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Evolution in time-varying environments naturally leads to adaptable biological systems
that can easily switch functionalities. Advances in the synthesis of environmentally
responsive materials therefore open up the possibility of creating a wide range of
synthetic materials which can also be trained for adaptability. We consider high-
dimensional inverse problems for materials where any particular functionality can be
realized by numerous equivalent choices of design parameters. By periodically switching
targets in a given design algorithm, we can teach a material to perform incompatible
functionalities with minimal changes in design parameters. We exhibit this learning
strategy for adaptability in two simulated settings: elastic networks that are designed
to switch deformation modes with minimal bond changes and heteropolymers whose
folding pathway selections are controlled by a minimal set of monomer affinities. The
resulting designs can reveal physical principles, such as nucleation-controlled folding,
that enable such adaptability.

adaptability | materials training | inverse design | disordered materials

Considered as materials, biological systems are striking in their ability to perform many
individually demanding tasks in contexts that can often change over time. This success
can be attributed to “metaproperties” like modularity (1–5), robustness (6), plasticity for
learning (7), and multifunctionality (8–11). While inverse materials design has sought to
optimize specific properties (12–23), less attention has been given to identifying general
design strategies for creating materials with metaproperties.

Here, we show how a biologically inspired design method can target one such
metaproperty, adaptability. By adaptability, we mean the ability to switch between
mutually incompatible functions with minimal changes in design parameters. For
example, consider the Poisson’s ratio of an elastic network, which is a unique number
which characterizes the global deformation of a material in response to small uniaxial
strains. An adaptable elastic network could switch from a negative Poisson’s ratio to a
positive one with minimal network changes, even though a given network can only have
one Poisson’s ratio. In this example, the mutually incompatible functions are the different
Poisson’s ratios, and the design parameters are the stiffnesses of the network bonds. A
truly adaptable material will be as good as a nonadaptable material at any given function
but will require fewer modifications to produce a distinct, incompatible function.

At first glance, the existence of a truly adaptable material seems highly improbable.
However, if the design space of the material is high-dimensional, then we should
generically expect that there are many distinct choices of design parameters with
equivalent performance for a given function (1, 19, 24–28). Our goal is to identify
the much more rare subsets of design solutions which both perform the given function
and are adaptable.

In our approach, we take existing optimization algorithms for a target function and
repeatedly switch the target before optimization is completed for any one function.
The partially adapted design parameters for one function are used as initial conditions
for optimizing the second function. This intuitively requires the solutions identified in
successful periods of training to drift closer to each other in design space with each switch
(Fig. 1).

The underlying logic of this approach is that the sets of design parameters which
survive the oscillating selection process are required to be similar by construction, even if
their yield is lower. The existence of similar design parameter sets then implies that there
are shared design characteristics between the solutions, even though the functions they
perform are incompatible.

Significance
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distinguished by “metaproperties”
such as robustness or
multifunctionality. We show that
the metaproperty of adaptability
naturally emerges when tunable
synthetic materials are trained for
different incompatible functions
in sequence. By switching training
goals, materials localize to special
regions of their high-dimensional
design spaces, where they have
learned to be rapidly adaptive
to a changing environment.
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Fig. 1. Evolving design parameters toward different target functionalities over time can select for highly adaptable materials. (A) Materials can be characterized
by their design parameters (e.g., for an elastic network, the rest length and stiffness of each bond are design parameters). The design parameter-to-function
map is often highly degenerate; many choices of design parameters (e.g., orange region) can achieve the same equivalent function (e.g., G2). Some parts of the
orange region might be close to design parameters (green) that achieve an alternative function G2; such regions can often be vanishingly small but correspond
to materials that can quickly adapt from exhibiting function G1 to G2 with minimal changes. We have drawn regions for each goal as simply connected regions,
but the topology may be more complex. (B) Optimization for a single, fixed goal either G1 or G2 will typically result in nonadaptable materials that are good at
function G1 or G2 but not adaptable. Switching between the two goals on a fixed timescale �, even if the parameters are not yet well adapted to the current
target goal, by construction selects for parameters that are closer together in parameter space. Faster switching selects for closer parameter sets that might
be rarer or might not exist, leading to a trade-off between yield and adaptability.

