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Abstract

■ To overcome unhealthy behaviors, one must be able to
make better choices. Changing food preferences is an impor-
tant strategy in addressing the obesity epidemic and its ac-
companying public health risks. However, little is known
about how food preferences can be effectively affected and
what neural systems support such changes. In this study, we
investigated a novel extensive training paradigm where par-
ticipants chose from specific pairs of palatable junk food items
and were rewarded for choosing the items with lower sub-
jective value over higher value ones. In a later probe phase,
when choices were made for real consumption, participants
chose the lower-valued item more often in the trained pairs
compared with untrained pairs. We replicated the behavioral
results in an independent sample of participants while they

were scanned with fMRI. We found that, as training progressed,
there was decreased recruitment of regions that have been
previously associated with cognitive control, specifically the left
dorsolateral pFC and bilateral parietal cortices. Furthermore, we
found that connectivity of the left dorsolateral pFC was greater
with primary motor regions by the end of training for choices
of lower-valued items that required exertion of self-control,
suggesting a formation of a stronger stimulus–response asso-
ciation. These findings demonstrate that it is possible to influ-
ence food choices through training and that this training is
associated with a decreasing need for top–down frontoparietal
control. The results suggest that training paradigms may be
promising as the basis for interventions to influence real-world
food preferences. ■

INTRODUCTION

Changing individual food preferences is a key step to solve
a broad range of challenges in public health. This problem
is most obvious in the current epidemic of obesity in the
United States. In the period spanning 1999–2008, about
one third of the American population was obese, and
another third was overweight (Flegal, Carroll, Ogden, &
Curtin, 2010), placing these individuals at high risk for
a broad range of chronic medical conditions, including
cardiovascular diseases, diabetes, and cancer. The ability
to reduce preferences for highly palatable processed foods
is essential to solve these public health problems.
Recent studies explored the brain mechanisms of self-

control in the domain of food items. Hare, Camerer, and
Rangel (2009) found that dieters exhibited greater activa-
tion of several regions, among them is the left dorsolateral
pFC (dlPFC), when they were asked to focus on the health
rather than the taste aspect of food items. The authors
hypothesized that successful self-control might relate to
the extent to which the dlPFC can modulate the activity
of the ventromedial PFC (vmPFC), an area implicated in

valuation of stimuli (e.g., Rushworth, Noonan, Boorman,
Walton, & Behrens, 2011; Rangel & Hare, 2010; Chib, Rangel,
Shimojo, & OʼDoherty, 2009). In another study with healthy
participants, the same group (Hare, Malmaud, & Rangel,
2011) found that activity in the left dlPFC correlated with
the health aspects of food items rather than their taste.
These studies measured the effects of directing attention
to different features of food items but did not use con-
ditioning to induce preference changes. Tricomi, Balleine,
and OʼDoherty (2009) performed an extensive training pro-
cedure in humans and showed that, by repeatedly choosing
a certain food item in sessions spanning three days, partici-
pants were no longer sensitive to the value of that op-
tion after selective satiation compared with a nonsatiated
one. Following findings in animals (Yin, Knowlton, &
Balleine, 2004), the authors focused their analysis on the
dorsolateral striatum and showed an increase in its ac-
tivity as training progressed and responses became more
habitual. A recent study (Wunderlich, Dayan, & Dolan,
2012) corroborated these results by using an extensive
training two-armed-bandit task that also showed a sim-
ilar pattern of activity in the dorsolateral striatum using
abstract (nonfood) stimuli. However, no study attempted
to influence the preference of healthy participants when
choosing between two food items that initially have dif-
ferent values.
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In the current study, we assessed participantsʼ individ-
ual preferences for palatable junk food items (Plassmann,
OʼDoherty, & Rangel, 2007) and developed an extensive
training paradigm to enhance choice behavior of less-
preferred items over more favorable ones. We first show,
behaviorally, that after extensive training, participants are
more likely to choose items that they formerly placed less
value on compared with untrained items. In an indepen-
dent sample, we replicate this behavioral finding and
examine the underlying neural substrates of extensive
training. On the basis of these studies, we hypothesized
that a two-sided process will occur during training, reflect-
ing a shift from goal-directed to more habit-like respond-
ing. On the one hand, we will observe increased activity
of dorsolateral striatum with training, reflecting the in-
creased involvement of sensorimotor striatum in habitual
responding. On the other hand, there will be a decrease
in activity with repeated choices of the less-preferred
option in the control network including the dlPFC and
other regions (Dosenbach et al., 2006, 2007). We also
hypothesized that we will observe changes in the con-
nectivity with dlPFC as has been reported by Hare et al.
(2009, 2011), reflecting decreasing need for top–down
control with practice and stronger reliance on stimulus–
response associations.

METHODS

Participants

A total of 50 healthy participants took part in two separate
studies. Twenty-nine participants completed the behav-
ioral experiment out of which data from 28 participants
(22 women; mean age = 20.3 years, SD = 1.5 years; range =
18–24 years; mean body mass index [BMI] = 21.6, SD =
3.22) are included in the analysis reported below (one
participant was excluded because of auction exclusion
criteria; see below under Behavioral Analysis). Twenty-
one right-handed participants completed the imaging ver-
sion. Data from 17 participants (eight women; mean age =
22.4 years, SD = 3.6 years; range = 18–30 years; mean
BMI = 25, SD = 4.1) are reported in the imaging analyses
(one participant was excluded because of auction exclu-
sion criteria; three others, because of task analysis exclusion
criteria; see below under Imaging Analysis). All participants
had normal or corrected-to-normal vision, no history of psy-
chiatric diagnoses or neurological or metabolic illnesses,
no history of eating disorders, and no food restrictions
and were not taking any medications that would interfere
with the experiment. Additionally, participants who were
scanned were free of any metal implants or any other con-
traindications for MRI. Participants were told that the goal
of the experiment was to study food preferences and were
asked to refrain from eating 4 hr before arrival to the
laboratory (Plassmann et al., 2007). All participants gave
informed consent, and the institutional review board at
the University of Texas at Austin approved the study.

Task

For the general procedure of the task, see Figure 1. Partici-
pants first underwent an auction (Figure 1A), a training
task (Figure 1B), a probe (Figure 1C), and then, a repeat
of the auction (Figure 1D).

Auction

First, participants took part in an auction (Becker, DeGroot,
& Marschak, 1964; Figure 1A) in which photographs of
60 appetitive junk food items (Plassmann et al., 2007) were
presented. Participants were endowed with $3 and told
that they could have an opportunity to use them to buy
a snack at the end of the session. During the auction,
participants were presented with one item at a time on a
computer screen. They placed their bid by moving the
mouse cursor along an analog scale that spanned
from 0 to 3 at the bottom of the screen. The auction was
self-paced, and the next item was presented only after the
participants placed their bid. This procedure has been
shown to reliably obtain a measure of willingness to pay
per item (WTP; for a full description, see Plassmann et al.,
2007). Two participants (one from each study) were
excluded because they bid less than $0.25 on more than
45 items; this was done to ensure a sufficient number of
highly valued items for the pairing procedure (see below).

