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SUMMARY
Cell proliferation is a central process in tissue development, homeostasis, and disease, yet how proliferation
is regulated in the tissue context remains poorly understood. Here, we introduce a quantitative framework to
elucidate how tissue growth dynamics regulate cell proliferation. Using MDCK epithelial monolayers, we
show that a limiting rate of tissue expansion creates confinement that suppresses cell growth; however,
this confinement does not directly affect the cell cycle. This leads to uncoupling between rates of cell growth
and division in epithelia and, thereby, reduces cell volume. Division becomes arrested at a minimal cell vol-
ume, which is consistent across diverse epithelia in vivo. Here, the nucleus approaches the minimum volume
capable of packaging the genome. Loss of cyclin D1-dependent cell-volume regulation results in an abnor-
mally high nuclear-to-cytoplasmic volume ratio and DNA damage. Overall, we demonstrate how epithelial
proliferation is regulated by the interplay between tissue confinement and cell-volume regulation.
INTRODUCTION

Regulation of cell proliferation is a central question for under-

standing tissue development, growth, and homeostasis.1,2 In

contrast to the exponential proliferation of isolated cells,3,4 multi-

cellular tissue requires tight coupling between cell proliferation

and tissue growth.5 One proposed mechanism for regulating

proliferation in epithelia is the so-called process of ‘‘contact inhi-

bition of proliferation’’ (henceforth referred to as contact inhibi-

tion) where cell proliferation becomes highly restricted due to

spatial constraints imposed by the tissue.5,6 The disruption of

contact inhibition results in cell overproliferation and altered tis-

sue architecture.7–9 Therefore, contact inhibition is thought to

play a key role in maintaining tissue homeostasis and preventing

tumor formation.5,10 However, because contact inhibition is

regulated through multiple signaling pathways and largely un-

known parameters, we currently lack a framework for under-

standing the process across diverse tissues. This is evident

from the literature where contact inhibition is described as

dependent on cell density,11 adhesion signaling,6,8 andmechan-

ical stress.5,12 As these variables are difficult to manipulate inde-

pendently, it remains unclear how tissue geometry and growth

dynamics impact division and growth of constituent cells.

Cell proliferation is the process by which an individual cell

grows and progresses through the cell cycle to divide and pro-

duce two daughter cells. The regulation of proliferation in iso-
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lated mammalian cells has been studied in detail identifying

many key mechanisms.13–16 Cell proliferation in the tissue

context is similar in some ways: for example, most of the varia-

tion in cell-cycle length occurs in the G1 phase of the cell cy-

cle,13,17 and cell growth can occur normally during cell-cycle in-

hibition.18,19 However, there appear to be different regulatory

mechanisms acting in each context. For example, single cells

grow by a similar amount of volume each cell cycle independent

of their birth volume, an ‘‘adder’’ behavior.13,14 In contrast,

mouse epidermal tissue shows a cell-size checkpoint preventing

small cells from entering S phase, meaning that smaller cells

grow more than larger cells, a ‘‘sizer’’ behavior.17 Due to limited

in vivo data, it remains unclear whether this is a consequence of

tissue specific behavior in the skin or could reflect a difference in

regulation between single cells and epithelial tissue. Several

lines of evidence suggest the latter is true. For instance, the

cell-cycle duration can be on the scale of weeks or months

in vivo,20 challenging established dilution-based mechanisms

of cell-cycle regulation.15,16 Further, prior work has shown a

possible switch to size-dependent regulation of the cell cycle

in cell-culture models of epithelial tissue.21,22 However, we lack

a systematic study that examines how tissue-scale growth dy-

namics impact regulation of cell volume and growth in epithelia.

To understand how cell proliferation is regulated in epithelia,

we first performed a meta-analysis of cell-size data and found

that epithelial cell volumes are remarkably consistent and highly
e Authors. Published by Elsevier Inc.
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context dependent. The cell volume in epithelial tissue in vivo is

always smaller than single cells in culture. However, we could

recapitulate the in vivo cell volume using a cell-culture model

of epithelial tissue formation, indicating that tissue-scale phe-

nomena impact cell-volume regulation. To quantitatively

examine this, we employed model epithelial tissues with varied

growth rates. We then introduced a general framework to quan-

tify how tissue-scale growth dynamics constrain cell growth,

providing a measure of ‘‘tissue confinement.’’ We show that

increasing tissue confinement reduces cell growth and YAP/

TAZ signaling but does not impact the cell-cycle duration

directly. Instead, cell-cycle duration is strongly correlated with

cell volume. There is a sharp cell-cycle arrest at a cell volume

of �1,000 mm3, consistent with cell volume found in vivo. In

both epithelial and single-cell contexts, cell-volume regulation

is well described by a ‘‘G1 sizer model’’ with a tunable growth

rate. In epithelia, cyclin D1 protein levels are strongly cell-volume

dependent and overexpression of cyclin D1 reduces the minimal

cell volume. This suggests that the levels of cyclin D1 controls

volume-dependent cell-cycle arrest. We see that abnormally

small cells display DNA damage as these cells approach a phys-

ical limit where the nucleus approaches the volume occupied by

the fully compacted genome. This suggests that, in addition to

mediating cell-cycle arrest during contact inhibition, cell-volume

regulation pathways are critical for maintaining epithelial homeo-

stasis. Overall, we demonstrate the general mechanisms of cell

growth and division regulation in epithelia, which may provide

insight into proliferative processes in tissue development, ho-

meostasis, and disease.

RESULTS

Epithelial cell volume is context dependent
To screen for varied cell-volume regulation in epithelial tissue, we

systematically compared cell volume from different tissues

in vivo and cell-culture models (Table S1). We compiled these

data from available sources including histology sections from

the Human Protein Atlas (Figure 1A),23 3D segmentation data

from Allen Cell Institute (Figure 1A),24,25 and published cell-vol-

ume measurements.13,26–40 When cell-volume measurements

weren’t available, we estimated cell volume by identifying cells

perpendicular to the tissue slice and then measuring their length

and width. We confirmed that this provides an accurate estima-

tion of volume from benchmarking against full 3D imaging (Fig-

ure S1). Across 15 tissue types in the Human Protein Atlas, we

find the volume of epithelial cells is surprisingly consistent, with

a narrow distribution of 630 ± 180 mm3 (Figure 1B, circles). By

comparison, the volume across 12 types of isolated epithelial

or epithelial-like cells is consistently measured to be severalfold

larger, with a volume of 2,330 ± 650 mm3 (Figure 1B,

squares).13,29,31,35,36,38,40 Interestingly, the volumes of epithelial

cells cultured in 3D more closely matched those in vivo, with a

mean of 1,020 ± 520 mm3 (Figure 1B, diamonds).26–28,30,32,33,37

These data suggest that epithelial cell volume is strongly influ-

enced by the tissue environment.

To test this hypothesis, we studied several different epithelial

cell lines (Madin-Darby canine kidney [MDCK], Caco-2, and Ha-

CaT) to measure the cell volume in either subconfluent colonies

(SCs) or mature epithelium (ME). Controlling cell-plating density
allowed for the formation of SCs, each composed of 50–1,000

cells or a nearly confluent monolayer on collagen gels (see

STAR Methods). After the initial plating, cell dynamics drive

changes in cell density, shape, and speed over the next 1–

2 days41; we define ME as the time at which these properties

stop changing in time (see STAR Methods and Figure S3). Cell

boundaries were visualized with a fluorescently tagged mem-

brane protein (stargazin-green flourescent protein [GFP]

[CACNG2-GFP] or stargazin-halotag) (Figure 1C). To facilitate

measurement of cell volume, cells were trypsinized, resus-

pended, and then imaged (Figure 1C; Figure S1; see STAR

Methods). When in SCs, the cell volume of all three epithelial

cell types is �2,800 mm3 (Figure 1D, SC), consistent with the

mean value of single cells in Figure 1B (Figure 1D, dashed line

[ii]). Further, we found that ME culture conditions reduced the

cell volume by 60% to plateau at �1,000 mm3 (Figures S2B–

S2D), a volume similar to cell volumes measured in vivo

(Figures 1B and 1D, dashed line [i]). We performed the same

experiment on two cell lines that do not form coherent colonies,

retinal pigment epithelial cells (RPE-1) and mouse embryonic fi-

broblasts (MEFs) and did not see volume reduction (Figure S3).

This suggests this context-dependency of cell volume may be

specific to epithelium. Together, these data suggest that contact

inhibition qualitatively changes cell-volume regulation across

diverse epithelia.

Cell-volume reduction occurs through division in the
absence of cell growth
To query how cell growth and division rates change during the

transition from SC to ME, live-cell imaging was used to monitor

changes in cell volume and number. The data were aligned

such that t = 0 h denotes the onset of confluence (OC). For all

earlier times, cells are in SC. By t > 12 h cell movement has

ceased, and density is constant; we denote this as a ME (Fig-

ure 2A). We first consider cell division and growth rates for t <<

0 h (SC), t � 0 h (OC), and t >> 0 h (ME). We prepared cells in

each condition and performed bulk measurements. Cell-division

rate, obtained by cell-counting measurements, was completely

arrested in the ME but only suppressed by �40% at OC, as

compared with SC (Figure 2B, black bars). By contrast, the cell

growth rate, determined from changes in protein concentration

over time (see STAR Methods), was suppressed almost entirely

at OC (Figure 2B, purple bars). These data indicate suppression

of cell growth and division are not tightly coupled during the tran-

sition from subconfluent to confluent tissue. Instead, cell growth

is suppressed acutely at OCwhereas division is only impacted in

later stages (Figure 2C). In single cells, cell growth and division

are coupled to maintain a constant volume.16 In contrast, a divi-

sion rate exceeding the growth rate should result in cell-volume

reduction.

To test this hypothesis, we measured the cell area between

t = 0 and 18 h during the transition from OC to ME. Over this

time, the cell height remained constant, such that changes in

cell area were accurate indicators of cell volume (Figure S2G).