We note that our approach does not directly optimize a metric
of adaptability. Instead, material adaptability arises because of the
sequence of selection pressures the material is subject to during
design optimization. Our method functions analogously to a soft-
ware “wrapper”: a procedure which coordinates the deployment
of existing optimization algorithms. It is therefore compatible
with a wide range of existing material design procedures, ranging
from fully computer-based (12–14) to fully in situ (29, 30). Our
work extends intuition developed earlier on modularity (1, 2)
in biological contexts to canonical synthetic materials platforms.
However, in these prior works, the tasks under selective pressure
were chosen to be modular. The resulting system reflected the
modules specified by the selective environment: e.g., with logic
circuits (1), the environment switched between selecting for
computing an AND operation between two subgoals, or an
OR operation between those same two subgoals. Consequently,
the resulting logic circuits developed modules for computing
subgoals which could be quickly recombined to achieve AND or
OR with minimal changes.

In contrast, in many problems relevant to materials, the differ-
ent goals or functions required may not have any obvious modular
structure. For example, consider two goals G1, G2 representing
a material with different Poisson’s ratios, an elastic network with
incompatible long-range motions, or a polymer folding into two
distinct structures with no common substructures. In this work,
we focus on such arbitrary goals that are not chosen to be modular
in any obvious sense. We will nevertheless use the alternating
selection paradigm of prior biological works; we find that such
design protocols can reveal adaptable organization of materials
that can be rationalized in retrospect, even for goals not organized
in any obvious modular manner.

We demonstrate the utility of this method in the context of
three simulated systems—a) elastic networks with locally tunable
moduli being trained to exhibit allostery, i.e., targeted long-
range coupling between local deformations, b) elastic networks
undergoing irreversible connectivity changes for targeted Pois-
son’s ratio, and c) self-assembling heteropolymers with monomer
interactions tuned for folding into distinct structures. In each
system, rapidly oscillating training goals allow us to find design
parameters which can switch between mutually exclusive func-
tions with minimal parameter changes. In the self-assembly case,

we gain physical insight into the origin of adaptability, as selecting
for adaptability localizes parameter changes to interaction units
which control kinetic barriers in the folding landscape. Similarly,
in the elastic networks, we find that adaptability arises from a
coherent displacement unit which is easily shifted to perform
opposing allosteric motions. Thus, our work suggests a broad
strategy to identify physical mechanisms that enable adaptability
in materials with arbitrary underlying physics.

Results

Elastic Networks. In the context of mechanical materials, we
first focus on allosteric response, that is, the ability of an elastic
network to exhibit a desired strain at a distant target site if
strained at a specific source site. Such allosteric responses have
been created through multiple methods (2, 31–35). Typically,
there are multiple design parameters that give rise to an allosteric
response, which means that the design space is degenerate with
respect to that particular allosteric motion. Our goal is to search
through this degenerate design space for the smaller set of
parameters that can perform a specific, different, incompatible
allosteric response with minimal adjustment.

We use a 2-d mass-spring network to model allostery in a
mechanical system. Specifically, we simulate a 22-node hexagonal
lattice with fixed boundary conditions. While the geometry and
rest lengths of all springs are fixed, the collection of 83 spring
constants K = {ki}83

i=1 are design parameters that can be tuned
to get specific allosteric responses. The two motions we train
for, G1 and G2, correspond to two opposite responses for the
same input at the same source site (Fig. 2A). We first reproduce
such single-function design by starting from many random sets
of springs constants K and running a gradient descent procedure
on a cost function related to the dynamical matrix.

Our cost function rewards the softest mode transmitting strain
from source to target while also rewarding a large energy gap
between such a soft mode and the next mode; see SI Appendix for
further details. Other works have created such allosteric materials
using a range of different cost functions and optimization
procedures (31, 32). Our procedure, while different in detail
from previous work, nevertheless consistently produces networks
with the desired allosteric response.
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Fig. 2. Oscillatory training protocols generate adaptable solutions for allostery in elastic networks. (A) We perform training on elastic networks with tunable
bond stiffnesses. Goals G1 and G2 seek extensile and contractile strains respectively at a pair of target nodes in response to strain at a pair of input nodes.
Target nodes, applied strain, and input nodes are the same for G1 and G2. (B) Each successful run of training generates a pair of elastic networks; one performs
G1, and the other performs G2. We show the network which performs G1, bonds colored by relative stiffness (normalized to network bond stiffness mean).
Relative bond stiffnesses which change by more than 0.1 to switch to G2 circled in black. Network examples from training without oscillations (Left) and with
oscillations (Right). (C) Performance on each goal G1, G2 quantified by a cost function. Lower cost function indicates improved performance. Training drives cost
function of on-target goal lower during each period. Background color panels indicate on-target goal. � indicates training steps per period of goal oscillation.
(D) Faster oscillation (smaller �) during training gives networks with higher adaptability (defined as fraction of all relative bond stiffnesses which change beyond
0.1 threshold when switching between G1 and G2). Violin plots show distribution of changed bond fraction over successfully trained network pairs; black lines
indicate minimum, mean, and maximum values (n = 500 for all distributions).

