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pairing energetics and dynamics within the duplex TTITCCAT AT 1
We seek to understand the physical properties Encounter ensemble. The magnitude of downhill terminal A:T SO0 TATACGTATA 1 0.8}
that govern the series of molecular events during complex fraying depends on the position of internal G:C contacts. * 0.6l
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sequence can alter the melting behavior of duplex
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structural changes through steady-state and base pairing > e e
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- - - While canonical duplexes show a single dehybridization barrier, T-jump IR
D I S r u pt I O n Of D u p I ex Coo pe rat IVIty directly observes half-dehybridization (~1 ps) and full-strand separation

Nucleic acids exhibit several non-canonical base pairs due to chemical modifications, mispairing, (~100 ps) in duplexes with an AP site and demonstrates that each process
and chemical damage. The local reduction of base-pairing and stacking interactions near a s activated. These differences illustrate how an AP site disrupts the
modified site may disrupt the cooperativity of base pairing throughout a short duplex, having a 2 cooperativity of base pairing in DNA. Further, simulated trajectories
drastic impact on stability and dynamics. We are studying how an abasic site (AP site) influences | = demonstrate that the dynamics of hybridization are broken into steps of
base-pairing cooperativity in short DNA duplexes. ATATCGGTATA —> % nucleation and zippering on one side of the AP site and then the other.
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Hybridization Of Short N“C|eic ACids Our initial results demonstrate the ability to measure accurate AA

dissociation curves with temperature-dependent IR spectroscopy and

_ _ Primer/Helper dissociation kinetics with T-jump IR spectroscopy. Dinucleotide binding
!n cotlllab:_)ratlg_n wllth t'I?erf. \éaCE rS’[zolgtak, V}/e tgcll’e — stabily is highly sensitive to the type of template and whether DNA or RNA
mvegllgdq mgd NUCISOLCE aBN: 0 do Igﬁjr,]atjc‘?'ﬁl © cecceerraacogs Is used. Future experiments aim to understand energetics and kinetics
(un)binding dynamics in DNA an A 1hese ceeer TetTe _ erren reenee across a wider sequence space and evaluate the potential role of
processes control the kinetics and efficiency of cccecerrecceee _—__ gceecerreecce non-canonical base-pairing interactions
non-enzymatic extension and ligation of RNA, which CCcoCoTTCCECC '
is thought to play a critical role in the origins of life. : . P
Our initial efforts aim to understand the energetics, _ ! _ o _ _ Temperature-jump of AA dissociation
kinetics, and dynamics of dinucleotide hybridization Multi-step thermal dissociation of oligonucleotide complexes T, o s, —
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