
 

Feature-based learning increases the generalizability of state 
predictions 

 
 
 
 Euan Prentis Akram Bakkour 
 Department of Psychology Department of Psychology 
 University of Chicago University of Chicago 
 eprentis@uchicago.edu bakkour@uchicago.edu 
 
 
 

Abstract 
Decisions have consequences that gradually unfold over time. To make effective decisions, it is therefore 
necessary to learn not only which states of the world are useful to be in (value-based learning) but also whether 
these states will be visited in the future (state-predictive learning). However, in real-world contexts, states are 
complex and vary along numerous feature dimensions. This reduces the likelihood that a given combination 
of features will reoccur, in turn limiting the extent to which past learning can be applied to relevant future 
experiences. This problem is known as the curse of dimensionality. Feature-based learning has been shown to 
mitigate the curse of dimensionality in the domain of pure value-based learning [1]; theoretically, feature-
based learning should improve learning speed, generalizability, and compositionality. The present work 
addresses whether these advantages extend to the realm of predictive learning. We implement state- and 
feature-based successor representation models, and simulate their behavior on a novel sequential learning 
task in which sequences can be learned at either the state or feature level. We found that feature-based 
learning improves the speed, generalizability, and compositionality of predictive learning. Varying the 
amount of training each model received, we additionally observed that these advantages were most 
pronounced with less training. These results support the notion that feature-based learning (1) facilitates 
quick generalization in novel sequential learning problems, and (2) has the potential to mitigate the curse of 
dimensionality in real-world contexts. Continuing work will adapt the described task to probe whether 
humans use feature-based learning to make predictive inferences. 
 
Keywords:  Feature-based Learning, Successor Representation, Human Cognition, Compositionality 



1 Introduction 

Decisions have consequences that gradually unfold over time. For example, after choosing to drive to work 
instead of taking the subway, you may run into rush-hour traffic, fail to find parking near your workplace, 
arrive to work late, and ultimately get scolded by your boss for your tardiness. To make effective decisions, 
it is therefore necessary to learn not only which states of the world are useful to be in (e.g., at work on time; 
value-based learning) but also whether these states will be visited in the future (state-predictive learning). 
States in real-world contexts are complex and high-dimensional. For example, as you consider which mode 
of transport to take to work, there will be differences in the weather, your mood, how long you slept, and so 
forth. This renders state-predictive learning non-trivial to perform. Due to variance along many numerous 
dimensions, it is unlikely that the exact same combination of features will reoccur. Learning predictions at the 
multidimensional state level therefore limits the extent to which learning can be applied to relevant future 
experiences. This problem is known as the curse of dimensionality. 
In the domain of pure value-based learning, the curse of dimensionality can be mitigated by learning on the 
decomposed features of states (feature-based learning) rather than the states themselves (state-based learning, 
[1, 2, 3]). Theoretically, this improves learning along three dimensions: (1) learning speed, (2) generalizability, 
and (3) compositionality. (1) Learning speed is faster because tasks generally have fewer features than states, 
meaning that features are encountered more frequently. This allows for more opportunities to learn over the 
same number of training iterations. (2) Generalizability is greater because a single feature can be present across 
multiple states. Therefore, anything learned about a given feature in one state can be applied to any novel 
state partially composed of the familiar feature. (3) Compositionality is greater, since decomposed features 
encountered in different contexts may be re-combined into novel configurations with some inferred value. 
An agent can harness the power of compositionality to generate creative, goal-oriented action plans. 
The present work addresses whether the benefits of feature-based learning extend to the realm of predictive 
learning. Using successor representation modeling, we simulate the behavior of state- and feature-predictive 
learners, and compare the speed, generalizability, and compositionality of their learning. 

2 Successor Representation Modeling 

State-predictive learning can be modeled using the successor representation (SR, [4]). SR learns a compressed 
version tasks’ multi-step transition structures. This facilitates inference about distant outcomes without 
performing computationally intensive tree searches through the full state-space (e.g., as with model-based 
reinforcement learning [5]). Since searching through the large decision trees of real-world contexts is likely 
intractable, the computational efficiency of SR makes it a good candidate for human state-predictive learning. 
Work identifying signatures of SR in human behavioral and fMRI data supports this theory [6, 7, 8, 9]. 
SR learns estimated values and state predictions independently through temporal difference learning [10]. 
After a reward 𝑟 is observed, the current state’s estimated value 𝑉! is updated according to the reward 
prediction error, plus the discounted estimated value of the next state 𝑉!!"#: 

 
𝑉! = 𝑉! + 𝛼(𝑟 + 𝛾𝑉!!"# − 𝑉!) 