Crucially, we find that there are numerous choices of design
parameters K—here, bond stiffnesses—that can separately per-
form each of the goals G1 and G2. One of these networks for G1
is shown in Fig. 2 B, Left; the others are different in the choice
of K but are equivalent in terms of performance at G1.

To leverage this degeneracy in design parameters for adapt-
ability, we studied a family of algorithms in which the target
goal is switched periodically between G1 and G2 during
design optimization at different timescales τ , where τ is the
number of optimization steps per period. In this way, design
parameters partially optimized for one goal, say G1, are used
as initial conditions for the next period of design that targets
G2. Following our intuition in Fig. 1, any two sets of design
parameters produced consecutively in this way are likely to be
similar.

The results of switching at different frequencies are shown in
Fig. 2 B–D. We find that such oscillatory design has two distinct
phases. Initially, the design parameters are not good at either
goal G1, G2 (Fig. 2C ). After this phase, we find one of two
outcomes: a) success, i.e., convergence to a limit cycle between
a pair of design parameters (bond stiffnesses) K1 and K2 that
are good at G1 and G2, respectively (Fig. 2C ) or b) failure, i.e.,
convergence to design parameters that are good at only one or
neither property.

In successful cases, we can measure adaptability of the pair
K1, K2 as the number of bonds that need to change their elastic
constant kij by more than 0.1 when normalized by the mean
stiffness of the network.

We repeat simulations for 500 random initial assignments of
bond stiffness for each of 4 different oscillation timescales τ (Fig.
2D). We see a substantial and systematic increase in adaptability
with frequency of switching, when restricting to successful runs.

Intuitively, for more rapid switching times, when the process
does converge on a limit cycle, the pair K1, K2 are closer, as they
must be since there is less design time to get from one to another.
In the limit of extremely rapid switching times, the differences
between the two solutions will vanish, as there is no design time
to make changes to each solution.

For example, using an oscillation timescale τ = 50, we identify
networks that can switch function by changing as few as 5 bonds
(Fig. 2 B, Right). In contrast, networks obtained by optimizing
for G1 or G2 alone typically differ significantly in 50 bonds (Fig.
2, B, Left and D).
Physical interpretation. To better understand how adaptability
arises under oscillatory training, we optimized several larger
networks. While in small networks, it was more difficult to
identify physical principles in the optimized networks, in larger
networks, the mechanical signatures of allostery were visually
clear. In one example network, we found that oscillatory training
produced a section of the network which moved coherently. This
section is diverted with just a small number of bond stiffness
changes, shifting from an in-phase to an out-of-phase motion.
Surprisingly, training for only one motion at a time also produced
networks with coherent motions. However, the coherent motions
selected for in the nonoscillatory training differed between the
G1 and G2 goals (SI Appendix, Fig. 1A). We quantified this
effect through the overlap of displacement patterns in the lowest
energy modes, finding that patterns between adaptable pairs had
a significantly higher overlap compared to nonadaptable pairs’
overlap (SI Appendix, Fig. 1B).
Local learning rules. We showed that adaptable allosteric response
can be created in elastic networks by alternating training for
two incompatible motions (Fig. 2). This training relied on the
optimization of a global cost function under gradient descent.
However, recent examples of elastic network training aim to
change bulk elastic moduli with algorithms which use local
information as input (36–38) and modify the network in an
irreversible fashion (39, 40). When training for adaptability in
mechanical allostery, we implicitly assumed that the dynamics
of training would allow for returns to previously visited regions
of design parameter space. It is not clear that we can train for
adaptability without the ability to move unrestricted through
design parameter space. Here, we show that we can extend our
oscillatory training framework to the task of developing bulk
elastic response even with irreversible local update rules, at the
cost of decreased yield.
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Our two target goals G1 and G2 now correspond to having
Poisson’s ratios of > 0.75 and < −0.75, respectively (Fig. 3A).
We will use the same notation as in the previous section—G1 and
G2—to refer to these goals. The Poisson’s ratio ν of a material
describes its bulk deformation response to a uniaxial strain. If
the applied strain is compressive, a negative ν indicates that a
network will contract along the axis orthogonal to the strain,
while a positive ν indicates that a network will expand along
the orthogonal axis. Note that for isotropic materials in two
dimensions, ν is constrained to be within [−1, 1], but here, we
consider materials which may become anisotropic as they are
trained.