The average cell area from a population of �1,000 cells

decreased by �50% from OC (t = 0 h) to ME (Figure 2D). To

determine themechanism driving changes in cell volumewe per-

formed single-cell tracking. Cells that divided near the beginning

of the experiment (t = 0 h) were identified and tracked through the
Developmental Cell 58, 1462–1476, August 21, 2023 1463
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Figure 1. Epithelial cell size is consistent across tissues but context dependent

(A) Histology sections published by the Human Protein Atlas showing E-cadherin (CDH1) staining kidney and intestine (duodenum) tissue (image credit: Human

Protein Atlas) and human induced pluripotent stem cell (HiPSc) segmentation data from Allen Cell Institute (available from allencell.org/3d-cell-viewer). In all

images cells are displayed in cross-sectional view with the apical-basal axis vertical.

(B) Cell volume from 15 tissues in vivo (circles), 12 published measurements from cell lines cultured as single cells (squares), and 7 measurements from 3D

epithelial cell cultures (diamonds). Each data point is the average cell size from >50 cells for a given cell type. Measurement details available in Table S1. Dashed

lines show the average cell volumes from epithelium in vivo (i) and in single-cell culture (ii).

(C) (Top) Images of MDCK cells with fluorescently labeled cell membranes (stargazin-gfp) in subconfluent colonies (SCs) and mature epithelium (ME). (Bottom)

Cells under each condition are also shown after being treated with trypsin for 10 min and resuspended.

(D) Cell volume in SC and ME for MDCK, CaCo-2 and HaCaT cell lines. Violins show the distribution of cell volumes pooled from all experiments, solid line shows

median of this cell-volume distribution, and points show the mean volume of each experimental replicate. Dashed lines show the average cell volumes from

epithelium in vivo (i) and in single-cell culture (ii) from (B) (n = cells [N = experiments], nMDCK-SC = 5,884 [N=6], nMDCK-ME = 25,863 [N=17], nCACO2-SC = 3,408 [N=6],

nCACO2-ME = 59,817 [N=16], nHaCaT-SC = 12,704 [N=4], nHaCaT-ME = 31,454 [N=6]). *p < 0.05, ***p < 0.001 from comparison of experimental or sample means. See

also Figures S2–S4 and Table S1.
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experiment. Individual cell trajectories showed that the

cell-volume reduction occurred by successive cell-division

events in the absence of cell growth (Figures 2E and 2F). Indeed,

across a large population of mother-daughter cell pairs, the cell

area of a daughter cell 8 h (�1/2 cell-cycle time, t) post cell divi-

sion remained approximately half that of the mother cell area

(Figure 2G). This indicates minimal cell growth during the cell cy-

cle. This is in stark contrast with subconfluent cells, in which a

cell grows at a constant rate and doubles in volume prior to divi-

sion into two daughter cells.13 For single cells, we would expect

the cell to grow by�50% at 8 h post division, resulting in a slope

of �3/4 (Figure 2G, dashed line).

To demonstrate that cell division is necessary for cell volume

to decrease, experiments similar to those in Figure 2A were per-

formed with a Tet-On p27 1–176 MDCK cell line to artificially ar-

rest the cell cycle by induction of a degradation resistant mutant

of the human p27 (CDKN1B) cell-cycle inhibitor in the presence

of doxycycline.42 In the absence of dox (�dox), the volume
1464 Developmental Cell 58, 1462–1476, August 21, 2023
decreased in ME compared with SC, similar to our previous ex-

periments (Figures 2H and 2I). Addition of doxycycline at OCpre-

vented cell-volume decrease in ME (ME +dox p27), and the vol-

ume of these cells remained similar to that of SC (Figures 2H and

2I). Induction of a defective p27 mutant that does not arrest the

cell cycle (+dox p27ck)43 had no effect on cell volume in ME (Fig-

ure 2I). Together, these data demonstrate that temporal uncou-

pling of cell growth and cell division result in cell-volume reduc-

tion during formation of mature epithelial tissue. At the OC, cell

growth is highly suppressed and cell volume reduces by division

in absence of cell growth (Figure 2J). Then at later times the cell

cycle also becomes arrested, and cells reach a final cell volume

that is comparable to epithelium in vivo. We next sought to un-

derstand regulation of cell growth and cycle in the epithelium.

Tissue confinement regulates cell growth
The acutely cell-suppressed growth rate observed at the OC

suggests that tissue and cell growth rates are strongly coupled.

http://allencell.org/3d-cell-viewer
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Figure 2. Division during growth arrest at the

onset of confluence leads to cell-size reduc-

tion

(A) Images of MDCK cell membranes at time points

during the transition from subconfluent colonies

(SCs) (t = -10 h) to mature epithelium (ME), the time

point when cell density reaches a plateau (t = 12 h)

(Figures S2B–S2D). The data are aligned such that

onset of confluency (OC), the time point when cell

first occupy all space on the substrate, occurs at t =

0 h.

(B) Average rates of cell division (black) and growth

(purple) at SC, OC, andME. For growth data change

total protein from lysates was measured by bicin-

choninic acid (BCA) assay. Error bars are SD of

three experiments. For division rate, the change in

cell number was determined by a cell counter. Error

bars are the SD of three experiments.

(C) Schematic summarizing result that, at the onset

of confluence, there is a temporal decoupling of

growth and cell-cycle arrest.

(D) Average cell area over time, t = 0 is OC. Error

bars are SD of 30 fields of view each containing

>500 cells; time at which ME forms indicated by

dashed line.

(E) Outline of a representative cell, and subsequent

daughter cells, over the experiment.

(F) Areas of 4 representative cells over the course of

the experiment. Traces are shifted in time so that the

first cell division occurs at time 0 for all cells.

(G) Area of daughter cell 8 hours through the cell

cycle versus the area of mother cell (n = 758 cells

from 1 experiment. Linear fit slope = 0.52).

(H) Images of cell membrane at t = ME + 3 days in monolayers formed from Tet-On P27 cells. ME were formed under control conditions (�dox) or with the cell

cycle inhibited (+dox p27) by the addition of doxycycline at t = 0 h.

(I) Cell volumes in SC and ME with Tet-On p27 or Tet-On p27ck (non-cell cycle inhibiting control) in control conditions (�dox) or in ME with doxycycline added at

t = 0 h. SC and ME �dox data also displayed in Figure 1D (nSC = 5,884 [N=6], nME = 25,863 [N=17], nME+p27 = 2,722 [N=4], and nME+p27ck = 1,930 [N=3]).

(J) Schematic of the mechanism of cell-volume regulation during the transition from SC to ME (*p < 0.05, ***p < 0.001 from comparison of experimental means).
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Therefore, we defined a quantitative framework to study cell pro-

liferation within expanding colonies to better understand this

coupling. We first considered that changes in tissue and colony

size are governed by cell proliferation and migration of cells out-

ward into free space. We refer to these increases in tissue area

as tissue growth. Our hypothesis is that the product of all growth

of cells cannot exceed the total growth of tissue, such that cell

growth and tissue growth occur at the same rate in normal

epithelial tissue. When the tissue forms a confluent monolayer

at the OC, tissue growth stops, and, consequently, cell growth

must arrest. But even if tissue expansion becomes limited earlier,

for example, by the rate of cell migration at the tissuemargin, cell

growth will begin to be suppressed.

To test this hypothesis, we introduce a thought experiment to

compare growth dynamics within a multicellular tissue with the

exponential growth dynamics of a population of unconstrained

individual cells. The area of a multicellular tissue with initial

area A0 grows over a time interval Dt by an amount DA. Then,

consider that this tissue A0 is broken up into individual cells

that proliferate over the same time interval (Figure 3A). The total

area of the hypothetical ensemble of single cells grows exponen-

tially, such that the total time-dependent area is described by

AUðtÞ � 2t=t, where t is the average cell-cycle time. The devia-

tion of the tissue growth from this hypothetical maximum expo-

nential growth rate is a quantitative measure of the constraints
that changes in tissue area place on cell proliferation. For a

specific tissue area, A0, if the ratio of the tissue growth rate to

the unconfined growth rate: dA
dt

�
�
A0=

dAU

dt

�
�
A0 is less than 1, then the

tissue growth dynamics constrain cell growth. We then define

the tissue confinement CðA0Þ = 1 � dA
dt

�
�
A0=

dAU

dt

�
�
A0 such that there

is no confinement effect (C = 0) when single cells and tissues

have identical growth dynamics and C = 1 when tissue growth

rate is zero as in a fully confluent tissue.

We explored our tissue confinement model in the context of

large, circular colonies ofMDCK cells, chosen for their well-char-

acterized growth dynamics and the ability to control their

area.22,44 Circular colonies of variable area A0 from �1 to

7 mm2 were formed by seeding the cells in a polydimethylsilox-

ane (PDMS) stencil atop a glass coverslip (Figures 3B and 3C).

The stencil was then released to allow for colony expansion for

Dt = 48 h (Figure 3D). Importantly, the average colony expansion

is determined by radial migration speed v of cells at the periphery

to increase the colony radius by vDt (Figure 3B, arrow). Consis-

tent with previous studies, the radial expansion rate was inde-

pendent of colony area (Figure 3D; Figures S4A–S4C). This re-

sults in a tissue growth rate that scales quadratically with

colony area (see STAR Methods). For a given colony area, vari-

ation in v provides additional control over colony growth rate

(Figure 3E). Under control conditions, v varied between
Developmental Cell 58, 1462–1476, August 21, 2023 1465
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Figure 3. Tissue confinement quantifies how tissue-scale growth dynamics constrain cell growth

(A) We consider the growth dynamics of a portion of multicellular tissue with time-dependent size A(t) with that of comprised of isolated cells of equal initial size,

A0. The population of individual cells grows exponentially Au(t) � 2t/t. The confinement, C, is measured by comparing the relative growth rates.

(B) Schematic of expanding colony system. Cell colony of initial size A0 expands at a constant radial velocity v such that, for a given time interval Dt, the radius

increases by vDt.

(C) Cells are initially seeded into a PDMS well of defined size A0. Then, this well is removed to initiate colony expansion.

(D) Cell Mask Orange staining in expanding MDCK colonies with two different initial sizes at Dt = 48 h after removing the barrier. Overlay shows the initial size A0

(dashed circle) and expansion vDt (arrow). Arrows represent the average expansion radius across all colonies in the sample. Zoom in shows part of larger

monolayer (white box).

(E) CellTrace Far Red staining of expandingMDCK colonies with variation in expansion rate from variation inWT dynamics and under FAK inhibition (500 nMPND-

1186) Images are scaled differently for clarity and intensity is not comparable in these images.