Training

Behavioral Version

The items were divided into 30 lower value and 30 higher
value items according to a median split of each individual
participantsʼ bids (Figure 2A). Each item within the higher
value and lower value splits was then ranked (H1:H30 and
L1:L30), and pairs were created to ensure the largest pos-
sible gap in WTP by pairing H1 with L1, H2 with L2, and so
forth (Figure 2B). These 30 pairs were then divided into
three sets of 10 pairs by selecting every third pair starting
from the first, second, or third pair. One of these pair
sets was chosen for the training task as “train low” pairs,
another was used for the probe as untrained pairs, and
the last was only used for the second auction. Pair set
assignments were randomized across participants.
During training, participants were shown two items

and told to choose one item on each trial and that some
of the choices would earn them points that would later
be converted to money (each point was worth one cent).
Unbeknownst to the participants, the only rewarded
choices were of the low value item in each pair. Feed-
back was deterministic, such that choosing this item was
rewarded 100% of the time and the alternative choice
was never rewarded.
Each trial lasted 5 sec. At the start of each trial (Fig-

ure 1B), 1 of the 10 pairs was presented, one item to the
right and the other to the left of a fixation cross (locations
were randomized across trials). The participants had
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2.5 sec to select one of the items using the keyboard. If
the participants made a selection within this time window,
their choice was confirmed by highlighting the selected
item for 1 sec, and then the outcome was displayed: either
“+10” or “- - -” for 1 sec. During the intertrial interval, a
fixation cross was presented in the center of the screen
for a variable amount of time until the end of the 5 sec.
One hundred twenty-five trials were presented per run.
Four runs of training were completed for 500 trials (50 pre-
sentations for each of the 10 pairs).

Imaging Version

The pairing method for the imaging study was slightly dif-
ferent. Instead of using all 30 pairs, only 15 pairs from the
middle portion (8–22) were used. Three sets of five pairs
were created by selecting every third pair starting from 8,
9, and 10, respectively. The three sets of five pairs were
train low, “train both,” which were used in the training
phase and untrained, which were used during the probe
phase only. Pair set assignments were randomized across

participants. The additional pair type, train both pairs, like
the train low pairs, contained one low value and one high
value item, but choice of either of these items yielded
points during training. We included this pair type to serve
as a high-level control in the imaging analysis. The partici-
pants were not informed of the fact that there were two
pair types during training but were told that some of their
choices will earn them points (later converted to real
money). In the imaging version, choices were made using
an MRI compatible button box. Participants had 1.5 sec
to make their choice once the stimuli were presented
(one to the right and one to the left of a central fixation
cross, locations randomized across trials). Upon successful
choice, the chosen item was highlighted for 500 msec,
then the outcome (“+10” or “- - -”) was displayed for
500 msec. During the intertrial interval, a fixation cross was
presented for a jittered time drawn randomly from an ex-
ponential distribution with a mean of 3, truncating values
at 1 and 12. Fifty trials (25 train low and 25 train both) were
randomly presented per run for a run time of 4 min 45 sec
where each pair was presented five times per run. Ten runs

Figure 1. Task procedure
showing the different stages
on the left and the different
task stages in the right:
(A) auction, (B) training
(timings refer to imaging
version), (C) probe (timings
refer to imaging version),
and (D) auction repeat.
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of training were completed such that each pair was
presented 50 times.

Probe

Behavioral Version

Following the completion of training, participants filled in
a computer-adapted version of the Barratt Impulsiveness
Scale (BIS)-11 questionnaire (Patton, Stanford, & Barratt,
1995). They were then told that they would next perform
a new task (Figure 1C) where they choose an item in each
pair, but in this case, instead of earning points, a single
trial would be drawn at random at the end of the session
and their choice on that trial would be honored (i.e., they
would receive the item that they had chosen on that trial
at the end of the experiment and will stay to consume it
in the laboratory). The pairs from the training task were
presented in a random order alongside 10 new untrained
pairs (not presented during training). These pairs also con-
tained high and low value items and were drawn from the
same pair matching procedure mentioned above. The task
and timing at probe were very similar to that at training;
the only difference is that the outcome (points/no points)
was not displayed following the choice. Trial timing was
identical to training omitting the outcome presentation

time. Each pair was presented five times during probe,
and the left–right locations of the items on the screen
were randomized across presentations.

Imaging Version

In the imaging version, participants filled in the computer-
adapted version of the BIS-11 (Patton et al., 1995) using
the MRI-compatible button box before the probe phase.
At probe, three pair types were presented: the five train
low and five train both pairs from training as well as
five untrained pairs. Trial timings were identical to training
omitting the outcome (points/no points) presentation
time. Each pair was presented five times during probe,
and the right–left locations of the items on the screen were
randomly assigned across presentations.

Questionnaires

As mentioned above, the BIS-11 (Patton et al., 1995)
questionnaire was administered between training and
probe. At the end of the session, when participants re-
mained in the laboratory to consume the food item they
received, they were also asked to fill in the Behavioral
Inhibition System/Behavioral Activation System scales
(Carver & White, 1994), two questionnaires that assessed
the strength of a self-reported personal habit (Ji & Wood,
2007; Verplanken & Orbell, 2003) and were also asked to
describe any strategies they used to maximize the number
of points during training. The imaging participants also
filled out the Kirby, Petry, and Bickel (1999) temporal
discounting questionnaire.

Behavioral Analysis

Behavioral Version

Training. We performed a repeated-measures logistic
regression to test the difference in the odds of choos-
ing the low value to high value item during valid trials
from run 1 compared with the following nine runs. To
allow comparison across the behavioral and imaging ver-
sions, we divided the entire training session of 500 trials
into 10 parts with 50 trials in each part (the 500 trials were
presented to participants with three short breaks).

Probe. To test if our training was successful in influenc-
ing choices, we performed a repeated-measures logistic
regression to compare the odds of choosing the low
value to high value items between the two pair types
(train low and untrained) during probe. We ran a repeated-
measures linear regression to look at differences in RT
for choices of the low value item between pair types.
We also tested for the consistency of choices of the
low value items in the two pair types using repeated-
measures logistic regression: trained low and untrained
across the five presentations during probe.

Figure 2. Diagram of the sorting and pairing procedure. A) Bids during
the auction were sorted from highest to the lowest. Rank ordered items
were then split in half based on subjective individual preferences to
Higher (H1:H30) and Lower (L1:L30) value items. B) Pairs of items
were created such that items has a gap of 30 items between them.
The highest High value item was paired with the Highest low item,
e.g. H1:L1, H2:L2 etc.
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Auctions. We calculated the change in WTP of the
high and low value items separately between the first
and second auction (Δ). We compared that change
between the three pair types: train low (presented during
training), untrained (presented only during probe), and
another set that was never presented during either
training or probe, using repeated-measures linear
regression.

Imaging Version

Training. Similar to the behavioral version, we com-
pared the odds of choosing the low value to high value
item in each of the pair types for run one compared with
the following nine runs to test for learning effects. We
also performed a repeated-measures logistic regression
to compare the odds of choosing the low value to high
value item in the train low pairs compared with odds of
choosing low value to high value items in the train both
pairs. We used repeated-measures linear regression to
compare RTs during choices of the low value items
between pair types across runs.