Our algorithm for training elastic networks to performG1 and
G2 proceeds by the irreversible removal of bonds based on local
information. Our design parameters are the presence or absence
of a bond in the network, but we do not allow bond additions.
We initialize our 500 training simulations with 2D mass-spring
networks of approximately 200 nodes obtained from positionally
disordered jammed packings. We simulate these networks under
periodic boundary conditions. During training, we enforce a
deformation on the network, measure the strain in each bond,
and then remove the bond which experiences the most strain.
When we train for positive ν, we compress the network along the
y-axis and stretch it along the x-axis. Analogously, we train for
negative ν by compressing the network along the y-axis while also
compressing it along the x-axis. During oscillatory training, we
alternate which of these deformations is applied. See SI Appendix
for further detail.

Despite the differences between the goals and algorithms
considered here compared to those used in the design of adaptable
allostery, we find that a similar picture of adaptable mechanical
design under oscillatory training emerges (Fig. 3 B–D).

Even when trained from the same initial network, training
for G1 or G2 separately produces pairs of networks with many
differences in their bond removals (Fig. 3 B, Left). In contrast,
when we oscillate which deformation is applied every 20 bond
removals, we find that the difference between such network pairs
is 50% to 70% lower than the difference in network pairs trained
without oscillation (Fig. 3 B, Right and D).

However, in an ensemble of networks undergoing oscillatory
training, 82% experience mechanical failure before the training

ends, due to the irreversible nature of bond removals. Of those
that survive training, 29% are able to rapidly switch between G1
and G2, with an overall yield of 5% (Fig. 3C ). When comparing
an ensemble of networks trained with oscillation to an ensemble
of networks trained without, we find quantitative evidence that
adaptability increases with oscillatory training, at the cost of lower
yield (Fig. 3D). This trade-off between adaptability and yield is
also observed in our allostery training, but the irreversible training
algorithm lowers the overall scale of the yields for our Poisson’s
ratio training in comparison to the allosteric case.

Heteropolymer Folding. Having demonstrated our method’s
success in designing adaptable mechanical networks, we turn
to another paradigmatic class of tunable synthetic materials.
Programmable self-assembly of single target structures has been
explored in many systems, ranging from colloids to proteins
and DNA. Across these diverse systems, a similar set of design
parameters are tuned to target assembly of a desired structure.
Typically, these parameters include a matrix of binding affinities
between building blocks, in addition to global parameters like
temperature and concentrations. We refer to the matrix of
binding affinities as the affinity matrix.

In most approaches to self-assembly (41, 42), the affinity
matrix closely resembles the contact matrix of the building blocks
in the desired structure0. That is, particles in contact in0 should
typically have stronger binding affinities compared to particles
not in contact in 0, thereby energetically stabilizing the structure
relative to other configurations of the same particles.

As a result, design parameters optimal for assembling a
structure 0a would not be good at assembling an unrelated
structure 0b with high yield. This makes adaptability in self-
assembly seem difficult from the outset. The stochastic nature of
self-assembly provides an additional complication compared to
elastic networks.

To test whether we can design a self-assembling system to be
adaptable, we built a simulation of 2-d heteropolymer folding
using the HOOMD-blue software (43). Specifically, we consider
a polymer of 13 monomers, each of which is bonded to the next
with harmonic springs. A harmonic bending energy is present
to stabilize the fully extended polymer state with a persistence
length of 5.5. Each monomer interacts with all non-neighbor
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Fig. 3. Oscillatory training protocols generate networks with adaptable Poisson’s ratios. (A) 2D elastic networks with disordered geometry are trained for
Poisson’s ratios � > 0.75 (G1) or � < −0.75 (G2). During training, bonds are irreversibly removed based on local stress in response to applied strain. (B) Each
successful run of training generates a pair of elastic networks; one network performs G1, and the other performs G2. We show the network which performs
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monomers through an attractive Morse potential with a tunable
affinity. The affinities have a maximal value of 6 kT and a minimal
value of 0 kT. As such, the design space has dimension 66, equal
to the number of lower-triangular entries in a 13 × 13 affinity
matrix without including the first off-diagonal; see SI Appendix
for further simulation details.