(F) Quadratic growth models of colonies as a function of tissue area and expansion rate compared with a model of the exponential rate for single cells growing at

the experimentally measured proliferation rate 15 h.

(G) Plot of the tissue confinement parameter, defined in the main text, calculated from comparing the model of colony growth rate to the model of single-cell

growth rate. Curves show tissue confinement as a function of tissue area and expansion rate. Black points show confinement measurements from the exper-

imentally determined area growth rate of expanding colonies at Dt = 48 h (see STAR Methods). See also Figure S5.
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experiments from 15 to 30 mm/h (Figure S4C). This tissue growth

rate was reduced by inhibiting cell migration by a focal adhesion

kinase inhibitor (FAKi) (Figure S4C). Thus, variations in both the

initial colony area and edge velocity allowed us to investigate

our model over a wide range of tissue growth rates.

We generated model curves of the expected colony growth

rates for the ranges of areas and edge velocities observed exper-
1466 Developmental Cell 58, 1462–1476, August 21, 2023
imentally (Figure 3F, solid lines). These rates were then compared

with those expected for exponential growth of single cells, using

the experimentally measured doubling time of 15 h (Figure 3F,

dashed line). For small areas, exponential growth is smaller than

the theoretical growth rate of the expanding colony (Figure 3F);

here tissue-scale growth dynamics do not constrain cell prolifera-

tion. This is the behavior for SC. By contrast, for large areas,
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expanding colony growth rates become substantially lower than

the exponential growth of single cells (e.g., Figure 3F, gray-

shaded region). Here, tissue growth dynamics constrain cell pro-

liferation. The colony areawhen exponential growth and quadratic

growth rates are equal demarks the transition between these two

regimes and, here, C = 0 (Figure 3F, black X). For each given

growthmodel, the confinementC is plotted as a function of colony

area (Figure 3G, lines). Confinement was determined from exper-

imental data with varying A0 and v (Figure 3G, points). These

experimental conditions then provide a means to systematically

examine cell behavior in variedC from<0.25 to�0.8. Thus, our tis-

sue confinement framework provides a quantitative method to

assess how tissue-scale growth dynamics are expected to

constrain growth of single cells.

To test the utility of this framework, we measured cell growth

and signaling in tissues with varied levels of confinement. To

query cell growth, we labeled the cells at t = 0 with CellTrace,

a fluorescent dye that reports on increases in cell volume by its

dilution (i.e., more growth leads to lower cell intensity) (see

STAR Methods). The total growth is determined from the

CellTrace images by the ratio of intensity Iðt = 0Þ
Iðt = DtÞ � 1 =

Volðt = DtÞ
Volðt = 0Þ � 1 = DVol. Since the growth rate of confluent mono-

layers is close to zero (Figure 2B), the intensity of the confluent

monolayer IC � Iðt = 0Þ, can be used as the standard to

compare to the intensity I of expanding colonies (Figure 4A,

C = 1). This allows for determination of the growth rate by IC=

I � 1. For Dt = 48 h, subconflucent cells show a 10-fold

CellTrace dilution consistent with the cells doubling every 15 h

(Figure 4A, C = 0). We then used expanding colonies with varied

A0 to explore intermediate levels of confinement from 0.2 to 0.8.

In smaller colonies with C = 0.2, cell growth was already sup-

pressed to <50% that of subconfluent conditions. By C = 0.6,

growth was restricted to <10% that of the subconfluent cells,

and was suppressed to nearly zero by C = 0.8 (Figure 4A).

Changes in growth can also be modulated by changing the ve-

locity of colony expansion at the edges, which can be achieved

by perturbing cell migration. In our experiments, we observed

that differences in migration rate significantly impacted the cell

growth, as predicted by our modeling (Figure 4C). In all condi-

tions, the intensity was remarkably uniform across the tissue

suggesting that the growth regulation mechanism is a tissue-

scale phenomenon (Figure S6E).

To query cell growth signaling under confinement, we also

performed immunostaining against yes-associated protein 1

(YAP1). YAP is a transcription factor implicated in regulating

cell proliferation during contact inhibition.6,45,46 When YAP is

active, it is localized to the nucleus; when inactive, YAP is local-

ized to the cytoplasm. We see in the conditions with lower

confinement, a greater fraction of YAP is localized to the nu-

cleus, whereas around C = 0.5 it becomes more localized to

the cytoplasm (Figure 4B). This suggests that YAP activity is

regulated in response to changes in tissue confinement (Fig-

ure 4B). Taken together, all of our experimental data from col-

onies with varying size and edge velocity (Figure 3G) identify a

systematic decrease in cell growth and YAP signaling as a

function of confinement (Figure 4D, points). Moreover, the pre-

dicted growth from the definition of tissue confinement is

consistent with the experimental data (Figure 4D, line). All of
these data demonstrate the rapid suppression of cell growth

at low levels of confinement.

At the OC, the cell-division rate remains similar to subconflu-

ent cells despite the increased confinement (Figure 2B); this sug-

gests that tissue confinement may not immediately affect the cell

cycle. To query the cell cycle, we performed the expanding col-

ony experiments with MDCK cells expressing the pip-degron

fluorescent ubiquitination cell-cycle indicator (FUCCI MDCK)47

to measure the fraction of cells in S/G2/M in model tissues

with varying levels of confinement. We restrict our analysis to

short expansion times (Dt = 12 h) before cells have reached

theME state and arrested the cell cycle. In contrast to cell growth

(Figure 4F, peach), the cell-cycle fraction is insensitive to tissue

confinement (Figure 4F, red). Instead, the fraction of cells in

S/G2/M is constant (Figure 4F, dashed line). Together with our

data showing similar division rate at the OC and in subconfluent

cells (Figures 2B and 2F) this suggests that no change in the cell

cycle with confinement. These data identify the qualitatively

different impact of confinement on cell cycle and growth. Thus,

the transient uncoupling between cell division and growth rate

observed in Figure 2B is consistent with a rapid increase in

confinement at the OC.

A G1 sizer arrests the cell cycle in confined epithelium
Wenext examined how the cell cycle arrests inmonolayers at the

later stages of contact inhibition. After confinement reduces the

growth rate, cell volume decreases through successive cell divi-

sion until the cell cycle becomes arrested (Figure 2J). Previous

work has shown that cell-cycle regulation can be volume depen-

dent for in vivo epithelium.17 To examine if cell division is regu-

lated by cell volume in our data, we measured how the cell divi-

sion rate varied as a function of cell volume by tracking individual

division events. We estimate volumes from the cell area multi-

plied by the typical cell height of 6.5 ± 1.5 mm (Figure S2G,

mean ± SD). Above a volume of 1,300 mm3, the cell-division

rate is independent of volume (Figure 5A). However, the division

rate sharply decreases for smaller volumes. This trend is

observed across a range of experimental conditions and two

epithelial cell types, indicating that it is a robust feature of cell-

volume regulation in confluent epithelial tissue (Figure S5). We

then used FUCCI MDCK cells to look more closely at the cell-cy-

cle regulation for large and small cells. From the FUCCI data, we

obtained the S/G2/M duration by tracking single-cell trajectories

and saw that the duration of the S/G2/M phases isz10 h and in-

dependent of cell volume (Figure 5B). In the same data, the dura-

tion of the entire cell cycle was estimated by measuring the frac-

tion of cells in each cell-cycle phase (see STAR Methods). We

see that the cell-cycle duration rapidly increases for smaller cells

(Figure 5B, purple data). The division rate in Figure 5A can also

be used to estimate cell-cycle duration and shows a similar trend

(Figure 5B, dashed line). Together, these data indicate an

increased duration of the G1 phase for smaller cells. This is

consistent with previous results that volume-dependent cell-cy-

cle regulation occurs at the G1-S transition.1,13,17

Motivated by this data, we developed a simple ‘‘G1 sizer’’

model of volume-dependent exit from G1 with a tunable growth

rate (Figure 5C).17,48 In the model, we simulate an ensemble of

cells that grow at a constant rate, have two cell-cycle phases

G1 and S/G2/M, and divide into two daughter cells with half the
Developmental Cell 58, 1462–1476, August 21, 2023 1467
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Figure 4. Tissue confinement determines cell growth rate and signaling

(A and B) Images of Cell Trace (A) and YAP (B) at Dt = 48 h in expanding colonies with initial size, A0, varying from 0.8 to 7.1 mm2, subconfluent colonies and

confluent conditions. In (A), overlay shows initial colony size A0 (dashed circle) and expansion vDt (arrow). Note different scale bars in (A) and (B).

(C) CellTrace images of expanding monolayers with A0 = 0.8 mm at Dt = 48 h in the presence and absence of 500 nM PND1186 (+FAKi) to illustrate the effect of

changes in vDt.

(D) Quantification of cell growth and YAP signaling at varying tissue confinements with Dt = 48 h across multiple experiments. Each data point is an average of

multiple colonies from one experiment (see STAR Methods). YAP activity is determined by the nuclear-to-cytoplasmic ratio of anti-YAP intensity, quantified for

>150 cells in each experiment. Growth is plotted against the time averaged confinement and YAP activity is plotted against the final confinement. Data are from 6

independent experiments (cell growth) and 3 independent experiments (YAP activity).

(E) MDCK FUCCI cells in expanding colony with A0 = 1.8 mm2 and Dt = 12 h.

(F) Quantification of cell growth and fraction of cells in the S/G2/M cell-cycle states as a function of the average tissue confinement. Each data point is quantified

from >3 colonies in a single experiment with A0 = 0.8, 1.8, or 7.1 mm2 and Dt = 12 h. Data are from 2 independent experiments. See also Figure S11.
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mother volume. We added additional features based on experi-

mental observations: (1) there is a sharp volume threshold of

the G1-S transition rate and below this minimal volume a, the

transition rate is zero, (2) cells have an S/G2/M duration of t =

10 h independent of cell volume, and (3) a variable cell growth

rate G that is normalized to vary from 0 for no growth to 1 for

growth in the unconfined condition. Due to rule (2), the minimum

cell-cycle time is t handcellswill growbyaminimumofGt before

each division.WhenGt[ a, cells are large comparedwith a and

the G1-S transition proceeds quickly. In this regime, the cell-cy-

cle regulation is volume independent (timer-like) with a time t be-

tween cell divisions (Figure 5D,G= 1; Figures S6A–S6C). Howev-

er, when the growth rate is suppressed such that Gt << a,

additional time is required to relieve the volume constraint of

the G1-S transition (1) (Figure 5D, G = 0.05; Figures S6A–S6C).