(1) 

where free parameters 𝛼 and 𝛾 respectively control the learning and discount rates. State predictions are 
represented in the successor matrix 𝑀 ∈ ℝ"×", where rows and columns correspond to current and new states, 
respectively. After a transition is observed, a count 𝑒!!"# is added to the new state’s position in the row vector. 
Since this update incorporates the discounted predictions of the new state, SR gradually learns to predict 
distant visitations. Formally: 

 𝑀! = 𝑀! + 𝛼(𝑒!!"# + 𝛾𝑀!!"# −𝑀!) (2) 

When evaluating given state 𝑠, both the estimated values and visitation expectancies are incorporated: 
 𝑂! = 𝑀!𝑉! (3) 

State values 𝑂! are then turned into choice probabilities using a softmax with inverse temperature 𝛽: 
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2.1  State-based SR 

State-based SR learns and evaluates actions as described. It additionally caches visited states in memory as it 
interacts with the environment. To generalize to a novel state, the model identifies the most similar 
representation in memory, and retrieves the associated 𝑉! and 𝑀!. State-based SR also uses representational 
similarity to guide composition. When tasked with combining decomposed features into some rewarding 
state, the model considers all possible combinations of the provided features, and deterministically builds the 
combination which is most similar to high-value states in memory.  

2.2  Feature-based SR 

Feature-based SR is achieved by simply tweaking the model to learn 𝑉 and 𝑀 separately for each feature 
category 𝑓. In this case, final values 𝐹"# are produced per feature instance 𝑖.  

 
𝐹&' = 𝑀&'𝑉&' 	 (5) 

The state’s final value 𝑂! is the mean of these feature values. To generalize to novel states composed of 
partially familiar features, feature-based SR directly calculates 𝑂! from the familiar feature values 𝐹"#. When 
tasked with combining decomposed features into some rewarding state, the model also directly retrieves 
associated 𝐹"#’s and deterministically builds the state that maximizes these values.	

3  Sequential Learning Task	

We implemented a sequential learning task (Figure 1), in which agents’ goal was to maximize point earnings. 
The task consisted of three phases: training, test, and composition. 
During training, choices were made between pairs of items that represented different states (Figure 1A). Each 
item was composed of three feature instances, sampled from five feature categories (ABCDE). Only three of 
the five categories would be seen in each training half (1st half: ABC; 2nd half: ADE; Figure 1C). After a choice 
was made, a single-step sequence was displayed followed by a reward (r = [-6, 6]). The successor item’s 

Figure 1: Task Design. A. Training and test trials. After an action was made during training, a one-step 
sequence and reward were observed (these were not seen at test). Example stimuli here are from the human 
subjects task. B. Composition trial. Agents selected decomposed features from different categories on each 
trial. C. Feature category sets. Whereas training items were directly sampled from a fixed set in each training 
half (i.e., ABC or ADE), novel items were composed of a mixture of features across halves (e.g., ACE, BDE, 
BCE). D. Sub-sequences associated with each feature category. Start items were composed of feature instances 
2, 3, 4, or 5. Successor items were partially or fully composed of terminal feature instances (1, 6), that are 
associated with a reward value. E. Reward values of terminal feature instances. The reward values for 
terminal feature instances associated with a successor item would be summed to get the item reward value. 
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identity and reward value were determined by sub-sequences 
associated with each feature category (Figure 1DE). Thus, to 
maximize cumulative reward, agents had to predict which 
choices would lead to rewarding successor items.  
Test was similar to training, but agents neither observed the one-
step sequences nor the reward outcomes, preventing further 
learning. On each test trial, choices were between either training 
or novel items (Figure 1C). We hypothesized that feature-based 
learning is more generalizable, and thus expected the feature-
based model to perform better on novel item trials. Trials also 
differed on whether choices were between terminal or start items 
(Figure 1D). In contrast to terminal items, start items were never 
worth points, and only indirectly led to reward outcomes 
through terminal items. Therefore, to make accurate inferences 
on start item trials, agents needed to apply both value and state-
predictive learning. 
Finally, agents completed a composition phase. On each trial, 
they were presented with decomposed feature instances, and had 
to recompose them into a reward-predictive item (Figure 1B). 
These trials also differed on whether training or novel items, and 
start or terminal items could be composed. Since the feature-
based model learns directly on features, we predicted that it 
would be more effective at constructing rewarding items than the 
state-based model. 