Our task is to select affinity matrices which can readily switch
between two distinct, mutually exclusive design goals (Fig. 4A).
Our first goal, G1, is to produce polymers that fold from a fully
extended initial condition into a spiral with a winding number
exceeding that of 1.0 around the monomer at the head of the
polymer. As self-assembly is stochastic, we further specify that
this must occur with greater than 70% probability within 500
units of simulation time. G2 is defined analogously, with the
difference being that the target structure is now an antispiral,
which has a winding number exceeding that of 1.0 measured
relative to the monomer at the tail of the polymer. We use the
same notation as in previous sections—G1 and G2—to refer to
these goals.

We optimize the yield of a given target structure over the
66 design parameters using the covariance matrix adaptation
evolutionary strategy (CMA-ES) (44, 45) that simulates an
evolving population of design parameters. The loss function for
our implementation of CMA-ES is the negative of the yield, with
a floor set by the minimum 70% yield required for successfully
achieving either G1 or G2; see Supplemental Information for
further parameter choice details.

We perform optimization with two training protocols: 1.
“no-oscillation” training, where G1 and G2 are optimized
individually, and 2. “with-oscillation” training, where we switch
between G1 and G2 with a period of 5 training steps. When
we successfully perform with-oscillation, we see that the maximal
yield of each goal increases in an alternating fashion with each
successive training period (Fig. 4B). This suggests that oscillating
training is converging to affinity matrix solutions which can easily
switch between G1 and G2. Through this procedure, we collect a
set of affinity matrix pairs A1, A2. Additionally, we verify that the
adaptability of our pairs A1, A2 does not come at the expense of
significant performance degradation on the individual goals they
are trained for (SI Appendix, Fig. 2). We collect an analogous set
of pairs for no-oscillation training simply by running converged
optimizations from the same initial conditions.

To characterize the distribution of successful affinity matrix
pairs, we computed the average difference between a matrix that
achieved G1 and its corresponding G2 partner (Fig. 4 C , Top
row), focusing only on entries that changed substantially (i.e.,
by more than 1 kT). The resulting average difference matrix
from the no-oscillation training shows many more changed
entries than the matrices from with-oscillation training. This
visually suggests that oscillatory training identifies more adaptable
regions of design space, where the affinity matrices which
achieve G1 are closer to those which achieve G2. The average
affinity matrix for each goal supports the same conclusion (Fig.
4 C , Bottom row). Note that we have shifted the monomer
numbering when plotting affinity matrices, for ease of visual
comparison.

To quantitatively confirm these visual conclusions, we com-
pute the fraction of matrix entries that change by more than
2 kT between each A1, A2 affinity matrix pair (Fig. 4D). As
expected, the distribution of this metric across all such pairs
is substantially higher for no-oscillation training than for with-
oscillation training.
Physical interpretation. The adaptability of self-assembly found
here is surprising at first glance. The average adaptable pair of
affinity matrices A1, A2 resemble each other for the majority
of elements (Fig. 4 C , Right), yet fold into incompatible
configurations with high yield.

To understand the physical design principles underlying
such adaptability, we estimated aspects of the folding energy
landscape for affinity matrices A found through oscillatory and
nonoscillatory training; we computed the energies of folded
configurations with different winding number (SI Appendix).
We find that on-target structures are similarly stabilized by
both oscillatory and nonoscillatory training, as suggested by the
cartoon in Fig. 5A.