In this regime, the cell-cycle regulation is highly volume depen-
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dent (sizer-like). We tested several simplifying assumptions of

our model by performing additional simulations and consistently

see this behavior (Figures S6D–S6H).

Plotting the cell volume at division as a function of cell volume at

birth for a range of growth rates shows that the model transitions

smoothly from volume-dependent to volume-independent

behavior as a function of growth rate (Figure 5E, Figures S6E–

S6H). Volume-dependent cells divide at the same volume and

show no correlation between birth volume and division volume

(Figure 5E, dashed lines for G = 0.05 and 0.2). This contrasts

with volume-independent cells which show a correlation between

birth volume and division volume (Figure 5E, dashed lines for G =

0.7 and 1).13,16,17,49 These different behaviors alsooccur in distinct

cell-volume ranges consistent with previous work showing that

large, rapidly growing, single cells aremore volume independent13

and small, slowly growing cells, in vivo are volume dependent.17
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Figure 5. A G1 sizer arrests the cell cycle

(A) Normalized cell-division rate as a function of cell volume in MDCK monolayers. Volume is calculated from cell areas multiplied by the average experimental

height (see STAR Methods). Data are population averaged from 4 experimental replicates with >500 division events, error bar is SD of experimental replicates.

(B) Duration of cell cycle (violet) and S/G2/M (black) for MDCK cells as a function of cell size. Dotted violet line is a fit to the data in (A) to extract the cell-cycle

duration. S/G2/M time are single-cell measurements from n = 82 trajectories for cell cycle. Cell-cycle time data (violet points) are population averaged FUCCI

measurements from 50 fields of view containing >100 cells from 1 experiment (see STAR Methods).

(C) Schematic of G1 sizer model: cells are simulated to grow at a constant rate, transition between cell-cycle states and divide. (1) Cells transition rapidly fromG1

to S only when above a critical volume a, (2) cells have a set S/G2/M duration equal to time t that is independent of size, and (3) cells have a variable growth rate, G,

independent of the cell cycle.

(D) G1 Sizer models results of cell volume as function of time for two growth rates (G = 1 and G = 0.05).

(E) G1 Sizermodel results of cell volume at division as a function of birth volume for G = 0.05, 2, 0.7, and 1. Dotted lines show a linear fit to the data (slope = 0, 0, 0.4,

and 1). Each condition contains 400 simulation trajectories.

(F) Cell volume as a function of time for experimental data from Figure 2D (peach) and for G1 sizer model results (black). The onset of confluence occurs at t = 0 for

experiments. For simulations, this is models with a growth rate quench from 1 to 0 at t = -10 h. Data is mean cell volume, error bars are the standard deviation.

Each time point in the experiment is the average of >10,000 cells from 30 fields of view. Each simulation time point is an average of >15,000 cells from 35

simulations. See also Figures S6–S8.
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Having developed an understanding of the model at constant

or near-constant growth rates, we tested if the model could also

predict the cell-volume distributions found in the experiments of

monolayer formation and maturation in Figure 2B. We simulate

monolayer formation in our model by a rapid quench of cell

growth rate from 1 to 0 at t = 0 and measure the cell-volume dis-

tribution over time (Figure 5F). The simulation results (Figure 5F,

black) are consistent with those of the experiment (Figure 5F,

peach). This suggests that the G1 sizer model together with an
understanding of how confinement impacts cell growth (Fig-

ure 4F) is sufficient to explain transitions in volume of isolated

cells to those in epithelial tissue.

Volume-dependent cyclin D downregulation leads to
cell-cycle arrest
To investigate molecular mechanisms of volume-dependent

cell-cycle control, we took advantage of our Tet-inducible cell

lines to manipulate cell volume in confluent monolayers. We
Developmental Cell 58, 1462–1476, August 21, 2023 1469
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Figure 6. Low cyclin D causes cell-cycle arrest in small cells

(A) Cell membranes of Tet-On p27 and Tet-On p27ck MDCK cells in ME +

4 days; dox added at t = 0 h.

(B) RNA sequencing data from monolayers prepared in (A). Data are averaged

transcripts per million from 3 experimental replicates. Inset: zoom in of genes

in indicated box, cyclin D genes expression levels are highlighted in red.

(C) DNA staining and anti-cyclin D1 (cyD1) immunofluorescence staining in

MDCKmonolayers at ME + 3 days. Dox is added at either t = 0 (+dox p27) or at

t = ME + 2 days (delay +dox p27).

(D) Quantification of anti-cyD1 intensity from immunostaining data as a func-

tion of nuclear area. Intensity is normalized in each experiment to a maximum

value of 1. P27/p27ck aremonolayers with amixture of Tet-On p27 and Tet-On

p27ck cells. (N+dox = 4,564 [3], NDelay+dox = 7,515 [2], Np27/p27ck = 11,080 [4]).

(E) Labeled cell membranes in Tet-On cyclin D1 T286A T288A (CyDAA) MDCK

monolayers at ME + 3 days without dox (�dox) or with dox added at t =

0 (+dox CyDAA).

(F) Cell volume measured in resuspended Tet-On cyclin D1, Tet-On cyclin D

T286A T288A, and Tet-On 12sE1a cells at ME + 3 days without dox (�dox) or

with dox added at t = 0 (+dox CyD, +dox CyDAA, +dox E1a). (n-dox = 13,513

[N=10], nCyD = 7,240 [N=2], nCydAA = 9,092 [N=3], nE1a = 6,457 [N=4]) (*p < 0.05,

**p < 0.01 from comparison of experimental means). See also Figures S9

and S10.
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prepared monolayers at the OC with Tet-On p27 and Tet-On

p27ck cells. Prior to the experiment, cells were synchronized in

G1 with palbociclib and at t = 0, we added doxycycline (+dox)

to induce expression. After 5 days, both monolayers are in a
1470 Developmental Cell 58, 1462–1476, August 21, 2023
cell cycle and growth-arrested ME state, but the +dox p27ck

cells are 40% the volume of +dox p27 cells (Figures 2I and 6A).

RNA sequencing identified almost no differences in the steady-

state transcriptome of these samples (Figure 6B). However,

close examination identified several weak signatures (Figures

S7E–S7J) including a slight downregulation of cyclins D1, D2,

and D3 in the smaller contact-inhibited cells (Figure 6B, inset).

TheG1/S transition has a steep dependence on cyclin D concen-

tration,50 so it is possible that small changes in cyclin D concen-

tration are sufficient to arrest the cell cycle. Furthermore, cyclin D

is strongly post transcriptionally regulated by degradation.51 To

check if this difference in RNA abundance leads to changes in

protein levels, we looked at cyclin D1 (cyD1) protein levels via

immunofluorescence in ME formed with Tet-On p27 cells

(+dox p27) and co-cultures including Tet-On p27ck cells (+dox

p27/p27ck). Since p27 is known to interact with cyclin D, we

tested if its overexpression did not change the cyclin D1 levels

by inducing p27 after ME formation (delay +dox p27). Interest-

ingly, we found significant differences in cyclin D1 abundance,

with nearly undetectable levels in cells with a nuclear area

<100 mm2, corresponding to a cell volume of 1,100 mm3 (Fig-

ure 6C; Figure S7D). We observed that the intensity of cyD1

drops rapidly with decreasing nuclear area, corresponding to a

decreasing cell volume (Figure 6D; Figure S7D). The same trend

was seen for all monolayer preparations, suggesting that the cy-

clin D1 level is regulated by a volume-dependent pathway. This

suggests that in addition to transcriptional changes in cyclin D,

additional volume-dependent post transcriptional regulation oc-

curs, possibly as reported in other contexts.51,52

To test if decreased cyclin D levels are required to arrest the

cell cycle, we overexpressed cyclin D1 in contact-inhibited cells.

We used Tet-On cyclin D1-GFP (CyD) or Tet-OnCyclin D1 T286A

T288A-GFP (CyDAA, a degradation resistant mutant) cells and

induced the expression of additional cyclin D1 at OC. We then

looked at the cell volume 3 days later, after it had reached a

plateau. We observed that overexpression of either CyD or

CyDAA leads to decrease in minimal cell volume in ME,

compared with control (�dox) (Figures 6E and 6F). Therefore,

restoring cyclin D1 in small cells is sufficient to initiate the cell cy-

cle. This suggests that the depletion of cyclin D is necessary for

volume-dependent arrest of the cell cycle. We also overex-

pressed the viral oncoprotein E1a, which is known to bind with

and inactivate Rb pocket proteins and activate the G1/S transi-

tion.53 Cells that overexpressed E1a also showed decreased vol-

ume, suggesting that cyclin D depletion arrests the cell cycle by

inhibiting the G1/S transition (Figure 6F).

Cell-cycle arrest occurs near cell volume minimum set
by the genome volume
We next wanted to understand why the cell cycle normally ar-

rests at a volume of �1,000 mm3. A possible constraint on cell

volume comes from the volume occupied by the genome. As

the cell volume decreases, the nucleus gets smaller and chro-

matin gets more compact.38 A simple estimate suggests low

chromatin concentrations of �5% by volume in an average sub-

confluent mammalian cell (Volnuc � 1/3Volcell � 800 mm3 vs.

Volgenome � 40 mm3).54 However, the concentration would in-

crease several fold as cell volume reduces and the total chro-

matin per cell remains constant. Previous measurements of
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Figure 7. Cells arrest near a minimum size set by genome volume

(A) Nuclear (red, Spy650-DNA) andmembrane (white, Stargazin-halotag) staining of Tet-On cyclin D1 T286A T288AMDCK cell monolayers atME + 3 dayswithout

dox (�dox) or with dox added at t = 0 (+dox CyDAA).