Probe. We performed a repeated-measures logistic
regression to compare the odds of choosing the low
value to high value item between the three pair types
(train low, train both, and untrained) during probe. We
also ran repeated-measures linear regression to com-
pare RTs during choices of low value items between
the different pair types. Similar to the behavioral ver-
sion, we tested for the consistency of choices of the
low value items in the three pair types (train low, train
both, and untrained) across the five presentations during
probe.
We also examined the unique influence on choices

during probe of two opposing factors: (1) the number
of times the low value items were chosen during training,
which represents the influence of extensive training on
choice behavior, and (2) the difference in WTP between
the high and low value item in each pair, which repre-
sents the goal values of the items. For this purpose, we
performed a repeated-measures linear regression to test
if the number of choices of the low value items during
training predict participantsʼ choices at probe, while
controlling for the difference in WTP between the high
and low value items in each pair. We performed this for
each pair type (train low and train both) separately and
tested the interaction between pair types.

Auction. We calculated the change in WTP of the high
and low value items separately between the first and sec-
ond auction (Δ). We compared that change between the
three pair types—train low (presented during training),
train both, and untrained (presented only during probe)—
using a repeated-measures linear regression.

fMRI Acquisition and Analysis

Imaging data were acquired on a 3-T Signa Excite MRI
scanner (General Electric Medical Systems, Milwaukee,
WI) with an eight-channel head coil. Functional data were
acquired using a T2*-weighted EPI sequence (repetition
time = 2500 msec, echo time = 30 msec, flip angle =
70°, field of view = 22 cm2). Thirty-two oblique axial slices
with a 3.5-mm in-plane resolution were positioned 20°
off the AC–PC line to reduce the frontal signal dropout
(Deichmann, Gottfried, Hutton, & Turner, 2003) and spaced
3 mm with a 0.5-mm gap to achieve full brain coverage.
Slices were acquired in an interleaved fashion, and higher-
order shimming was used to reduce susceptibility artifacts.
Each of the training runs consisted of 114 volumes, and
the probe run consisted of 158 volumes. In addition to
functional data, a single 3-D T1-weighted high-resolution
full brain image was acquired using a spoiled gradient
recalled pulse sequence (repetition time = 5.9 msec, echo
time = 1.2 msec, flip angle = 11°, field of view = 25 cm2)
for brain masking and image registration.

Raw imaging data in Digital Imaging and Communica-
tions in Medicine format were converted to Neuroimaging
Informatics Technology Initiative format and preprocessed
through a standard preprocessing pipeline using the
FMRIB Software Library (FSL) package (Smith et al., 2004)
version 5. Functional image time series were first aligned
using the MCFLIRT tool to obtain six motion parameters
that correspond to the x/y/z translation and rotation of
the brain over time. Second, the skull was removed from
the T2* images using the brain extraction tool and from the
high-resolution T1 images using Freesurfer (Ségonne
et al., 2004). Spatial smoothing was performed using a
Gaussian kernel with an FWHM at 5 mm. The data and
design matrix were high-pass filtered using a Gaussian-
weighted least-squares straight line fit with a cutoff period
of 100 sec. Grand-mean intensity normalization of each
runʼs entire 4-D data set by a single multiplicative factor
was also performed. The functional volumes for each par-
ticipant and run were registered to the high-resolution
T1-weighted structural volume using a boundary-based
registration method (Greve & Fischl, 2009) implemented
in FSL5 (BBR). The T1-weighted image was then registered
to the Montreal Neurological Institute (MNI) 152 2-mm
template using a linear registration implemented in FLIRT
(12 degrees of freedom). These two registration steps
were concatenated to obtain a functional-to-standard space
registration matrix.

Imaging Analysis

Training

The general linear model (GLM) during the training
phase included five regressors for each pair type: (1) onsets
of train low trials when low value items were chosen,
modeled with a fixed duration of 1 sec; (2) onsets of train
low trials when the low value items were chosen but with
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actual RTs as duration. We included this regressor to
account for specific variability because of RT differences
across trials. To improve the interpretation of the first
regressor, the RT regressor was orthogonalized with
respect to the first regressor so inferences for the first
regressor reflect the average BOLD activation during the
train low trials; (3) onsets of train low trials when the low
value items were chosen with a fixed duration of 1 sec
but parametrically modulated by the demeaned number
of times the low value item in the pair was chosen during
probe (this regressor was added to test whether specific
choices during probe could be directly linked to brain
changes during training); (4) onsets of train low trials
when the high value items were chosen with a fixed dura-
tion of 1 sec; (5) onsets of train low trials when the high
value items were chosen but with actual RTs as duration
orthogonalized with respect to the previous regressor.
The same five regressors weremodeled for train both trials.
A missed trial regressor was also included. We included
the six motion regressors described above, framewise
displacement and root-mean-square intensity difference
from one volume to the next (DVARS [temporal Derivative of
VARiation over voxelS] Power, Barnes, Snyder, Schlaggar,
& Petersen, 2012), as confound regressors. We also mod-
eled out trials with framewise displacement and DVARS
that exceeded a threshold of 0.5 by adding a single time
point regressor for each “to-be-scrubbed” volume. All
regressors were entered at the first level of analysis, and
all (but the added confound regressors) were convolved
with a canonical double-gamma hemodynamic response
function. The temporal derivative of each regressor was
included in the model. The model was estimated sepa-
rately for each participant for each run.

Our analysis was aimed at identifying brain regions that
showed either increases or decreases with training. Con-
trasts for the mean BOLD activation for each of train low
and train both choices of low value item trials versus base-
line were estimated for each of the 10 runs separately. The
proportion of times that the low value items were chosen
within the train low and train both trials during training
was computed for each run within the participants. This
proportion tracks individual learning across runs. In a
second level, within-subject analysis, the linear relationship
between the BOLD contrast and corresponding propor-
tion of low value choices was computed voxelwise for
train low and train both trials, respectively. Note that an
intercept, or column of 1 sec, was also included in this
second level model to account for the overall mean of
the data within each voxel. This second-level contrast then
reflects the within-subject relationship between the BOLD
contrast and learning for train low and train both trials.
At the group level, we averaged these values across par-
ticipants in two separate one-sample t tests to obtain the
overall learning effect within train low and train both trials,
respectively. Additionally, we used a paired t test to directly
compare the train low with train both effect. The choices of
the low value items were rewarded for both pair types.

However, the participants were not required to choose
the low value items to obtain points in the train both pairs
(because choices of either high or low value items were
reinforced). Thus, the paired t test isolates the process of
choosing a low value item that required exertion of self-
control (in train low pairs) while controlling for response
to reward as well as motor and visual processes involved
in the choice itself (in train both pairs).
Three participants were excluded from the imaging

analysis: Two did not choose the low value item in train
both pairs even once for two of the training runs. The third
participant chose the low value items in train both runs
at the same proportion across all training runs, and thus,
the second-level design was rank deficient and not esti-
mable because the regressor for the proportion of low
choices was perfectly correlated with the intercept regres-
sor (column of 1 sec).
We also studied how the BOLD activation related with

the proportion of times a low value item was chosen
during probe using a parametrically modulated regressor
at the first level for train low and train both trials. For
train low, this is the third regressor described above. This
relationship between the BOLD and later choice during
probe was compared between the tenth and first runs
and was tested using paired t tests for train low and train
both trials separately. This contrast shows the relation-
ship between training of specific pairs and choices of
the same pairs during probe.