However, the two training protocols differ in how they treat
off-target structures. With nonoscillatory training, the off-target
structures are relatively high in energy since training is only
ever shown the on-target structure (Fig. 5B). Consequently, the
affinity matrix requires extensive changes to assemble the off-
target structure. With oscillatory training, both on-target and off-
target states are low-energy states. Relative to the no-oscillation
off-target distribution, the with-oscillation off-target distribution
is lower by ∼ 10kT (Fig. 5B).
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Fig. 4. Oscillatory training protocols generate adaptable solutions for heteropolymer folding. (A) We train the monomer interaction matrix for a heteropolymer
of length 13 in order to target different folded structures—a clockwise spiral G1 and a counterclockwise spiral G2—in finite time, starting from an unfolded
state. Monomers are colored according to position. (B) Performance on each goal G1, G2 is quantified by a cost function. Lower cost function indicates improved
performance. Training drives cost function of on-target goal lower during each period. Background color panels indicate on-target goal. � indicates training
steps per period of goal oscillation. (C) Trained interaction matrices that target a spiral G1 and an antispiral G2: (Bottom) matrices A1, A2; the upper triangle is
the matrix, and the lower triangle shows upper quartile interaction values. (Top) matrix difference |A1 − A2|. Both top and bottom panels are averaged over
no-oscillation (n = 40) and with-oscillation (n = 62) training runs. Any matrix elements < 1 kT are visualized in white. Polymer ends are positioned at the center
of interaction matrices. (D) Fraction of interactions which change by > 2 kT to switch between G1, G2. Violin plots show distribution over no-oscillation training
pairs (n = 40) and with-oscillation pairs (n = 62). Lines indicate minimum, mean, and maximum values.
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Fig. 5. Adaptability in polymer folding relies on localizing interaction
changes to nucleation barriers. (A) When trained without oscillations, energy
landscapes (cartoons) targeting G1 (green) and G2 (orange) have deep energy
minima at their on-target G1 and G2 (black open circle) but high energy
at off-target G2 and G1 (black solid circle), respectively. With oscillatory
training, discrimination is now kinetic; both on- and off-target energies
remain low, but the landscape develops kinetic barriers to folding (white
cross black squares). Kinetic barriers enable adaptability since folding can
changed by changing a small number of contacts in the nucleation seed.
(B) Off-target energy distributions for no-oscillation (Left) and with-oscillation
(Right) training (data from 40 and 62 simulation runs, respectively); energy
is relative to the mean of the no-oscillation on-target distribution. The off-
target distribution is lower in energy than in with-oscillation training. Violin
plot lines indicate minima, means, and maxima. (C) As in Fig. 4C , interaction
matrix differences between G1 and G2, for no-oscillation (Left) and with-
oscillation (Right) training. Barrier contacts are overlaid as white cross black
squares; oscillatory training localizes interaction matrix changes to the barrier
contacts. Monomers are colored according to position.

Despite such energetic stabilization of off-target structures,
oscillatory training results in robust on-target folding by ex-
ploiting kinetics. Folding is controlled by a nucleation barrier
that is higher for the off-target structure than for the on-target
structure (SI Appendix, Fig. 3). Using the estimated energy
landscapes, we can identify “barrier contacts” that need to form
in a partially folded nucleation seed before subsequent downhill
folding to completion. Oscillatory training localizes the few
changed affinities to those involved in forming barrier contacts
(black in Fig. 5C ).

Thus, our time-varying algorithm points at a physical principle
for adaptive self-assembly of independent validity. Kinetic yield
is controlled by partially folded early intermediate structures that
correspond to nucleation barriers. These barriers can be lowered
in energy or conversely destabilized by relatively few changes
to the affinity matrix, resulting in the spiral or antispiral with
high selectivity. Similar principles might apply more broadly
to proteins and ribozymes where partly folded configurations,
en route to fully folded configurations can be destabilized; indeed,
such mechanisms might operate in experimentally characterized
adaptable proteins and ribozymes where a single mutation can
switch the polymer between distinct structures and thus function
(46, 47).

General Trade-Offs and Design Principles. Across the diversity
of optimization methods and material physics, we observed some
common features to the emergence of adaptability.

First, there is a trade-off between the yield of the training and
the adaptability of the converged solutions. In each context, both
the yield and the adaptability are controlled by the frequency of
oscillation. Increasing oscillation frequency increases the adapt-
ability of converged solution pairs. At the same time, increasing
oscillation frequency decreases the yield of the procedure (Fig. 6).
This trade-off between yield and adaptability is fundamental to
our proposed scheme; we produce adaptable pairs by selecting for
those solutions which have survived a transition between G1 and
G2 in one period of training. As the training period shortens,
this selection becomes a more stringent requirement, and no
such adaptable solutions might exist in the region of parameter
space being explored by the random initialization. Thus, for any
given problem, the selection-based nature of the optimization
means that increasing yield requires giving up adaptability, and
increasing adaptability might mean sacrificing yield.