(B and C) Plots comparing nuclear volume and cell volume measured from 3D imaging in conditions from (A) (�dox, +dox CyDAA) or in cell-cycle-inhibited

conditions (�dox +palbo) or Tet-On p27 cells (+dox p27). +palbo is 1 mM palbociclib. (B) shows the correlation between the cell and nuclear volumes, while

(C) show the ratio of these volumes. Gray regions indicate when nuclear volume is larger than cell volume (B, top left) or when chromatin density is higher than

chromosomes (B, bottom; C, left). Error bars show SD of data (N-dox = 1,405 [2], N+dox CyDAA = 4,207 [2], N-dox +Palbo = 390 [1], N+dox p27 = 324 [1]).

(D) Monolayers in the same conditions as (A) immunostained for pS139 H2A.X (yH2A.X). Lines overlayed on images show nuclear segmentation from DNA

staining.

(E) Quantification of pS139 H2A.X foci from conditions in (D). Bar is the mean fraction of cells with >3 foci between 3 experimental replicates. Error bar is SD of

experiment means (nME-dox = 5,813 [N=3], nME+dox CydAA = 9,127 [N=3], nSC+dox CydAA = 2,470 [N=3]).

(F) schematic summarizing cell-volume regulation in epithelium. (***p < 0.001 from comparison of experimental means).
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chromosome volume by TEM and AFM have shown that the vol-

umes of a full set of chromosomes are approximately 50–

100 mm355,56 and 50% chromatin by volume,57 thus setting a

lower limit on cell volume. When we stained both the DNA and

cell membrane, we observed that the abnormally small Tet-On

CyDAA cells appear to have an unusually large nucleus relative

to the cell size (Figure 7A). This was surprising given that typically

there is a tight scaling relationship between cell volume and nu-

clear volume.38 Comparing the cell volume against the nuclear

volume for epithelium prepared under our previously described

conditions, we observe this scaling relationship except in the

Tet-On CyDAA cells in the presence of doxycycline (Figure 7B,

peach). Instead, we observe that the ratio of nuclear to cell vol-

ume is rapidly increasing as cell volume decreases below

1,000 mm3 (Figure 7C) and approaches regions where DNA

compaction exceeds chromosomal compaction or where nu-

clear volume exceeds cell volume (Figures 7B and 7C, gray).

We hypothesized that increasing chromatin concentration could

disrupt normal chromatin function, leading to DNA damage. In

CyDAA overexpressing cells in ME we observed phospho-

H2A.X foci indicating locations of DNA damage (Figures 7D

and 7E). Importantly, there was no DNA damage in CyDAA over-
expressing cells in SC or WT cells in ME. This suggests that

normal cells arrest near a cell volume minimum but outside

the range where DNA damage occurs frequently. DNA damage

is known to arrest the cell cycle through Rb/cyclin

D-independent mechanisms,58 preventing further volume reduc-

tion. Therefore, in epithelia, proliferative homeostasis is main-

tained by an interplay between cell growth in proportion to tissue

constraints and cell-volume-dependent G1/S regulation which

arrests the cell cycle near a minimum volume (Figure 7F).

DISCUSSION

While growth and division are balanced in to maintain a constant

cell volume, we observe that in the context of epithelial tissue,

growth and division rates can respond to different cues, which

leads to transient changes in cell volume during contact inhibi-

tion of proliferation. The tissue growth dynamics regulate cell

growth, whereas cell division is regulated solely by cell volume.

Differences in these two rates drive changes in cell volume de-

pending on the tissue environment. In single cells, the environ-

ment places no constraint on cell growth, leading to high growth

rates and large cell volume. In contrast, in MEs, tissue growth
Developmental Cell 58, 1462–1476, August 21, 2023 1471
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rates are low and reduce cell volume to a minimum. In this

regime, cell-volume regulation is critical for maintaining cell ho-

meostasis and preventing DNA damage. The consistency in

cell-volume distributions across diverse epithelial cell types (Fig-

ure 1B) suggests that ourmodels should be broadly applicable to

understand contact inhibition and cell-volume regulation across

diverse biological systems.

Canonically, growth factor signaling is thought to be the main

pathway to control and coordinate proliferation.59,60 We identify

an independent role for tissue confinement in controlling cell

growth. While we exploited model tissues with a particular type

of growth dynamics driven by edge migration, these ideas can

be easily extended to arbitrary systems so long as the tissue

growth dynamics can be readily characterized (Figures S4F–

S4M). One limitation of our analysis was that we considered

the tissue averaged behavior. These monolayers show nonuni-

form expansion and variations in cell height and density (Fig-

ure S4E), which we expect leads to spatial variations in confine-

ment. Additionally, tissue growth is driven by diverse processes,

including migration, tissue buckling or mechanical stretch,61,62

all of which would reduce tissue confinement. Importantly, in tis-

sue homeostasis, cells also constantly turnover, which we think

can be incorporated into our framework by considering cell exit

from the tissue as locally reducing spatial constraints.13,20,59,63 A

more comprehensive study that considers nonuniform confine-

ment driven by different processes is required to understand

confinement in vivo.

Previous work has implied that cell growth and YAP/TAZ

signaling in epithelium are regulated by mechanical

stress.5,12,22,64,65 Our framework provides a means to isolate

the roles of physical constraints on cell growth regulation. Impor-

tantly, confinement is a geometric quantity readily determined

from timelapse microscopy. Our data show that confinement is

a strong predictor of growth and YAP/TAZ activity, demon-

strating the utility of our model to study the mechanisms under-

lying epithelial growth control. However, future work will be

needed to connect our findings to classical contact inhibition

pathways. Our work and others implicate the hippo pathway

as a key mechanism,7,12 but future work is needed to determine

the relationships between tissue confinement, growth, and me-

chano-transduction. Importantly, the contributions from me-

chanical forces, cadherin adhesions, and growth factor accessi-

bility need to be carefully dissected individually while monitoring

cell and tissue growth to determine the underlying mechanisms.

Additionally, our measurements of growth in Figure 4 were

limited to changes in cell volume; however, there are cases

where the density of biomass in the cell changes,66–68 and un-

derstanding how protein density, synthesis, and degradation

are regulated during contact inhibition could be an interesting di-

rection for future research.

Our observation of a transition between volume-dependent

and independent behaviors in epithelia may explain prior obser-

vations of volume regulation in mammalian cells.13,17,69 In our

computational model, we find that a volume-dependent G1/S

transition gives rise to both sizer-like and timer-like behaviors

of cell-volume regulation at low and high growth rates, respec-

tively (Figure 5E). Other cell types also show large changes in

cell volume due to growth arrest and volume-dependent prolif-

eration.18,70–73 Future work may identify if these processes can
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be understood using the same framework as contact-inhibited

epithelia. In single cells, feedback mechanisms lead to

compensation in the cell-cycle duration during growth ar-

rest,14,50 but growth and cell cycle appear more independent

in epithelium and the examples above. Future work will be

required to understand how these feedback mechanisms are

regulated in different contexts. Furthermore, the molecular

mechanisms of G1 sizer regulation have remained

elusive.17,69,74 By experimentally manipulating cell volume, we

showed that cyclin D1 regulation underlies G1 sizer behavior

in epithelium. Cyclin D1 is strongly post transcriptionally regu-

lated by degradation,51 suggesting that upstream kinase local-

ization or activity may function in the volume-sensing pathway.

Our observations may lead to future work to connect cyclin D1

regulation directly to cell-volume sensing. It will be important to

understand how cyclin D1 levels are regulated in response to

cell volume. Other work suggests potential mechanisms like

changes in the proteome,75,76 nuclear size, or surface area to

volume ratio of the cell.16,69

Finally, below the minimal volume set by cyclin D1 regulation,

significant changes in nuclear-to-cytoplasmic ratio and DNA

damage occur, suggesting an important role of volume regula-

tion in maintaining epithelial cell homeostasis. Cancers that are

driven by mutations in genes implicated in cell-volume regula-

tion, such as small cell cancer, may show volume dependent

DNA damage leading to additional mutations. Examining the

source of this DNA damage and the changes in nuclear-to-cyto-

plasmic ratio will be an interesting avenue for future research. It

may be possible to connect these results to other studies looking

at how nuclear-to-cytoplasmic ratio is determined by proteome

composition77–79 and how DNA damage responds to cell

compression80 and examine the limits of nuclear volume in

more detail. Alongside recent work that shows that very large

cells become nonfunctional,19,75,76 the lower bound set by the

genome volume establishes a range of cell volumes for viable

diploid mammalian cells from �200 to 10,000 mm3, similar to

the range observed across different cell types.54 Overall, our

framework for understanding of the proliferative behaviors in

epithelium provides a basis for studying development, homeo-

stasis, and disease in complex epithelial tissues across diverse

biological contexts.

Limitations of the study
While the phenomena presented here generalize to several cell

lines tested, futurework is required to understand the application

of this framework in vivo. In experiments looking at cell growth,

we only examined the average behavior to show the overall ef-

fects of tissue confinement; however, theremaybe interesting ef-

fects at smaller scales. To determine growth rates, we used

CellTrace tomeasure changes in cell volume, but measurements

of protein production and density of protein within the cell can

provide further insight into the process of tissue confinement.

Due to the scope of this paper, we were only able to perform a

limited set of experiments looking at molecular mechanisms.