Psychophysiological Interaction (PPI)

To create the seed for the PPI analysis, we defined a
5-mm sphere around the dlPFC activation found in the
training analysis (see below; MNI coordinates: −52, 28,
28]) and masked it by the group result. PPI regressors
were created by deconvolving the seed to obtain an
estimated neural signal using the deconvolution algorithm
of SPM (Gitelman, Penny, Ashburner, & Friston, 2003),
calculating the interaction with the task in the neural
domain and then reconvolving to create the final regres-
sor. Following the gPPI modeling procedure of McLaren,
Ries, Xu, and Johnson (2012), three regressors were
added to the first-level design matrix described above:
(1) the raw time course extracted from the seed (after
registering the sphere to native space of each run of
each participant), (2) a PPI regressor based on onsets
of choices of low value items in train low pairs, and (3)
a similar PPI regressor to the previous regressor but for
train both pairs. We studied the PPI between choices of
low value items in train low and train both pairs within
runs 1 and 10 (separately for each run) and between these
runs.

Probe

We used a GLM for the probe phase, which included four
regressors for each of the three pair types: (1) onsets of
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train low trials when low value items were chosen with a
fixed duration of 1 sec; (2) onsets of train low trials when
low value items were chosen but with actual RTs as dura-
tion (this regressor was orthogonalized with respect to
the previous regressor; (3) onsets of train low trials when
the high value items were chosen with a fixed duration of
1 sec; and (4) onsets of train low trials when the high
value items were chosen but with actual RTs as duration,
orthogonalized with respect to the previous regressor. To
test whether extensive training managed to shift choices
from reliance on goal-directed neural mechanisms to-
ward more habitual ones during probe, we included two
additional regressors to the imaging analysis design
matrix: (5) onsets of train low trials when low value
items were chosen with a fixed duration of 1 sec and
modulation by demeaned proportion of choices of low
value items during training and (6) onsets of train low
trials when low value items were chosen with a fixed
duration of 1 sec and modulation by the difference in
WTP between the high and low items in the pair. This
was added to test if the difference in WTP had an effect
on choices during probe. The last two regressors were
also added for choices of high value items. The same
eight regressors were modeled for train both and un-
trained pair-type trials (besides the last four regressors be-
cause the untrained items were not presented during
training). A missed trials regressor was also included. We
included confound regressors similar to the ones in the
training GLM.
Our analysis was aimed at identifying brain regions

showing greater activation during choices of low value
over high value items for the Train Low pairs. We also
performed comparisons between the train low and train
both pair types for trials where the low value items were
chosen. Effects of brain activity greater than baseline
were also computed for each of the pair types separately
for trials when the low value items were chosen.
All statistical maps for all analyses reported below

were corrected at the whole-brain level using a cluster-
based Gaussian random field correction for multiple com-
parisons, with an uncorrected cluster-forming threshold
of z = 2.3 and corrected extent threshold of p < .05.

RESULTS

Behavioral Results

Training

Figure 3A and 3B show the training results for the behav-
ioral and imaging experiments. After 15 (out of 50) repeti-
tions of each pair, the participants learned and continued
to choose the low value items for over 80% of the trials
for both samples (runs 2 through 10 significantly greater
than run 1, ps < .01 for the behavioral study and ps <
.05, except for run 4, p = .058 for the imaging study). Par-
ticipants did not choose the low value items significantly
more during the subsequent nine runs for the train both

pairs in the imaging experiment ( ps > .29 for run 1 com-
pared with runs 2 through 10). In the imaging version,
participants chose the low value items for the train low
pairs significantly more than for the train both pairs across
the entire training task ( p < .001).

Eighty percent of the participants chose the high value
item on the first trial. Participants reached 50% choice of
low value items only by the 10th trial. Figure 3A and 3B
present the training data binned by run thus showing that
participants chose the low value items at 50% by the end
of run 1 (when actually prior to learning they had a very
strong preference to choose the higher value items in
the pairs).

There were no significant RT differences for choices of
low value items between train low and train both pairs
across all runs ( ps > .3).

Probe

The probe was performed, on average, for 3 min after the
end of training. During probe, participants made choices
for later consumption of actual food items to test the
effects of training on a preference change. Points/money
were not assigned for choices during probe. Figure 3D
and 3C show the results during probe for both samples.
Participants chose the low value item in the train low
pairs significantly more often than the low value item in
the untrained pairs: In the behavioral study, they chose
the low value item on 19.7% of train low pair trials versus
12.3% of untrained trials (Figure 3C, p < .001). Partici-
pants in the imaging study similarly chose the low value
item on 20.5% of train low trials versus 12.6% of untrained
pair trials ( p < .001). In the imaging study, participants
chose the low value items in train both pair trials 18.7%
of the time ( p < .001 compared with choice of low value
items in untrained pair trials; p = ns compared with
choices of low value items in train low pairs).

In the analysis of persistence of choices of the low
value items across the five presentations at probe, we
found that, in the behavioral study, there was a main effect
of Pair Type (train low vs. untrained: p = .0023), no main
effect of Presentation Number ( p = .85), and no inter-
action between Presentation Number and Pair Type ( p =
.82), suggesting a consistent effect across the five presen-
tations. In the imaging study, we found a main effect of
Pair Type (train low vs. untrained: p = .01, train both vs.
untrained: p = .029) but no effect of train low versus
train both ( p = .72). There was a trending effect of
Presentation Number ( p = .087) but no Pair Type ×
Presentation Number interaction ( p= .6). Thus, the effect
was still relatively consistent across the presentations
across pair type.

There were no RT differences between choices of low
value items in the train low and untrained pair trials in
the behavioral study ( p = .15). Similarly, there were no
differences in RT during low value choices between train
both and train low pair types in the imaging study ( p= .2)
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nor between train both and untrained pairs ( p = .19) and
between train low and untrained pairs ( p = .08).

Auction

The raw WTPs of all pair types in both auctions are pre-
sented in Figure 3E for the behavioral study and Fig-
ure 3F for the imaging study. As we ensured in our pairing
procedure, there were no significant differences in WTP

between pair types for either sample ( ps > .24). There
were no significant differences in pretraining versus post-
training WTP in either study. In the behavioral study, we
did not find a significant difference in the change in WTP
between the two auctions (before and after training) for
the train low pairs compared with either untrained or
never-seen pairs ( ps > .4). In the imaging study, there
was also no significant difference in the change in WTP
over time between pair types (train both vs. untrained:

Figure 3. (A) Choice of low
value items during training
for behavioral participants;
(B) choice of low value item
during training for imaging
participants for train low
and train both pair types
separately; (C) choices of the
low value item during probe
for behavioral participants for
train low and untrained pairs;
(D) choice of the low value
item during probe for imaging
participants for train low,
train both, and untrained pairs;
(E) mean WTP pretraining and
posttraining for behavioral
participants for train low and
untrained pairs, separated by
high and low value items;
(F) mean WTP pretraining
and posttraining for imaging
participants for train both,
train low, and untrained
pairs, separated by high and
low value items. Error bars
reflect SEM.
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p = .26, train low vs. train both: p = .6, and the one with
the largest trend was train low vs. untrained: p = .12). We
are not aware of other studies that attempted to show an
effect of training on WTP of items. Careful observation of
Figure 3E and 3F shows a regression to the mean of the
WTP of the items such that the higher value items were
rated as less valuable and the low value items were rated
as more valuable in the second auction compared with
the first one.
Furthermore, we found that the pairs on which the

participants chose the low value items had a lower WTP
difference (averages $0.83 and $0.86 for the behavioral
and imaging studies, respectively) between the high and
low value items compared with the pairs on which they
chose the higher value items (averages $1.10 and $1.25
for the behavioral and imaging studies, respectively).
There was a main effect of Choice ( ps < .048), but there
was no main effect of Pair Type ( ps > .15). This result
suggests that the training paradigm managed to influence
participantsʼ choice behavior during probe primarily on
trials when the difference between high- and low-valued
items was not too large. It should be noted that there
was still a highly significant difference in WTP between
the low and high items in the pairs where participants
chose the low value items at probe even according to
the second auction ( ps < .0001).
In the regression, to identify the relative contribution of

the number of times an item was chosen during training
on how many times it was subsequently chosen during
probe and the difference in WTP between the items in
each pair, we found that the number of choices of low
value items per train low pair during training predicted sub-
sequent choices of low value items during probe ( p =
.001). However, the difference in WTP between items in
the train low pairs did not ( p = .14). This relationship
was not significant for choices of the low value items in
train both pairs for either factor. There was no significant
interaction between choices of the low value items during
training and probe between pair types.

Questionnaires

We tested for the correlation between proportion of low
value choices on train low pairs during probe (indicative
of behavioral change) and BIS-11, Behavioral Inhibition
System/Behavioral Activation System scales, habit strength,
and temporal discounting. No significant correlations
in either sample were found between these measures (all
ps > .1 without control for multiple comparisons). In the
self-report question pertaining to strategies used during
training to maximize points, 18 of 28 participants in the
behavioral version indicated that they chose the item with
the lower value. However, in the imaging version, only
one participant mentioned this rule, whereas the rest said
they had memorized which choices gave them points.
Thus, it seems that participants in the behavioral version

more easily formed a rule. This was not the case for par-
ticipants in the imaging version who formed only specific
cue–reward pairings.

Imaging Results

Training

The primary analyses studied the linear relationship
between BOLD activation during choices of low value
items and the proportion of low value item choices in
each run across the 10 training runs for train low and train
both separately. For train low, we found that activity in
bilateral dlPFC, parietal cortices, and precentral gyrus
had a negative relationship with learning (see Figure 4A
and Table 1). A similar result was obtained for the train
both pairs with low value choices except that there
was no negative relationship between the activity in left
dlPFC and learning above the correction threshold (see
Figure 4B and Table 2).

We suggest that self-control was initially required to
overcome the tendency to choose the unreinforced higher
valued item in favor of the reinforced choice of the
lower valued item. To test for the unique neural mecha-
nisms underlying choices of low value items in the situa-
tion where only the lower valued choice was rewarded
and not both, we directly compared the slopes between
BOLD and proportion of low value item choices across
the 10 runs for train low and train both trials using a
group-level paired t test. We tested which brain regions
had a more positive relationship with the proportion
of choices of the low value items in the train low pairs
across training compared with the train both pairs; this
controlled for all other processes involved in choice
and receipt of reward. We found that the linear relation-
ship between BOLD activation and proportion of choice
of low value items was more positive for train both than
train low in bilateral parietal regions and the left dlPFC
(see Figure 4C and Table 3). Previous studies showed
differences in the processing of health versus taste of food
items in dieters with different levels of self-control (Hare
et al., 2009, 2011). As we did not include healthy items
in our study nor did we ask participants to consume an
item up to satiety (Tricomi et al., 2009), we did not have
dieting as an exclusion criterion in this study. After the
study, we asked participants to report if they would
describe themselves as being on a diet. Four participants
reported being on some form of diet (BMI ranging from
22 to 27). Exclusion of these participants did not change
the findings.

No increases in BOLD activation were found as training
progressed for choices of the low value items in the train
low pairs, train both pairs, or their difference at a whole-
brain corrected level. In addition, no regions survived a
small volume correction of either a 10-mm sphere around
the right dorsolateral putamen coordinate reported by
Tricomi et al. (2009) or using the right and/or left putamen
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masks from the Harvard–Oxford atlas (distributed with
FSL). There were also no significant differences in train-
ing activation as a function of the number of low value
choices at probe for either pair type.

PPI

For the choices of the low value items in train low greater
than train both pairs during run 10, we observed a dif-
ference in connectivity with the left dlPFC seed region
(defined by the training analysis above). This PPI effect
was found in parietal and visual regions (see Figure 5B
and Table 4). We did not observe this PPI effect during
run 1. When we tested for the direct comparison between
run 10 and run 1, we found greater connectivity with
motor regions such as the SMA and bilateral precentral
gyri (see Figure 5C and Table 5). Thus, it seems that fol-
lowing training, the dlPFC modulated activity in percep-
tual, attentional, and motor regions to facilitate choices
of low value items in the train low pairs compared with
train both pairs. When we tested for the separate PPI ef-
fects of each condition versus baseline seed connectivity,
we found only significant positive PPI effects that might
suggest a stronger positive PPI effect of train low versus
train both with the regions reported above. On the basis
of previous studies, we defined a 10-mm sphere around
the vmPFC coordinate reported by Hare et al. (2011) to
test for a PPI effect with dlPFC. There were no significant
PPI effects with this region in any of the analyses reported
above.

Probe

When participants chose the low value items in either
train low or train both pair types (compared with baseline),
we observed an increase in activity in similar regions to
those that decreased their activity across training runs
(see Tables 6 and 7). Regions showing an increase include
visual regions, bilateral parietal regions, ACC (in both pair
types), and bilateral dlPFC for train both pairs only (see
Figure 6). Interestingly, there were no dlPFC activations
while choosing the low value items in the train low pairs,
but these regions were active during choices of low value
items in train both pairs. This is consistent with a practice-
related decrease in the engagement of top–down control
systems over choice. However, no regions survived the
direct comparison between choices of low value items in
train low compared with train both pairs. Similarly, we
did not find any activity above our correction threshold
for choices of low value compared with high value items
in train low pairs. These null findings are likely because
of low power resulting from the small number of partici-
pants who had choices of the low value items in both pair
types (n = 12) or choices of both low and high value
items in the train low pairs (n = 15). It is also possible
that we did not find differences in the direct comparisons

Figure 4. Imaging results showing the negative relationship with
proportion of choices of low value items across training run for
(A) train low pairs and (B) train both pairs; (C) the difference
between these two pair types train both > train low shows a more
restricted set of regions including bilateral parietal and only left
dlPFC. Subtracting choices of low value items in train both pairs
controls for all other trial elements, which do not require self-control
because both low value and high value items were reinforced.
Surface renderings were created using CARET after mapping of
the group statistical maps to an average cortical surface using
multifiducial mapping (Van Essen, 2005). All maps are presented
at p < .05, corrected, as in the accompanying tables.
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because of the short duration of this phase; Tricomi et al.
(2009) did not report any results from the probe phase
because of its short duration.
Choices of low value items during probe showed a

modulation by choices during training for both pair types
in visual, motor, and right premotor regions (Figure 7A).
Furthermore, there was a negative correlation between

choices of the low value item during training and activity
in the vmPFC and orbitofrontal cortex during choices of
the low value item for train low pairs at probe. We did not
find any neural evidence at probe for greater modulation
of choices of low value items during training for train low
greater than train both pairs. However, for the contrast
of choices of low value items during probe for train both

