR-

dependent Binding partners Mechanotransduction pathway References

Zyxin FA, AJ, SF Yes α-Actinin, VASP Ena/VASP (Drees et al., 2000; Hoffman, Jensen,

Chaturvedi, Yoshigi, &

Beckerle, 2012; Li & Trueb, 2001;

Reinhard et al., 1999; Smith

et al., 2013; Uemura, Nguyen,

Steele, & Yamada, 2011)

Paxillin FA, SF Yes Vinculin, FAK, Src Rho GTPases, Microtubules (Brown, Perrotta, & Turner, 1996;

Deakin & Turner, 2008; Efimov

et al., 2008; L�opez-Colomé, Lee-

Rivera, Benavides-Hidalgo, &

L�opez, 2017; Smith et al., 2013;

Turner, Glenney Jr, &

Burridge, 1990; Watanabe-

Nakayama et al., 2013; Weng,

Taylor, Turner, Brugge, & Seidel-

Dugan, 1993)

LIMD1 AJ, FA Yes WTIP, LATS1 HIPPO (Huggins & Andrulis, 2008; Ibar

et al., 2018; G. Sun & Irvine, 2013)

Ajuba AJ Yes α-Catenin, retinoic acid
receptor

HIPPO, Rac (Das Thakur et al., 2010; Hou

et al., 2010; Ibar et al., 2018; Marie

et al., 2003; Pratt et al., 2005;

Razzell, Bustillo, & Zallen, 2018)

FHL2 FA Yes Integrin, actin, titin, β-catenin Wnt, cell cycle, p21 (Johannessen, Møller, Hansen, Moens,

& Van Ghelue, 2006; Nakazawa,

Sathe, Shivashankar, &

Sheetz, 2016)

Testin FA Calcium sensing receptor Rho kinase (Magno et al., 2011; Smith, Hoffman,

& Beckerle, 2014)

Prickle FA CLASPs, LL5-β, disheveled,
membrane

Microtubules and CLASPs,

frizzled/Dischevelled, Wnt

(Han Cheng et al., 2016; Lim

et al., 2016; Sweede et al., 2008;

Veeman, Slusarski, Kaykas, Louie, &

Moon, 2003)

Pdlim5 FA α-Actinin, protein kinase C,

protein kinase D, ID2

TGF-beta (Cheng et al., 2010; Cheng

et al., 2016; Kuo, 2013)

Pdlim7 FA YAP (Elbediwy et al., 2016; Kuo, 2013)

TRP6 AJ Vinculin, LATS1/2 (Dutta et al., 2018)
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showed localized recruitment of LIM domains directly to mechanically

stressed regions of F-actin. Sun et al. applied tensile stresses to actin

filaments with a modified gliding filament assay. Single filaments were

pulled in opposite directions via surface-attached myosins with bar-

bed (myosin V) and pointed (myosin VI) end directionality. LIM pro-

teins localize to actin filaments only after initiation of myosin activity

facilitates tensed filaments. Actin filament breakage, coinciding with

stress relief, results in LIM protein dissociation. Similarly, Winkelman

et al. reconstituted contractile actin networks comprised of F-actin,

α-actinin, and myosin II. After addition of myosin II to initiate contrac-

tion, LCRs localize to stressed regions of the network due to

contractile forces, particularly to bundle sites just prior to their rup-

ture, after which the LCR dissociates from the actin filaments.

To understand the mechanism by which LIM domains bind F-

actin, these studies identified particular amino acids and LIM domain

architectures that are necessary for binding. With the exception of

eight well-conserved residues (cysteine and histidine) responsible for

Zn2+ chelation, the sequence of LIM domains is highly variable. How-

ever, a phenylalanine resides at a similar position in all strain sensing

LIM domains and was found to be necessary for force sensitivity (Sun

et al., 2020). Additionally, force-sensitive LCR all have three or more

LIM domains in tandem, each separated by a short linker. Alterations

to this organization in the LIM protein zyxin revealed that multiple

LIM domains, when organized in tandem and connected by short

linkers (serial), but not when oligomerized (parallel), contribute addi-

tively to stressed F-actin binding (Sun et al., 2020; Winkelman

et al., 2020). Together, these data lead to a hypothesis that multiple

LIM domains that are appropriately positioned interact via a hydro-

phobic interaction with a strained actin filament (Figure 3).

6 | EVOLUTIONARILY CONSERVED
MECHANISM OF LIM DOMAIN-BASED
FORCE SENSING

Interestingly, despite the lack of sequence conservation, binding to

stressed actin filaments appears to be an ancient and conserved func-

tion of the LIM domain. Strain sensing LIM domains may have a con-

served tertiary structure despite primary sequence variability, similar

to other well studied protein folds (Dominguez, 2010). For instance,

the LCR of the fission yeast paxillin 1 (Pxl1) binds to both SFSS in

mammalian cells and purified mammalian stressed F-actin (Winkelman

et al., 2020). Fission yeast do not have stress fibers (or SFSS), but

there is a phenomenon analogous to SFSS that occurs within the

yeast cell. Pxl1 localizes to the cytokinetic contractile ring (CR), and its

deletion results in fragmentation of the ring during contraction (Ge &

Balasubramanian, 2008). The rupture of the contractile ring in Pxl1

mutants is reminiscent of increase rupturing of stress fibers observed

in zyxin null cells (Smith et al., 2010). Indeed, there are many interest-

ing parallels between CRs and SFs. Both are composed of similar

molecular components and are arranged in an architecturally

similar way: antiparallel bundled actin filaments crosslinked by

α-actinin and pulled on by myosin II. Both may also display a rough

F IGURE 2 Schematic of LIM domain protein localization in cells.
(a) Nuclear shuttling of LIM domain proteins (magenta ovals) occurs
when cells spread out on stiff matrices. (b) LIM domain proteins (black
and magenta ovals) localize to FAs and SFs under high tension. A
subset of LIM domain proteins localizes to stress fiber strain
sites (SFSS)