This leaves considerable room for future studies on themolecular

mechanismscontrolling growth arrest in epithelial due to confine-

ment, transmission of confinement signals across the tissue

scale, and how cell volume leads to cyclin D regulation and

cell-cycle arrest. Our experiments looking at DNA damage were
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limited, and futurework is required to find themechanismcausing

the increase in DNA damage at low cell volumes, to understand

how DNA damage triggers cell-cycle arrest in this context, and

to determine what happens if DNA damage response is blocked.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-cyclin D1 Cell Signaling Technologies Cat# 55506; RRID: AB_2827374

Anti-Phospho-Histone H2A.X (Ser139) Cell Signaling Technologies Cat# 9718; RRID: AB_2118009

Anti-Yap1 Santa Cruz Biotechnology Cat# 101199; RRID: AB_1131430

Bacterial and virus strains

Stellar Competent E. coli Clontech Cat# 636766

Chemicals, peptides, and recombinant proteins

PND 1186 Tocris Cat# 6891

(3-Aminopropyl)trimethoxysilane Sigma-Aldrich Cat# 281778

CellTrace Far Red Invitrogen Cat# C34572

Cell Mask Deep Red Invitrogen Cat# C10046

Cell Mask Orange Invitrogen Cat# C10045

Coverslips, 22 mm x 22 mm Fisher Cat# 50-189-9787

DMEM -L-glut, high-glucose Fisher/Mediatech Cat# MT10-013-CVEA

DPBS without Ca Mg Fisher/Mediatech Cat# MT21-031-CVEA

Trypsin 0.25% Fisher/Mediatech Cat# MT25-053CIEA

RIPA buffer (150 mM NaCl, 5mM EDTA,

50mM Tris, 1% NP40, 0.5% sodium

deoxycholate, 0.1% sodium dodecyl sulfate)

This paper N/A

Janelia Fluor 646 halotag ligand Promega Cat# GA1120

Janelia Fluor 549 halotag ligand Promega Cat# GA1110

Fugene HD Promega Cat# E2311

SNAP-Cell� 505-Star New England Biolabs Cat# S9103S

SNAP-Cell� TMR-Star New England Biolabs Cat# S9105S

Polybrene EMD Millipore Cat# TR-1003-G

PD 0332991 (Palbociclib) Cayman Chemical Cat# 16273

Collagen I, rat tail Corning Cat# 354236

Glutaraldehyde 70% Fisher Cat# 16360

Paraformaldehyde 16% Fisher Cat# 15710

calcium-free DMEM powder US Biological Cat# 09800

Puromycin Dihydrochloride Fisher Cat# A1113803

SYLGARD� 184 Silicone Elastomer Kit Dow Cat# 1673921

Corning� F12K Medium Corning Cat# MT10025CV

Chelex 100 Simga Cat# C7901

Doxycycline hyclate (dox) Fisher Cat# AC446060050

Critical commercial assays

NucleoSpin RNA Purification Kit Macherey Nagel Cat# 740955

Pierce� BCA Protein Assay Kit Thermo Scientific Cat# 23225

Deposited data

Imaging data This paper Figshare: https://doi.org/10.6084/m9.figshare.22231219

RNA sequencing data This paper GEO: GSE227906

Histology analysis This paper Figshare: https://doi.org/10.6084/m9.figshare.22231219

Simulation Data This paper Zenodo: https://doi.org/10.5281/zenodo.7632621

Dog reference genome

NCBI build 3.1, CanFam3.1

NCBI https://www.ncbi.nlm.nih.gov/

assembly/GCF_000002285.3/
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human protein atlas CDH1 histology Human Protein Atlas https://www.proteinatlas.org/

ENSG00000039068-CDH1

Allen cell 3D cell viewer Allen Cell https://www.allencell.org/

3d-cell-viewer.html

Experimental models: Cell lines

MDCK Laboratory of W. James

Nelson (Stanford)

RRID: CVCL_0422

HaCaT Laboratory of Yu-Ying He

(University of Chicago)

RRID: CVCL_0038

CACO-2 ATTC HTB-37; RRID: CVCL_0025

Mouse Embryonic Fibroblasts (MEF) Laboratory of Mary Beckerle

(University of Utah)

N/A

HEK 293T ATTC CRL-3216; RRID: CVCL_0063

hTERT-RPE-1 Laboratory of Wallace

Marshall (UCSF)

RRID: CVCL_4388

Oligonucleotides

Primers for cloning and sequencing, see Table S2 This Paper N/A

Recombinant DNA

pHR1-8.2-delta-R Laboratory of Marsha Rosner

(University of Chicago)

N/A

pCMV-VSV-G Laboratory of Marsha Rosner

(University of Chicago)

N/A

pLenti-PGK-Neo-PIP-FUCCI Addgene RRID: Addgene_118616

pWPT-Stargazin-Halotag This paper N/A

pLVX-Tre3g-mEmerald-p27-1-176 This paper N/A

pLVX-Tre3g-snap-p27ck-1-176 This paper N/A

pLVX-Tre3g-mEmerald-ccnd1 This paper N/A

pLVX-Tre3g mEmerald-ccnd1 T286A T288A This paper N/A

pcDNA cyclin D1 HA Addgene RRID: Addgene_11181

pLVX-Tre3g mKate2-T2a-12sE1a This paper N/A

pBabe 12S E1A Addgene RRID: Addgene_18742

pLVX-Tre3g Takara Lenti-X� Tet-On� 3G

Inducible Expression System

Cat# 631363

pLVX-EF1a-Tet3G Takara Lenti-X� Tet-On� 3G

Inducible Expression System

Cat# 631363

Software and algorithms

ImageJ National Institutes of Health https://imagej.nih.gov/ij/

Snapgene Software GSL Biotech LLC Snapgene.com

Metamorph Molecular Devices Moleculardevices.com

Image analysis code This paper https://github.com/Gardel-lab/

Devany2023DevCell

Simulation code This paper https://github.com/falkma/

tissueconfinement-simulations

Matlab Mathworks https://www.mathworks.com/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Margaret

Gardel (gardel@uchicago.edu).
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Materials availability
Plasmids will be deposited to addgene prior to publication. Cell lines are available from the lead contact upon request without

restriction.

Data and code availability
RNA sequencing data have been deposited at Gene Expression Omnibus (GEO) and are publicly available as of the date of publica-

tion. Accession numbers are listed in the key resources table. Imaging data and histology measurements have been deposited at

figshare and are publicly available as of the date of publication. Due to data size contraints imaging datasets are limited to a single

experimental replicate. Additional data will be provided by the lead contact upon request. DOIs are listed in the key resources table.

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

All original code has been deposited at Github and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and lines
All cells were maintained at 37C and 5% CO2. Cells were passaged using 0.25% trypsin EDTA every 2–3 days. Cells were checked

for mycoplasma by Hoechst staining. MDCK, CACO-2 and MEF cells were cultured in Dulbecco’s modified eagle medium (DMEM)

high glucose supplemented with 2mM L-glutamine and 10% FBS. HaCaT cells were maintained in low calcium high glucose DMEM

prepared from calcium-free DMEM powder supplemented with 40 mM calcium-chloride, 2 mM L-glutamine and 10% calcium

depleted FBS using Chelex-100. RPE-1 cells were maintained in 1:1 high glucose DMEM:F12k supplemented with 2mM glutamine

and 10% FBS. Tet inducible gene expression was done with 200ng/ml doxycycline in all indicated experiments (+dox).

Stargazin-halotag Caco-2 and MDCK cells were produced by lentiviral infection of CACO-2 and MDCK cells by a WPT-Stargazin-

halotag construct packaged in 293T cells by a second-generation lentiviral systemwith pHR1-8.2-deltaR and a VSV-G pseudotyping

plasmid (gifts from M. Rosner). Viral supernatant was collected at 24, 48 and 72 h after transfection then concentrated �30x using

Amicon Ultra-15 Centrifugal Filter Unit (100kDa) or concentrated �30x by peg precipitation (Marino et al., 2003).81 Cells (�50,000

cells a in 6cm diameter dish) were treated overnight with 300ul of concentrated virus in 2ml of media supplemented with 8mg/ml poly-

brene. Positive cells were isolated using a BD FACSAria� III cell sorter. FUCCI MDCK cells were produced by lentiviral infection with

virus of pLenti-PGK-Neo-PIP-FUCCI packaged and infected the same way. Cells were then selected using 800 mg/ml G418. pLenti-

PGK-Neo-PIP-FUCCI was a gift from Jean Cook. Tet-on mEmerald-P27 1-176 (human CDKN1B 1-176; NCBI Reference Sequence:

NP_004055.1), snaptag-P27ck 1-176, Cyclin D1-mEmerald, Cyclin D1 T286A T288A-mEmerald (subcloned from RRID: Addg-

ene_11181), mKate-T2a-12sE1a (subcloned from RRID: Addgene_18742) cells were produced using the Lenti-X Tet-On 3G system.

DNA above were subcloned into the Tre3g vector. Lentiviral particles were packaged in 293T cells transfected with pHR1-8.2-deltaR

and a VSV-G. Cells were infected with lentivirus with both the EF1a-Tet-on-3g and Tre3g plasmids above using the infection protocol

above then selected using 2 mg/ml puromycin and 800 mg/ml G418.

METHOD DETAILS

Epithelial monolayer cultures
For all experiments unless indicated otherwise, monolayers were formed on 2mg/ml collagen I gels (�200um thick) formed on top of a

coverglass substrate (see Collagen gel substrate preparation section for more detail). For monolayer samples to reach the OC state

after�12 h andME at�36 h cells were seeded onto collagen gels at high density (�80,000 cells/cm2). For SC samples a low density

of cells (�8,000 cells/cm2) were plated on the same substrates and cells were measured at time points before reaching OC. Cells

were added on top of the gel in a volume of 100-200ul and allowed to adhere for 5–10 min before adding 1.5ml to the culture dish

containing the coverslip and gel. Culture media was changed once each day.

Expanding colony assay
Expanding colonies were prepared using published methods modified as follows.44 4.4 grams of 10:1 PDMS (silgard) was cast in a

10cm petri dish and cured at 70C overnight. A piece of PDMS �20x20 mm was cut out then a set of holes was cut into the PDMS

using a leather hole punch of 1mm,1.5mm or 3mm (Nuhank 0795787181775). The PDMS was washed in 70% ethanol for 5 min

repeated 3 times then milli-Q water 3 times and allowed to dry. Cover slips were coated with collagen 1 by incubating them on

100ul of 0.2mg/ml collagen in 0.02M acetic acid for 1 h in a petri dish. Coverslips were washed with 1xPBS 3 times then with MQ

water 3 times and allowed to dry completely. Dry PMDS and coverslips were stuck together ensuring that no air bubbles remain be-

tween the surfaces. Cells were seeded in the well (2000 cells/mm2) and allowed to adhere for 5–10min before adding 2ml of media to

the petri dish. Colonies were left overnight then the PDMS was removed to allow colonies to expand. The initial colony size under

these conditions at the time of PDMS removal was measured and used as the initial size for subsequent analysis. Each experiment
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included a subconfluent and confluent sample as exponential and non-growing controls to ensure that results could be compared

across experiments. After the desired time delay samples were either fixed and imaged or fixed, permeabilized, immunostained and

imaged according to methods below.