Table 1. Results from the Analysis of Training-related Modulation of Activity during Choices of Low Value Items on Train Low
Pairs ( p < .05, Corrected)

Train Low Chose Low

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 L superior parietal lobule 465 3,039 12 −66 56 4.23

R superior lateral occipital cortex 455

L superior lateral occipital cortex 437

R precuneus cortex 373

R superior parietal lobule 353

L postcentral gyrus 115

R postcentral gyrus 102

R angular gyrus 81

R posterior supramarginal gyrus 59

L posterior supramarginal gyrus 56

L anterior supramarginal gyrus 44

L precuneus cortex 40

2 L inferior lateral occipital cortex 549 1,068 −46 −74 −8 3.97

L occipital fusiform gyrus 210

L temporal occipital fusiform cortex 92

L temporo-occipital ITG 37

3 R middle frontal gyrus 453 713 52 18 32 3.75

R precentral gyrus 52

R IFG, pars opercularis 27

R IFG, pars triangularis 16

R frontal pole 15

4 R inferior lateral occipital cortex 292 494 42 −68 −16 3.66

R temporo-occipital ITG 98

R occipital fusiform gyrus 28

R temporal occipital fusiform cortex 14

5 L middle frontal gyrus 265 393 −44 28 28 3.87

L precentral gyrus 37

L IFG, pars opercularis 11

L IFG, pars triangularis 10

Regions presented here demonstrated negative relationship with the proportion of choices of the low value items on train low pairs across the 10 runs.
For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 voxels within that cluster, along with the peak
x/y/z location for the cluster in MNI space. L = left; R = right; ITG = inferior temporal gyrus; IFG = inferior frontal gyrus.
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Table 2. Results from the Analysis of Training-related Modulation of Activity during Choices of Low Value Items for Train Both Pairs
across the 10 Training Runs ( p < .05, Corrected)

Train Both Chose Low

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 R precuneus cortex 482 2,491 8 −72 10 4.17

R intracalcarine cortex 353

L occipital pole 273

R superior lateral occipital cortex 250

L intracalcarine cortex 233

R supracalcarine cortex 129

R lingual gyrus 112

R cuneal cortex 78

R occipital pole 75

R superior parietal lobule 59

L superior lateral occipital cortex 38

L precuneus cortex 30

L supracalcarine cortex 25

L lingual gyrus 20

L cuneal cortex 15

2 L inferior lateral occipital cortex 453 805 −48 −84 −2 3.86

L occipital fusiform gyrus 130

L temporal occipital fusiform cortex 35

L occipital pole 15

L lingual gyrus 10

3 Right thalamus 112 802 0 −4 14 3.62

Left thalamus 107

Left caudate 67

Right caudate 60

Right pallidum 22

Right putamen 11

4 R inferior lateral occipital cortex 397 740 42 −74 −20 3.76

R temporo-occipital ITG 103

R occipital pole 65

R occipital fusiform gyrus 44

R temporal occipital fusiform cortex 12

5 L superior parietal lobule 325 726 −30 −56 48 3.56

L superior lateral occipital cortex 152

L postcentral gyrus 85

L posterior supramarginal gyrus 36

L anterior supramarginal gyrus 22
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greater than train low pairs, we found greater activity in
vmPFC and orbitofrontal cortex (Figure 7B and Table 8).
This result is consistent with a shift from goal-directed
to habitual responding (and decreased reliance on goal

values) during probe, but only for the train low pairs.
This result was obtained with only n = 12 during probe
(that had choices of low value items in both pair types)
so it should be regarded with caution.

Table 2. (continued )

Train Both Chose Low

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

6 R middle frontal gyrus 472 712 44 22 30 3.89

R IFG, pars triangularis 51

R precentral gyrus 21

R IFG, pars opercularis 14

7 R superior parietal lobule 189 470 36 −52 46 3.49

R angular gyrus 83

R posterior supramarginal gyrus 59

R postcentral gyrus 42

R superior lateral occipital cortex 38

R anterior supramarginal gyrus 16

Regions listed here demonstrated negative relationship with the proportion of choices of the low value items on Train Both pairs across the 10 runs.
For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.

Table 3. Results from a Whole-brain Group Paired t Test Comparison between Choices of Low Value Items for Train Low Pairs and
Choices of Low Value Items for Train Both Pairs and Their Negative Relationship with Proportion of Choices of Low Value Items
across the 10 Training Runs ( p < .05, Corrected)

Train Both Chose Low > Train Low Chose Low

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 L superior lateral occipital cortex 510 1,692 −28 −68 34 3.68

L superior parietal lobule 419

L postcentral gyrus 199

L anterior supramarginal gyrus 156

L posterior supramarginal gyrus 90

L precuneus cortex 27

2 L middle frontal gyrus 263 687 −46 2 42 3.17

L superior frontal gyrus 147

L precentral gyrus 131

L IFG, pars triangularis 24

3 R superior lateral occipital cortex 214 561 34 −72 44 3.22

R superior parietal lobule 178

R precuneous cortex 88

R postcentral gyrus 17

For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.
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DISCUSSION

The ability to influence food choices is critical to solving
health-related problems currently affecting large portions
of the U.S. and world population (World Health Organi-
zation, 2013). Here, we report the results of a new be-

havioral paradigm, which enhanced the likelihood of
choosing a less-preferred food for actual consumption
over a previously more-favored food. In this task, pairs
of appetitive junk food items were presented during a
training period of 1 hr, such that each pair contained a
lower value item versus a higher value one; in the critical
condition, only choices of the lower value item were
reinforced with money. In a subsequent probe phase,
where participants made choices for later actual con-
sumption, they chose the previously reinforced lower
value items significantly more than similar value items in
untrained pairs. We replicated the behavioral results in
an independent sample of healthy participants, scanned
with fMRI while performing the task. We found that, as
extensive training progressed, activity in regions in the
brain that are part of the cognitive-control network (the
dlPFC and bilateral parietal cortices) had a negative linear
relationship associated with choosing the lower value
item. Furthermore, we found that this pattern of activity
was specific to the left dlPFC and bilateral parietal cortex
only for choices of the lower value items that required
exertion of self-control (while controlling for all other
choice-related processes including receipt of reward).
Recent studies reported effective dietary interventions

using incentives (Driver & Hensrud, 2013; Volpp et al.,
2008). Our study provides a clue of mechanistic insight
into the potential effectiveness of such a program. Fur-
thermore, it might suggest that repeating the procedure
we performed here could prove helpful to obtain long-
term effects via reduction of engagement of self-control
mechanisms.
These results align with and extend current findings

in the neuroeconomics literature. Hare et al. found that
a similar region of left dlPFC was more active in dieters
with greater self-control (Hare et al., 2009) and also in
healthy participants (Hare et al., 2011) when focusing
on the health rather than on the taste aspects of food.
Our results extend those findings to a choice situation,
showing that, in healthy participants, this same region
of left dlPFC (alongside parietal regions, also reported
by those studies) decreases its activity with extended
training of choosing a less-preferred item. With repeated
choices, the self-control network was less and less neces-
sary to choose the lower value items over the higher
value ones. Figner et al. (2010) used rTMS in a temporal
discounting task to show that disrupting activity of the
left but not right dlPFC led to choices of smaller–shorter
options over larger–later ones. The authors concluded
that this region serves a role in self-control in the domain
of temporal discounting. On the basis of Dosenbach et al.
(2007), we suggest that the regions we found here to
decrease their activity with extensive training are part
of the frontoparietal network that is involved in active
adaptive control, in particular, adjusting the exertion of
top–down control in response to feedback. It should
be highlighted that, although the choices for the low
value items in the training phase were not made for