Additionally, irreversible training rules lower the overall scale
of the yield and adaptability trade-off. For instance, 98% of
the failures in the Poisson’s ratio training for single targets were
due to mechanical failure, with an overall yield of 20%. These
mechanical failures were a natural consequence of irreversible
bond removal training; bonds can never be replaced and thus
networks eventually form system-spanning cracks. By contrast,
yields in systems where we allowed reversible strengthening and
weakening of interactions had higher yields (Fig. 6 A and C ).

Second, the dimensionality of the design space influences
multiple aspects of the oscillatory training process. A system
with more tunable disorder (and hence a higher-dimensional
design space) will host more degenerate solutions for a given goal;
increased dimensionality is likely to increase the probability of
single-target training success. By the same logic, we might expect
that systems with more design parameters are more amenable
to producing adaptable solutions. To test this intuition, we
performed training of smaller elastic networks, with fewer design
parameters. We found that the yield in these smaller systems
was lower than those at the comparable oscillation frequency in

allostery Poisson's ratio folding
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Fig. 6. A trade-off between adaptability and yield. Fraction of optimization
trajectories which successfully converge to solutions when trained for
incompatible functions (yield). Yield is plotted against design parameter
similarity, the average fraction of parameters which changed when switching
between incompatible functions. Training for adaptable (A) allosteric modes
and (B) Poisson’s ratios in elastic networks and (C) folded structure of
heteropolymers. Total number of training runs for each task and frequency
condition: allostery (all n = 500), Poisson’s ratio (all n = 500), and folding (no
oscillation n = 50, with oscillation n=200). � is the length of each training
episode, as shown in Figs. 2C , 3C , and 4B. Training in (A) and (C) allows for
bidirectional changes in parameters during training. In (B), training only allows
for weakening or removal of bonds, leading to mechanical failure more often,
and lower yields.
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the larger systems (SI Appendix, Fig. 4). For allostery, we also
observed that the fraction of changed bonds increased relative to
the larger systems (SI Appendix, Fig. 4B).

Finally, we observe that adaptable solutions are potentially
less robust to perturbation. In particular, we investigated the
effects of pruning bonds in elastic networks trained to have
Poisson’s ratio ν > 0.75. We found that single bond removals
rarely had a substantial effect on control networks trained with
nonoscillatory protocols. While the majority of bonds removed
had a similarly small effect in adaptably trained networks, a small
number of bond removals had an impact on ν greater than the
range found in the controls (SI Appendix, Fig. 5A). Similarly,
we found that adaptably trained networks had on average 1− 2
bonds which could destroy the ν > 0.75 functionality, while
control networks had none (SI Appendix, Fig. 5B). The increased
sensitivity of adaptably trained networks is consistent with an
intuitive picture of our optimization scheme, where oscillatory
training localizes systems to the boundaries of high-dimensional
degenerate functionality sets. Nevertheless, 99% of bond removal
perturbations do not affect the ability of the system to perform
its function.

Discussion

Biological materials differ from synthetic materials in not just
their physics and composition but also in the history of their
development. In fact, the way biological materials are arrived
at, through a process of incremental evolution in a sequence
of historic environments (48, 49), is critical in understanding
why they function differently from synthetic materials. While
synthetic materials can sometimes rival or even exceed specific
functionalities of natural systems, these synthetic systems are
lagging precisely in metaproperties like adaptability, robustness,
and ability to acquire unique functions on the fly.

Here, we have shown how one such property, adaptability,
can arise without any direct optimization. Instead, we find
adaptable materials by applying a time-varying sequence of
selection pressures during design.

This adaptability comes through the spontaneous formation
of identifiable physical units, despite the fact that our goals and
systems were not explicitly modular in form. In contrast to prior
work (1, 2) which used explicitly modular goals, the physical
systems in our work must identify implicit “modules,” e.g.,
reusable nucleation-based pathways or mechanical substructures,
that can be used for the multiple nonmodular functions we
require. In this way, our work can be seen as building on those
ideas to identify physical principles specific to the physics of
systems studied (e.g., nucleation for polymer folding) that allow
for adaptability.

Our proposed method has wide applicability, in that it
functions as a wrapper around preexisting design programs, and
can be applied without in-depth knowledge of a system.

In fact, the framework outlined here can be extended to greater
than two functionalities. When such multifunctional training
converges, it will by construction identify adaptable solutions
which can easily toggle between functions in sequence. However,
the yield curve as a function of oscillation frequency is likely to
decrease rapidly.