4  Results 

We simulated the feature- and state-based learning models on the sequential learning task, and compared the 
speed, generalizability, and compositionality of their learning.  
First, we probed whether feature-based learning is faster by comparing the models’ learning trajectories over 
5000 training trials. We calculated the cumulative mean accuracy (CMA) of each agent's choices, where an 
accurate choice is defined as one that will lead to a more rewarding successor item. In each training half, since 
feature-based learners encountered each of the 18 feature instances more frequently than the state-based 
learners encountered each of the 128 unique items, we hypothesized that feature-based learners would 
achieve higher accuracy earlier in training. The results reflect this hypothesis (Figure 2). Whereas state-based 
learners surpassed a mean CMA of 0.6 on trial 465, feature-based learners surpassed a mean CMA of 0.6 on 

trial 150. However, on the 
final trial, state-based 
learners achieved a higher 
mean CMA (M = 0.70) than 
the feature-based learners 
(M = 0.62). These results 
indicate that while feature-
based learning is faster, 
state-based learning is more 
accurate in the long run. 
There was also a more 
substantial drop in state-
based learners’ accuracy 
entering the second training 
half (where feature 
categories B and C were 
replaced with D and E). This 
indicates they were poorer 
at applying past learning to 

Figure 2: Training Curves. Curves are 
quantified by cumulative mean accuracy, 
and averaged over 1000 simulations of 
5000 trials per model. Errors at 95% 
confidence intervals. The first 2500 trials 
involved features from categories ABC, 
and the remaining trials involved 
features from categories ADE. 

Figure 3: Test and Composition Performance. Errors are 95% confidence 
intervals. A. Proportion of correct choices made during test, by training amount 
and item type. B. Composition-value rank, by training amount and item type. 
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the new context and learning about the novel items. 
Next, we assessed the models’ abilities to generalize during the test phase with different amounts of training 
(50, 250, 500, 750, or 1000 trials). As predicted, we found that the feature-based model was better at 
generalizing, particularly with fewer training iterations (Figure 3A). With just 50 training iterations, the 
feature-based learners were more accurate on all trial types. However, the magnitude of this difference 
reduced with more learning, supporting the notion that while feature-based learning is faster, state-based 
learning performs better in the long-term. Notably, whereas the state-based learners’ training accuracy came 
to surpass that of feature-based learners, their novel item accuracy did not. This suggests feature-based 
learning particularly facilitated generalization. 
Lastly, we compared the models’ performance at composing reward-predictive items during the composition 
phase. High performance is operationalized as the reward-value rank of the composed item, relative to all 
other possible combinations of features presented on a given trial. We predicted that the feature-based model 
would be able to leverage its feature-level learning to compose rewarding items more precisely, and thus 
achieve higher overall performance. The results support this hypothesis (Figure 3B). Notably, feature-based 
learners achieved higher composition accuracy for novel items across all numbers of training iterations. 

5 Discussion 

Simulating feature- and state-based predictive learning, we found that learning on the features of states rather 
than the states themselves bolsters learning speed, generalizability, and compositionality. These advantages 
were particularly pronounced with less training. Our results have two important implications. 
Firstly, in novel tasks, agents would benefit from performing feature-based learning to achieve some degree 
of accuracy quickly. However, with extended experience, they may benefit from switching to more state-
based mechanisms. Farashahi, Rowe, and colleagues [1] demonstrated similar advantages in the domain of 
pure value-based learning, finding that human subjects gradually switched from feature- to state-based 
learning in a low-dimensional environment. State abstraction also increases the generalizability of predictive 
learning [11].  However, since abstractions must be learned over multiple experiences, feature-based learning 
may be advantageous prior to the formation of stable abstractions. 
Secondly, feature-based learning may help agents learn structural contingencies in real-world environments, 
where the curse of dimensionality renders state-based learning ineffective. For this reason, human beings may 
rely on feature-based learning to make predictive inferences. Continuing work will adapt the sequential 
learning task described here to test this hypothesis. 
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