Figure 5. PPI results showing connectivity with dlPFC seed (shown
in blue) for choice of low value items in train low pairs versus train
both pairs in (A) the first run (run 1), (B) the last run (run 10) of
training, and (C) their direct comparison. (All p < .05, corrected).
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consumption, choosing them still required participants
to override their initial preference for higher value items
in each pair, to achieve a different goal of monetary re-
ward, and thus required exertion of self-control. It is plau-
sible that the decrease in these regions stems from
facilitation resulting from extensive training. However,
we believe that the fact that there were no RT differences
between pair types and between the beginning and end
of training suggests that the neural effect we observed
goes beyond a simple facilitation effect.
During the probe phase, we found that activity in a

similar network of self-control regions increased when par-
ticipants chose low value items in each of the pairs for
later consumption (see Figure 6). There was great overlap,
especially in parietal regions, with brain regions that de-
creased activity as training progressed. Thus, this network
that once decreased activity with training is now activated
during choice of low value items in the absence of out-
come, suggesting that the values of these items were not
changed enough and that exertion of self-control was still
required to choose them. It is possible that prolonged
training will “detach” the involvement of these regions
when choosing low value items during probe.

We identified significant modulation of connectivity of
the left dlPFC ROI between pair types, consistent with
previous studies (Hare et al., 2009, 2011). During the last
run, there was greater connectivity for choices of low
value items in the train low over train both pairs with par-
ietal and visual regions suggesting a potential top–down
process (Corbetta & Shulman, 2002, 2011). Furthermore,
in the comparison between run 10 and run 1, there was
greater connectivity for choices of low value items in
train low pairs over the same choices in train both pairs
with primary motor regions and SMA. This might be re-
lated to spillover of urges into the motor cortex (Gupta
& Aron, 2011) and/or the action competition in motor
cortex (Klein-Flügge & Bestmann, 2012). These results,
together with the probe results, might hint at ongoing
changes during training that could have led to a more
substantial preference change had we used a longer train-
ing session.

We had hypothesized that we will observe a shift from
goal-directed to more “habitual-like” responding fol-
lowing extensive training. However, we did not identify
any regions that increased their activity with the progres-
sion of extensive training, particularly the striatal regions

Table 4. Results for PPI Analysis Showing Regions with Significant PPI with the Left dlPFC Seed at Run 10 ( p < .05, Corrected)

PPI Run 10

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 L occipital pole 194 777 −22 −92 10 3.75

R lingual gyrus 137

L intracalcarine cortex 119

R intracalcarine cortex 89

L lingual gyrus 46

R supracalcarine cortex 33

R occipital pole 23

L superior lateral occipital cortex 15

L inferior lateral occipital cortex 10

2 L postcentral gyrus 170 409 −46 −42 44 3.54

L anterior supramarginal gyrus 124

L posterior supramarginal gyrus 50

L precentral gyrus 43

L superior parietal lobule 12

3 R inferior lateral occipital cortex 22 135 50 −72 −20 3.31

R occipital fusiform gyrus 11

4 R precuneus cortex 57 129 16 −50 8 3.26

R posterior cingulate gyrus 15

R lingual gyrus 10

For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.
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Table 5. Results for PPI Analysis Showing Regions with Significant Difference in PPI between Run 10 and Run 1 with the Left
dlPFC Seed ( p < .05, Corrected)

PPI, Run 10 > Run 1

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 L postcentral gyrus 220 585 −52 −18 52 3.23

L middle frontal gyrus 145

L precentral gyrus 122

L superior frontal gyrus 15

2 R postcentral gyrus 187 306 56 −14 56 3.42

R precentral gyrus 54

3 R supplementary motor cortex 74 219 −4 8 48 3.11

R paracingulate gyrus 39

L supplementary motor cortex 29

L paracingulate gyrus 28

R superior frontal gyrus 24

4 L central opercular cortex 45 188 −50 −2 12 3.3

L precentral gyrus 40

L anterior superior temporal gyrus 40

L posterior superior temporal gyrus 10

5 R inferior lateral occipital cortex 15 145 46 −66 −20 3.41

R occipital fusiform gyrus 11

For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.

Table 6. Regions Showing Significant Activation for Choices of Low Value Items in Train Low Pairs Greater than Baseline
during Probe

Probe Train Low Chose Low > Baseline

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 L occipital pole 2,116 22,508 −32 −66 −16 5.78

R occipital pole 2,038

R superior lateral occipital cortex 1,331

L superior lateral occipital cortex 1,188

L inferior lateral occipital cortex 1,132

R occipital fusiform gyrus 871

L occipital fusiform gyrus 843

R inferior lateral occipital cortex 828

R lingual gyrus 741

R intracalcarine cortex 700

L lingual gyrus 534

R precuneous cortex 516

L intracalcarine cortex 489
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predicted on the basis of the animal literature (Yin et al.,
2004) and previous human fMRI studies (Wunderlich
et al., 2012; Tricomi et al., 2009). There are several possible
reasons why we did not replicate these previous imaging
results. Most importantly, both of those studies involved
longer training across several days. In addition, the Tricomi
et al. (2009) study involved repeated pressing of a button
to obtain a reward, rather than a choice between two
options, which might have led to the putamen response
because of its involvement in motor processes. In the
Wunderlich et al. (2012) study, participants repeated the
choices across 3 days, and those choices were between
two abstract options rather than food items. We claim that

the participants in our study did not treat the items as
abstract stimuli. This is apparent from their posttask
reports and the fact that, on 80% of the initial trials, they
chose the higher valued items. Thus, it is possible that it
requires more training to form habitual responding for
items that contain inherent values. Nevertheless, the con-
nectivity results suggest that the extensive training shifted
responding more toward a stimulus–response representa-
tion over a goal-directed one. Furthermore, choices of the
low valued items during training predicted lower activity
in vmPFC for train low and not train both pair trials during
probe (while accounting for the difference in WTP be-
tween the items in each pair) lending credence to the idea

Table 6. (continued )

Probe Train Low Chose Low > Baseline

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

L superior parietal lobule 471

R temporal occipital fusiform cortex 355

L temporal occipital fusiform cortex 309

L precuneous cortex 307

R cuneal cortex 261

Brain stem 210

L temporo-occipital ITG 166

R supracalcarine cortex 125

L cuneal cortex 104

R temporo-occipital ITG 90

Left hippocampus 88

R superior parietal lobule 73

L supracalcarine cortex 32

Left thalamus 29

L postcentral gyrus 25

2 R paracingulate gyrus 508 1,786 4 20 52 4.42

L paracingulate gyrus 311

R superior frontal gyrus 279

L superior frontal gyrus 186

R anterior cingulate gyrus 160

L anterior cingulate gyrus 98

3 L insular cortex 284 782 −28 12 6 3.94

L central opercular cortex 75

Left putamen 70

L frontal operculum cortex 65

L planum polare 19

For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.
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Table 7. Regions Showing Significant Activation for Choices of Low Value Items in Train Both Pairs Greater than Baseline
during Probe