As an optimization method for high-dimensional cost func-
tions, there are also potential connections to time-varying training
frameworks commonly employed in machine learning. For
instance, the study of catastrophic forgetting (50) has yielded
methods for the robust sequential training of multiple tasks.
Similarly, curriculum learning (51) and dynamical loss functions

(52) have been used to improve generalization. Our work suggests
measuring whether time-varying machine learning frameworks
update weights parsimoniously when successfully retraining for
different tasks.

Our method can also help reveal system-specific physical
insights that can be exploited without further need for our
method. For example, in many of the current platforms for
self-assembly, the yield is frequently governed by kinetics rather
than equilibrium free energies (53–55). Our simulations of
heteropolymer self-assembly revealed a broadly relevant design
principle for such systems—nucleation barriers in energy land-
scapes can be leveraged to create adaptability in self-assembly.

Similarly, in the context of elastic networks, we identified
that coherent motions which link two allosteric sites can be
easily diverted in order to achieve incompatible goals. These
insights can now be used to guide design without need for blind
numeric optimization, both in synthetic systems like colloids (54)
and DNA nanotechnology (56), but also in natural systems like
proteins (55).

One key condition for our method’s success is the existence
“neutral variation” in the goals under consideration (47, 57, 58);
there must exist changes in design parameters that have no
cost in terms of the current target functionality but that help
adapt to new functionality. The systems studied here have such
degeneracy; for example, many elastic networks with different
bond stiffnesses showed the same desired allosteric response.
In fact, degeneracy is generically expected whenever systems
are disordered, with the number of design parameters often
being extensive in the size of the system. In biological examples,
such genotype-to-phenotype maps are often redundant when the
space of genotypes (or design parameters) is larger dimensional
than the space of phenotypes (exhibited properties). We do
not expect as much success in systems such as self-assembled
crystals with only 1 or 2 species or regular lattices of elastic
elements.

Materials and Methods

We briefly review the methods employed for each of the three tasks considered
in the main text. For a more detailed description, please refer to the appropriate
section in SI Appendix.

Training for Mechanical Allostery with Gradient Descent. To train for
mechanical allostery, we compute the dynamical matrix of a 22-node hexagonal
lattice with fixed boundary nodes and an arbitrary set of bond stiffnesses. From
the dynamical matrix, we can construct a cost function which encourages overlap
between the lowest energy mode and the desired allosteric behavior, in addition
to encouraging a gap between the lowest and second-lowest energy modes. To
train for a given mechanical allostery behavior, we use automatic differentiation
to perform gradient descent on the cost function with respect to the bond
stiffnesses.

Training for Poisson Ratios with Local Bond Pruning Rules. To train for
Poisson ratio ν, we compute the most strained bond when a deformation is
applied to a elastic network with uniform stiffness and disordered geometry.
The network is generated from jammed packings and consists of approximately
200 nodes. To train for positive ν, we apply a shear deformation. For negative
ν, we apply a compressive deformation. In both cases, the most strained bond
under deformation is removed. We use the rigidpy library (59) to apply the
deformations.

Training for Heteropolymer Folding with CMA-ES. To train for heteropoly-
mer foldingpathselection,weuseaLangevindynamicssimulationimplemented
via HOOMD-blue (43). We simulate a 13-monomer heteropolymer held together
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by harmonic springs. The polymer experiences thermal fluctuations, bending
stiffness, excluded volume forces, and forces arising from the intermonomer
Morse potentials which are set via an affinity matrix with 66 independent entries.
The cost function value attached to a given affinity matrix is given by the fraction
of simulation runs in which the polymer has exceeded a threshold winding
number at a given simulation time. We use a covariance matrix adaptation
evolution strategy (CMA-ES), implemented through the python package pycma
(60), in order to search for optimal affinity matrices.

Data, Materials, and Software Availability. Code for each set of tasks
has been deposited in Github (allostery (61): https://github.com/jiayiwus1x/
build-soft-modes-of-networks; Poisson’s ratio (62): https://github.com/
AyannaMatthews/AdaptableTraining-Auxetics; heteropolymers (63): https://
github.com/falkma/AdaptableTraining-Heteropolymers). Data to reproduce
main figure results can be found on Zenodo (https://doi.org/10.5281/zenodo.
8019474) (64). Any additional codes and datasets are available from the authors
upon request.
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