F IGURE 3 Schematic of mechanosensitive LCR localization to
stressed actin filaments. The constitutive actin binding CRP class LIM
proteins bind actin filaments in the absence or presence of force. The
dashed lines indicate that CRP localization is suspected to occur for
stressed actin filaments but has not been fully investigated.
Mechanosensitive LIM domain protein LCR constructs bind with high
affinity to actin filaments under tension or compression but with low
affinity to relaxed filaments (adapted from Winkelman et al., 2020)
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sarcomeric pattern where α-actinin and myosin form complementary

domains (Tojkander et al., 2012). The contractility of these networks

must be regulated so that they remain tense but do not rip themselves

apart. While SFs remain roughly the same length, the CR must shorten

during constriction to pinch the mother cell into two daughters. The

organization of the CR, SF, and muscle sarcomere may be a coinci-

dence or belie a common origin. Since we first see clear versions of

myosin II, α-actinin, and strain-sensing LIM proteins in the unikont

branch of eukaryotes, the ancestral version of these contractile net-

works may have emerged near this branch.

Once contractile machinery arose in evolution, the cell must have

evolved regulatory mechanisms for their maintenance and repair. The

strain sensing LIM domain may represent one way in which cells

learned to detect stressed F-actin. Other domains may be added to

this LIM containing protein to tailor responses to LIM-detected stress,

for example, some LIM proteins contain domains that bind actin

assembly factors that enable these proteins to recruit actin assembly

factors to sites of mechanical stress that has been detected by LIM

(Hoffman et al., 2012; Smith et al., 2010). One hypothesis for the

development of strain sensitive LIM domains is that general actin

binding by LIM was tinkered with by evolution to tune it to bind

strained actin filaments. The most ancient and widespread LIM pro-

teins are in the CRP family and have been shown in multiple studies

to bind unstressed actin filaments (Grubinger & Gimona, 2004;

Weiskirchen & Günther, 2003), suggesting the possibility that generic

actin binding may be an ancestral function of LIM domains that was

tuned to bind strained F-actin (Figure 4).

7 | THE ACTIN FILAMENT IS A SUBSTRATE
FOR FORCE-SENSITIVE BINDING

The load dependent mechanical response of F-actin networks is likely

to arise from force-sensitive biochemistry of ABPs. A recent review

summarizes evidence for force-sensitivity for several ABPs (e.g., Arp2/3

complex, cofilin, alpha-catenin; Jégou & Romet-Lemonne, 2021). Fila-

ment curvature promotes the binding of Arp2/3 complex binding to F-

actin, while tension decreases the stability of an Arp2/3 complex-

mediated daughter branch (Pandit et al., 2020; Risca et al., 2012). There

are conflicting reports of how tension may impact the binding of F-actin

depolymerizing factor cofilin (Hayakawa, Tatsumi, & Sokabe, 2011;

Wioland, Jegou, & Romet-Lemonne, 2019), while additional research

suggests torsion may impact cofilin's F-actin severing rate (Mizuno,

Tanaka, Yamashiro, Narita, & Watanabe, 2018; Wioland et al., 2019).

Low tension applied directly to an actin filament increases the binding

of alpha-catenin to adjacent actin subunits, and the force detection is

attributed to a 35 amino acid region at the C-terminus (Mei

et al., 2020). We hypothesize that similar sensing may occur in LIM pro-

tein, but will require further investigations.

As a common component in these mechanosensitive networks, it

is likely that the actin filament itself is a force sensor whereby the

force-induced conformation of actin filaments affects the binding

interactions of the ABPs. There are many studies and hypotheses

about how mechanical forces may alter filament conformation, but

there is no explicit structural data comparing stressed and unstressed

actin filaments (Galkin et al., 2012). Modeling has shown that due to

the twist of an actin filament, strain is not distributed homogenously

throughout the filament, and localized regions of strain may result

(Schramm, Hocky, Voth, Martiel, & De La Cruz, 2019). Therefore, the

filament level force can impact the conformation of and interactions

between adjacent subunits. These subunit level alterations could possi-

bly reveal additional binding sites for ABPs. We hypothesize that LCRs

recognize a binding site along an actin filament that is revealed under

tensile or compressive stress (Winkelman et al., 2020). Additional

research will be required to fully understand the binding interface of

LCRs and mechanically stressed actin filaments. LIM domain proteins,

and even isolated strain sensing LCRs, display overlapping but non-

identical localization to stressed actin networks, raising the question of

how specificity for particular networks arise. Additionally, stressed

actin binding is distributed across several protein families involved in

diverse cellular processes. Lastly, an important remaining question that

will require extensive investigation is how binding by LIM to stressed

actin filaments might regulate these diverse cellular processes.
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