Probe Train Both Chose Low > Baseline

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

1 R occipital pole 2,227 28,611 30 −74 −8 5.58

L occipital pole 2,084

R superior lateral occipital cortex 1,658

R lingual gyrus 1,226

L superior lateral occipital cortex 1,166

L inferior lateral occipital cortex 1,125

R inferior lateral occipital cortex 1,107

R occipital fusiform gyrus 879

L occipital fusiform gyrus 790

L lingual gyrus 757

R intracalcarine cortex 673

Left thalamus 595

R precuneus cortex 530

L insular cortex 472

L intracalcarine cortex 444

R temporal occipital fusiform cortex 442

R cuneal cortex 414

L superior parietal lobule 399

L temporal occipital fusiform cortex 348

R superior parietal lobule 346

L cuneal cortex 330

Left putamen 318

L precuneous cortex 269

R temporo-occipital ITG 192

Brain stem 186

Right thalamus 181

L frontal operculum cortex 157

L middle frontal gyrus 141

Left pallidum 138

R supracalcarine cortex 133

L temporo-occipital ITG 127

Left hippocampus 114

L central opercular cortex 106

L IFG, pars opercularis 85

L postcentral gyrus 81

Right hippocampus 65

L IFG, pars triangularis 37
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Table 7. (continued )

Probe Train Both Chose Low > Baseline

Cluster Region No. of Voxels in Region Cluster Size x y z Peak Z

L planum polare 35

L temporal pole 24

L posterior temporal fusiform cortex 22

L supracalcarine cortex 22

L precentral gyrus 20

L posterior inferior temporal gyrus 20

L posterior cingulate gyrus 15

L posterior parahippocampal gyrus 14

R posterior cingulate gyrus 13

L frontal orbital cortex 11

Left caudate 10

2 R paracingulate gyrus 382 1,475 2 22 50 4.31

L paracingulate gyrus 298

R superior frontal gyrus 246

L superior frontal gyrus 140

R anterior cingulate gyrus 77

L anterior cingulate gyrus 74

3 Right putamen 110 625 18 10 2 3.52

Right caudate 76

R frontal orbital cortex 12

4 R insular cortex 218 544 44 12 2 3.5

R frontal operculum cortex 146

R central opercular cortex 59

5 L precentral gyrus 154 319 −44 −12 50 3.32

L middle frontal gyrus 97

L postcentral gyrus 36

6 R middle frontal gyrus 111 232 48 10 56 3.41

R precentral gyrus 42

7 R precentral gyrus 50 103 46 10 32 3.19

R middle frontal gyrus 30

8 R middle frontal gyrus 46 85 46 20 24 2.95

R IFG, pars opercularis 12

9 R posterior cingulate gyrus 44 80 6 −28 28 2.96

L posterior cingulate gyrus 31

For each cluster, the list shows all regions from the Harvard–Oxford atlas that contained more than 10 active voxels within that cluster, along with the
peak x/y/z location for the cluster in MNI space.
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that extensive training leads to a stronger goal-directed-
to-habitual shift (but only to the low value items in train
low pairs.)

We did not find a change in valuation of the items be-
tween the two auctions. We are not aware of any other
study that reported a change in bids in such an auction
following a behavioral manipulation. We did observe an
interesting significant regression to the mean between
the two auctions. We do not have the tools in this study
to conclude whether this would occur naturally without
the training procedure between the auctions. It is pos-
sible that this occluded our ability to find a significant
valuation difference that would have followed the choice
preference change induced by training.

The low value items in the train both pairs were chosen
during probe slightly less frequently (but not significantly)
than the low value items in the train low pairs. It is reason-
able to assume that even the partial reinforcement of
these items led to greater choice during probe compared
with untrained pairs. The self-report posttask question-

naires of the imaging version suggests that the inclusion
of the train both pairs made it harder for the participants
to form a rule for the task and thus led to increased var-
iance in their choices of the low value items for the train
both pairs. This in turn might have led to increased
choices of the low value items during probe. We can spec-
ulate that, in a longer training paradigm, these pairs would
have shown a smaller effect than the train low pairs com-
pared with untrained pairs. Furthermore, the fact that par-
ticipants showed a consistent effect of choices at probe
across the five repetitions but did not show a strong
choice preference for the low value items overall in either
pair type speaks against a demand characteristic explana-
tion of the probe results.
Our study still leaves several open questions to be ad-

dressed in future studies. First, can this enhancement of
choices be applied to the case of healthy over unhealthy
food items and not only within junk food snacks? We
believe it is plausible given that healthy items such as fruit

Figure 6. Imaging probe results showing regions exhibiting
increased activity with choices of the low value items in the two
pair types compared with baseline: (A) train low and (B) train
both ( p < .05, corrected).

Figure 7. Imaging probe results showing regions exhibiting (A) the
conjunction of positive modulation by choices during training for
both pair types and (B) the contrast of modulation by choices of
low value items during training for train both greater than train low
pairs ( p < .05, corrected).
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and vegetables usually obtain positive values, although
lower than nonhealthy snacks. Second, the training and
probe were done on specific pairs. Therefore, one might
ask if the change of value will be generalized beyond the
specific pairs? The finding that the effect at probe was
found on pairs with smaller (although still highly signifi-
cant) WTP difference leads us to believe that our task could
have been much more successful if aimed to influence
preference of items with closer WTP with prolonged and/
or repeated training. Furthermore, even changing choices
in fixed pairs can be ecologically valid to enhance a specific
choice one faces on an everyday basis, for example, choos-
ing carrots over chips as an evening snack. Finally, an
interesting question is how long lasting the effect will be
and how maintenance can be modulated by the nature
and length of training. The finding that choices persisted
during the five presentations of pairs at probe shows that,
at least during this short period, the choices were con-
sistent. Only a study involving a larger delay will show if
this was consolidated into longer-term memory. One addi-
tional potential caveat for the face value of our procedure
is the limited choice window of 1.5 sec during probe,
which does not apply to real-world choices. That is the case
for many laboratory studies, but we can report that partici-
pantsmissed less than 1%of trials overall in the probephase
in both studies (with an average RT of less than 1 sec),
which suggests that they had enough time to make this
decision. Tasks that include an ad libitum consumption
phase at the end of an experiment allow testing the influ-
ence of laboratory tasks on real-world food consumption.
However, usually this does not allow for testing how prefer-
ences changed on more than two items.
The significance of this study is twofold: First, we show

that an extensive training session lasting only 1 hr can
shift participantsʼ preferences for later food consump-
tion. Compared with untrained pairs, we managed to

enhance participantsʼ choices of less-valued items by al-
most 10% via only 1 hr of training. As far as we know, our
study is the first to show an ability to influence choice
preferences for food items in humans. Second, we show
that preference change is associated with a decrease in
activity of self-control regions previously implicated in
focusing on long-term goals in decision making in the con-
text of food health over taste (Hare et al., 2009, 2011) and/
or intertemporal discounting (Figner et al., 2010; McClure,
Laibson, Loewenstein, & Cohen, 2004). This suggests that
reinforced practice at making better choices may be a
potential mechanism to engrain these choices and thus
lead to better dietary choices in real-world settings.
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