BCA assay
BCA assay was performed using the Pierce� BCA Protein Assay Kit according to the manufactures protocol. Samples were pre-

pared by plating cells in two duplicate samples at a density which would reach confluence after 8 h (60,000 cells/cm2), after 24 h

(30,000 cells/cm2) and to remain subconfluent (3,000 cells/cm2). Cells were lysed at 24 h (ME,OC,SC) and 48 h (ME+24hr,

OC+24hr SC+24hr) on ice with 500ml of 1x RIPA buffer. All samples were collected and stored frozen for up to 2 days, then run in

cuvettes with 100ul of lysate and 2ml of BCA reagent. Samples were left for 2 h at room temperature and the absorbance was

measured using an Ultrospec 2100 pro UV/Visible spectrophotometer within 10 min.

A control sample where a collagen coated glass without cells was prepared, cultured, and lysed under identical conditions to the

samples and the absorbance was subtracted from all samples. This absorbance was not negligible in subconfluent samples (�50ug/

ml collagen vs �100 ug/ml protein) and was required for accurate determination of growth rate. Then the growth rate, G, was calcu-

lated from the protein concentrations, C, by the change in protein concentration normalized by the initial protein concentration

G = (Cf – Ci )/ Ci.

To measure the total cell division, samples prepared under the same conditions were trypsinized at the same time points and

counted to determine the number of cells. Then the division rate, D, was calculated from the cell numbers, N, by the change in

cell number normalized by the initial cell number D = (Nf – Ni )/ Ni

CellTrace labeling
Cells were labeled using CellTrace according to the manufacturer’s protocol. Cells were resuspended in PBS (106 cells in 1 ml) and

cell trace was added at 1mM for 15 min at 37C. Then cells were pelleted and resuspended in media and either directly used for ex-

periments or cultured under normal conditions for 1 day before use.

To measure growth using CellTrace the prepared cells were seeded according to the expanding monolayers protocol above and a

subconfluent and confluent control using seeding densities in the epithelial monolayer culture section above. The cells were grown

under normal culture conditions until the indicated time point then fixed and imaged or fixed, permeabilized and immunostained ac-

cording to the immunostaining protocol below. Images were taken of all samples and controls under identical imaging settings at the

same time, then an average intensity of the confluent control was used as an intensity corresponding to no cell growth. The average

intensity was measured for all other conditions and the growth was computed using the following formula: IðconfluentÞ
IðsampleÞ � 1 =

Volðt = DtÞ
Volðt = 0Þ � 1 = DVol. The subconfluent condition showed intensity consistent with the known doubling time of MDCK cells under

the experimental conditions.

Immunostaining
For halotag labeling, 30nM halotag JF 646 or 549 solution was added for 1 h before fixation. Just before fixation cells were washed

once in 1xPBS. Cells were fixed in 4%PFA in 1xPBS for 15min at room temperature. Cells were blocked and permeabilized in 1xTBS,

0.3% triton-X 100, 2%BSA solution for 1 h. Antibody solutions were prepared in 1xTBS 0.3% triton-X 100 2%BSA using 1:400 anti-

Cyclin D1, 1:100 anti-YAP, 1:400 anti- Phospho-Histone H2A.X. Samples were incubated in primary antibody overnight at 4C. Sam-

ples were washed 3 times in 1xPBS then incubated in 1xTBS 0.3% triton-X 100 2%BSA and secondary antibody for 1 h. In conditions

with DNA staining SPY650 DNA was added during the secondary staining step according to the manufacturer’s protocol at 1x con-

centration. Samples were washed 3 times for 5 min in 1xPBS then mounted on a slide in prolong gold antifade mounting media – non

curing (Invitrogen), sealed and imaged.

Fluorescence microscopy
For time lapse imaging cells were imaged on an inverted epi-fluorescence microscope (Nikon TI-E, Nikon, Tokyo, Japan) with a 20x

plan fluormulti-immersion objective. images were acquired at 10-min intervals in GFP, 642 and transmitted light channels using stan-

dard filter sets (Ex 490/30, Em 525/30, Ex 640/30, DAPI/FITC/TRITC/cy5 cube) (Chroma Technology, Bellows Falls, VT). For halotag

labeling, 30nM halotag JF 646 or 549 solution was added for 1 h before imaging. Samples were mounted on the microscope in a

humidified stage top incubator maintained at 37C and 5% CO2. Images were acquired on either a Photometrics Coolsnap HQv2

CCD camera (Photometrics, Tucson, AZ) or Andor Zyla 4.2 CMOS camera (Andor Technology, Belfast, UK).

Cell volume measurement samples in resuspension were imaged on an inverted spinning disk confocal microscope (Nikon TI-E)

with laser lines at 491, 561 and 642 and suitable emission filters (Chroma Technology). Images were acquired using a 40x plan fluor oil

immersion objective (NA 1.3) and Andor Zyla 4.2 CMOS camera (Andor Technology, Belfast, UK). Imageswere acquired at room tem-

perature within 1 h of cell resuspension.

All other imaging was done using a point scanning confocal microscope (Ziess Airyscan LS980) with laser lines at 491,561,642 and

an adjustable emission filter suitable for fluorophores that were imaged. Cell trace images were acquired using a 5x air objective (NA

0.16), YAP images were acquired using a 20x air objective (NA 0.8), Immunostaining images were acquired using a 40x oil immersion

objective (NA 1.3).
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RNA sequencing
Cells were treated with 1mmPalbociclib for 16 h then replated on collagen gels to make 3 monolayers from each condition. All mono-

layers were cultured together in a 10cmpetri dishwith 10ml ofmedia containing 100ng/ml doxycycline. Mediawas replaced each day

for 5 days. Then 2 monolayers from each condition were lysed, pooled and total RNA was collected using a NucleoSpin RNA kit. 1

monolayer from each condition was labeled with JF 646 halotag and imaged, then cells were resuspended for volumemeasurements

as described above. Volume distributions corresponding to eachRNA seq experiment are available in Figure S7E. RNA sampleswere

submitted to the University of Chicago Genomics Facility. RNA quality and quantity was assessed using the Agilent bio-analyzer

(RNA Integrity Number from 9.4 to 10). Strand-specific RNA-SEQ libraries were prepared using an TruSEQ mRNA RNA-SEQ library

protocol (Illumina provided). Library quality and quantity was assessed using the Agilent bio-analyzer and libraries were sequenced

using an Illumina NovaSEQ6000 (illumine provided reagents and protocols) with �60M PE reads/sample. Alignments were made to

the canine genome (Canis_lupus_familiaris.CanFam3.1) by psudeoalignment using Kallisto 0.46.1 (Bray et al., 2016).82 between 62.2

and 69.2% of reads were mapped with two technical replicates per experiment a total of np27_1 = 28049196 np27_2 = 28117815

np27_3 = 28012202 np27ck_1 = 28212157 np27ck_2 = 27961694 np27ck_3 = 27964407 reads. Technical replicates were highly similar

so they were averaged before further analysis. Data were then processed using iDEP 0.91(Ge et al., 2018)83 to measure differential

gene expression and the Wnt homepage was use to determine a list of Wnt target genes (‘‘Wnt Target genes | The Wnt Home-

page,’’ n.d.).84

Silane modification of glass coverslips
Glass coverslips were modified using the following protocol based on previously described methods (Zhu et al., 2012).85 Coverslips

were first cleaned by sonication in 70% and 100% ethanol solutions then dried with compressed air. We placed coverslips in a stain-

ing rack and submerged the rack in a solution of 2% (3-Aminopropyl)trimethoxysilane (APTMS) 93% propanol and 5% DI water for

10 min at room temperature while stirring. Staining racks were removed and washed in DI water 5 times then placed in a 37C incu-

bator for 6–12 h to allow the water to dry and amino-silane layer to cure. The staining racks were then submerged in 1% glutaralde-

hyde in DI water for 30min while stirring. The coverglass was washed 3 times for 10min in distilled water, air dried and stored at room

temperature. Activated coverslips were stored under vacuum and used within 6 months of preparation.

Collagen gel preparation
10x PBS,milli-Qwater, a 5mg/ml collagen stock and 1MNaOHweremixed to generate a polymerizationmixwith 1xPBS and 2mg/ml

collagen at pH�7. 70uL of the polymerization mix was added on to a 22x22mm coverslip modified with aminosilane according to the

protocol above and quickly spread to coat the surface using a pipette tip. Samples were transferred to a humidified incubator at 37C

to polymerize for 20 min. After polymerization gels were washed 3 times in 1x PBS and it was verified that gels were still intact and

adhered to the glass by a tissue culture microscope.

Cell volumes measurements
Resuspended - Cells were plated as monolayers for indicated times. Just before making volume measurements the cells were re-

suspended by adding 0.25% trypsin EDTA solution to the cells. Resuspending cells from ME conditions required partial physical

disruption of the monolayer using a pipette tip. Cells were resuspended in 35ml of media containing 30nM JF646 and incubated

for 5–15 min before adding to a thin channel prepared by sticking a coverslip to a glass slide using double stick tape. Cells were

imaged immediately with spinning disk confocal microscopy. We verified that samples showed no changes in cell volume measured

over time up to 1 h and performed all measurements within this timewindow. Cells were imaged at themiddle plane so that the radius

of the cell could be measured. The cross-sectional area was used to estimate the radius which was used to calculate the volume of

the cell. It was verified that this provided a comparable measurement to 3D segmentation of cells in the monolayer (Figure S1).

3D Images- Monolayers were stained using JF 549 halotag ligand and imaged using an airyscan LSM 980. Z- stacks spanning the

height of the cell were imaged. The height of the monolayer was determined at each point by identifying maxima of the intensity cor-

responding to labeling at the top and bottom membrane of the cell. The membrane label averaged across the middle 5 planes of the

cell was used to determine the area of the cell in the XY plane and this value is multiplied with the average cell height contained within

this region to give the cell volume. A similar process was repeated with nuclei images to measure the nuclear volume.

Cross-sectional Images- 3D images were acquired above and displayed as projections in the YZ plane. Images were opened in

imageJ and the width and height of individual cells was measured from these cross sectional images. The samemethod was applied

to histology sections where cells oriented perpendicular to the tissue section were first identified then the width and height of these

cells was measured. The volume was estimated by the width squared times the height of each individual cell.

These measurements are compared with 3D images for MDCK cells and show similar mean values (Figure S1). We also note that

changes in mitotic fraction can have some impact on the average cell volume of any population measure. This is important when

comparing single cells to tissues in vivo or ME. Cultured cells will typically contain a much larger fraction of cycling cells (�50%

vs�1%), cycling cells can be up to 2 times larger thanG1 arrested cells, but this would not be sufficient to explain the 4 fold difference

in cell volume observed in the data.
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Image segmentation
Images of cell membranes were segmented using customMATLAB code. Themain algorithm performs initial segmentation using the

Phase Stretch Transform algorithm developed by the Asghari and Jalali (H and JalaliBahram, 2015).86 Phase stretch images were

thresholded and skeletonized to obtain cell outlines. Broken edges in the skeleton were repaired using a modified implementation

of edgelink developed by Peter Kovesi (‘‘Peter’s Functions for Computer Vision,’’ n.d.).87 Segmentation code is available on GitHub.

Cell tracking
Cell tracking was performed using established particle tracking methods applied as follows (Crocker and Grier, 1996).88 Cell centers

were determined by taking the centroid of each segmented cell area generated as described above in Segmentation. The particle

trajectories were compiled from these position measurements using SimpleTracker, a MATLAB function developed by Jean-Yves

Tinevez (‘‘simpletracker,’’ n.d.).89

FUCCI analysis
Cells were imaged in GFP and RFP channels similar to above methods using timelapse imaging. Images of FUCCI markers and cell

boundaries were segmented using Phase Stretch Transform in Matlab as described above. Each cell was identified using the cell

boundaries and was determined to be GFP or RFP positive by measuring the intensity contained within the segmented images of

each nuclear marker. The percent of cells in G1 was determined by taking the ratio of cells identified as only GFP positive to the cells

identified as GFP positive, RFP positive and positive for both markers. To determine duration of S/G2/M phase the cell cycle state

wasmeasured along the cell trajectory and points where the cell switched fromG1 to S and then back to G1were identified. Then the

time between these events was measured to give the duration. To determine the full cell cycle duration the fraction of cells in S and

G2/M phase was measured and along with the S/G2/M phase duration was used to estimate the cell cycle duration by CC duration =

S phase duration/S phase fraction (i.e. if 10% of cells are in S/G2/Mwhich lasts 10 h, cells spend 9 times longer on average in G1 and

the duration of the cell cycle is likely �100 h)

Division rate measurement
We identified cell divisions by finding pairs of cells which appear adjacent to each other in a frame after both cells were not present in

the previous frame.We further filter out cells which are not of similar size to one another. We confirmed by inspection that this gives us

a subset set of cells which have divided in the previous frame with few false positives. We then find the mother cell by looking several

frames back for a cell near the centroid of the pair of daughter cells. We compare the number of cells of a given size which are de-

tected to divide compared to the total number of cells of that size to get a probability of division. This process is repeated for the entire

time series with a total number of division events typically >500. However, because not all division events are detected, this process

give the relative division rate as a function of size. The division rate is determined by the change in cell density over time at early time

points and the plateau value of the relative division rate is set to match this value.

Quantification of H2ax staining
Foci were segmented using a phase stretch transform-based method and an intensity threshold based on the intensity of the dim-

mest foci measured manually. The cell nuclei were segmented using methods above and the number of foci in each nucleus was

quantified.

Simulation growth models
Growth curveswere generated fromgrowthmodels of exponentially proliferating cells with doubling time t (A(t) = 2t/t, dA(t)/dt = log(2)/

t * 2t/t = A(t)*log(2)/t ) and of a circle with an expanding radius (r(t) = v*t, A(t) =p*v2*t2, dA(t)/dt = 2*p*v2*t = 2*v*sqrt(p*A)). Confinement

curves are calculated from the ratio of these rates as defined in the main text.

G1-sizer model
Our phenomenological model of cell size control is a ‘‘G1 sizer’’, which posits that exit from G1 is controlled by a size-dependent

function. Based on the sharp drop-off in the G1 exit rate seen in the log-plot of experimental data in Figure 5A, we assume that

the rate is a constant k[1 above a critical size a and 0 below that size. Following G1-exit, division proceeds in time t.

As discussed in themain text, this model has two regimes: one of slow growth (Gt � a), and one of fast growth (Gt[ a). Switch-

ing to non-dimensional units where a = 1 and t = 1, we can derive results for time-averaged single-cell quantities, including average

area, average time between divisions, and confinement. This can be done for both the fast- and slow-growth limits. In the following

expressions, < > indicates an average over time for a single cell.

In the fast-growth limit with growth rateG, cells never interact with the size-threshold a, and hence have a constant division time set

by the mean length of G1 plus the length of S/G2/M. This means a confinement of 0, and an average size s proportional to G. To

summarize:

< s> = 1:5ð1 + 1 = kÞG; < tdiv > = ð1 + 1 = kÞ ; C = 0:
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In the slow-growth limit with growth rateG, cells are almost exclusively below the size-threshold, and hence have division time set

by themean length of G1, plus the length of S/G2/M, plus the time it takes to grow up to the size threshold. Solving for the division time

yields the following expressions:

< s> = :75ð1 + Gð1 + 1 = kÞÞ; < tdiv > =
1

2
ð1 + 1 = k + 1 =GÞ; C = 1 � 1+1=k

1

2
ð1+1=k+1=GÞ:

These expressions are verified against numerical results ( Figures S6A–S6C).

Numerical simulation of G1-Sizer model
In order to further understand the implications of the phenomenological G1-sizer model in a tissue context, we implemented a sto-

chastic agent-based simulation of growing cell monolayers. In this simulation, each cell carries an index i, as well as two quantities ai
and pi, representing the size and cell cycle phase respectively. Time and size are in non-dimensional units during the simulation and

are converted to dimensional units for analysis after the simulation. We do this by associating 1 unit of simulation time to be the length

of a typical S phase (�10 h), and 1 unit of simulation size to be the volume at which it is seen experimentally that cells transition from a

size-dependent to a size-independent division rate (�1200 um3). We run our simulations with constant timesteps dt of.005. In the

specific use case of Figure 5E, we verified that the results obtained with a timestep of.0005 were not quantitatively different from

those generated at dt =.005.

At every step in the simulation, growth of cells is advanced by changing each ai by an amountG*dt, whereG is the growth rate of the

cell. G is in principle a function of the parameters of the cell itself, such as ai and pi, as well as global parameters such as the total

number of cells N and the total area of cells A.We observed similar results in amodel with exponential single-cell growth (Figures S6G

and S6H).

Division of cells is regulated by a size-dependent probability of entrance into S-phase. Formost simulations, we use a step function

for the S-entrance probability, due to its simplicity and qualitative similarity to the experimentally measured S-entrance probability. If

a cell exceeds an area of 1, it enters S at a rate of 3, at which point its phase variable pi is set to a value of 1/dt. At every step in the

simulation, the phase variable pi decreases by 1, and once pi reaches 0, the cell’s S/G2/M phase is completed. In some simulations

(Figures S6E and S6F) we use a rate function based on a logistic fit to the experimental data. In either case, following stochastic initi-

ation, each cell experiences S/G2/M phase as being a deterministic time of 1. We choose a G1 exit rate of 3 so that the average total

time of the cell-cycle in the size-independent regime is matched between simulation and experiment. At the point that a cell exits M,

the cell’s size ai is reduced by a factor of 2, and an additional new cell is created with size ai/2.

These two elements—size-dependent S entrance, and growth of cells—constitute the core of how we advance single-cell trajec-

tories through time. We examine the implications of this framework in two categories of simulations—ensemble simulations, and sin-

gle-cell simulations. In single-cell simulations, we track the trajectory of only one cell, following only one daughter cell after division. In

ensemble simulations, we track a whole population of cells, and the growth rate can therefore depend on quantities like N, the total

number of cells in the population.

In Figure 5D, we show example single-cell trajectories with two different constant growth ratesG. To exhibit timer-like behavior, we

simulated cells with a growth rate g = 1.6. To demonstrate sizer-like behavior, we simulated cells with a growth rate G = 0.1. In this

particular set of simulations, the S entrance rate was set to 10, to more clearly demonstrate the differences between the two growth

regimes. Cells are initialized with a size uniformly drawn from 1 to 2, and a phase pi that is either 50% uniformly distributed between

0 and 1/dt, or 50% pi = -1. Trajectories are simulated for 50 units of simulation time, though only a small fraction is shown of those

trajectories.

In Figure 5E, we use single-cell simulations to look at the relation between cell size immediately post-division versus immediately

pre-division in the subsequent round as a function of growth rate. We did this for 4 growth rates G = 1.0, 0.7, 0.2, and 0.05. Each

growth rate was simulated with 400 simulation replicates, each run for 40 units of simulation time. We initialize each simulation

with pi = -1, and a random size uniformly distributed between 1 and 2, and allow cells to grow with g = 1 for 10 units of simulation

time before switching to the simulation specific growth rate. After another 10 units of simulation time, we begin recording the size

of a cell immediately post-division, and immediately pre-division. Confinement values are estimated as 1 � # divisions observed
# divisions expected :

In Figure 5F, we show results from an ensemble simulation of cells. Ensembles are initialized from 4 cells with sizes uniformly drawn

from1 to 2, and then normalized such that they have total area 8. Cell phases are either 20%uniformly distributed between 0 and 1/dt,

or 80%pi = -1.We first allow the cells to expand in an unconstrainedway, i.e. we grow each cell in our simulationwith a growth rateG,

which is drawn for each cell and each time point from a uniform distribution with support between.9 and 1.1. When the ensemble of

cells collectively exceeds a critical total size, we quench all their growth rates to 0, and therefore only division occurs frombeyond that

time point, which we set to be t = 0. We perform these simulations for three different critical total sizes 500, 1200, and 4700, with 20,

10, and 5 simulation replicates respectively. After the critical size is reached, we can track the ensemble distribution of areas as a

function of time, which we do for 4 units of simulation time, corresponding to 48 h of real time. We did not notice any significant dif-

ferences in the distributions as a function of the total size at which we quench the growth rate.
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QUANTIFICATION AND STATISTICAL ANALYSIS

For individual experiments the number of samples and replicates are indicated in the figure caption. Significance was determined by

a paired-sample t-test of experimental means with p<0.05 indicating a significant result. p-values for individual experiments are indi-

cated in the figure captions.
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