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A B S T R A C T

Biasing choices may prove a useful way to implement behavior change. Previous work has shown that a simple
training task (the cue-approach task), which does not rely on external reinforcement, can robustly influence
choice behavior by biasing choice toward items that were targeted during training. In the current study, we
replicate previous behavioral findings and explore the neural mechanisms underlying the shift in preferences
following cue-approach training. Given recent successes in the development and application of machine
learning techniques to task-based fMRI data, which have advanced understanding of the neural substrates of
cognition, we sought to leverage the power of these techniques to better understand neural changes during cue-
approach training that subsequently led to a shift in choice behavior. Contrary to our expectations, we found
that machine learning techniques applied to fMRI data during non-reinforced training were unsuccessful in
elucidating the neural mechanism underlying the behavioral effect. However, univariate analyses during
training revealed that the relationship between BOLD and choices for Go items increases as training progresses
compared to choices of NoGo items primarily in lateral prefrontal cortical areas. This new imaging finding
suggests that preferences are shifted via differential engagement of task control networks that interact with
value networks during cue-approach training.

1. Introduction

In order to eliminate unhealthy behaviors, one must find ways to
enhance healthy choices. Changing preferences is an important strat-
egy in addressing public health concerns, such as the obesity epidemic.
To achieve lasting behavioral change to improve health, one must
overcome the automaticity and strength of first-learned habits. First-
learned behaviors are the rule that must be broken by subsequent
learning in order for new habits to replace older ones over the long
term (Bouton, 2004). Initial positive change in behavior may be
achieved through intervention based on willful effort (Schonberg
et al., 2014b; Tricomi et al., 2009), but the long term prospects for
such improvement are uncertain (Bjork, 2001; Bouton, 1993; Cahill
and Perera, 2011; Higgins et al., 1995; Wood and Neal, 2007). Focus
has turned to targeting automatic processes to change human behavior
with the goal of preventing disease (Marteau et al., 2012).

Previous research on value-based decision making has focused
mostly on external reinforcement (O’Doherty et al., 2004; Thorndike,
1911) or the description of the decision problem (De Martino et al.,

2006; Slovic, 1995; Tversky and Kahneman, 1986), but few have
attempted to directly influence the underlying subjective values of
individual options. In previous work by our group, we showed that
choices can be biased toward targeted food items and the subjective
value placed on these items can be differentially modulated by simply
associating particular food items with an auditory cue to perform a
motor response, without relying on external reinforcement or refram-
ing the decision problem (Schonberg et al., 2014a). The previously
described cue-approach task (CAT) is similar to the cued inhibition
version of the stop-signal task (Lenartowicz et al., 2011; Verbruggen
and Logan, 2008), with a crucial difference. In a typical stop-signal
task, participants press a button on the keyboard every time a stimulus
appears on the screen, except when a tone sounds they must try to
inhibit a prepotent motor response. In CAT however, participants
passively view stimuli on the screen, except when a tone sounds, they
must press a button on the keyboard as quickly as possible. Training
inhibition has been demonstrated to influence choice behavior for
appetitive stimuli (Houben et al., 2012; Lawrence et al., 2015; Veling
et al., 2013) and value for neutral stimuli (Wessel et al., 2014).
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Following stop-signal or go/no-go inhibition, participants tended to
avoid or devalue stimuli that were associated with inhibition of action.
However, rather than aiming to decrease choices, we developed CAT
seeking to enhance choices for certain stimuli. In the original version of
CAT, participants were asked to fast for four hours prior to arriving for
the experiment. After providing informed consent, they were endowed
with $3 to take part in an auction to obtain their pre-experimental
preferences for 60 food items (Becker et al., 1964; Plassmann et al.,
2007). Items were then rank ordered based on preference and median
split into high and low value items. High and low value items were then
placed into one of two experimental conditions: Go or NoGo. During
training, participants passively viewed pictures of food items and
pressed a button when they heard an infrequent tone. In a subsequent
probe phase, participants chose one item from a pair of equally
preferred items, one associated with a tone during training (Go) and
the other not associated with a tone (NoGo). Cue-approach training has
proven to directly influence preference for single items through choice
behavior following training. Approached (Go) items were chosen more
often than initially equally preferred, non-approached (NoGo) items
(Bakkour et al., 2016; Schonberg et al., 2014a). This procedure
successfully changed choice behavior and the effect was maintained
over six to eight weeks for participants who underwent the longest
training (Schonberg et al., 2014a). Such a shift in choice behavior is
thought to be mediated by an increase in gain in the coding of value for
Go items in the ventromedial prefrontal cortex (vmPFC, Schonberg
et al., 2014a), a brain region that has previously been heavily
implicated in coding for value (Bartra et al., 2013; Padoa-Schioppa
and Assad, 2006). This work has established cue-approach training as a
model for non-reinforced preference change via modulation of sub-
jective value for individual items. The question remains; how are values
of Go items being modulated during CAT training?

Development of CAT was influenced by work on the attentional
boost effect (Lin et al., 2010; Swallow and Jiang, 2010). In a typical
attentional boost task, participants have better subsequent memory for
incidental stimuli that were presented along with targets than those
that were presented along with non-targets. The attentional boost effect
established the importance of behavioral relevance in improving
memory for incidental information. The cue-approach effect similarly
established the importance of behavioral relevance for shifting pre-
ferences. Follow-up behavioral studies (Bakkour et al., 2016), using
variations on the basic cue-approach training task have singled out
memory retrieval and sustained top-down attention mechanisms to be
at play during cue-approach training, leading to a shift in preferences
at a later choice phase. However, standard univariate analyses of
training-phase fMRI data in the previous imaging study of CAT were
inconclusive and did not provide any insight into the neural mechan-
ism responsible for modulating values of individual items during CAT
training (Schonberg et al., 2014a). In the current study, we set out to
characterize changes in neural activity during the cue-approach train-
ing phase using both univariate and multivariate analysis techniques.

Machine learning and pattern recognition algorithms have recently
been adapted and developed to decode and characterize cognitive task-
relevant neural activity using fMRI data (see Lemm et al., 2011;
Mahmoudi et al., 2012, for review). One of the most popular of these
machine-learning techniques is linear classification. This is a technique
for decoding information about task variables from patterns of activity
across an array of voxels. One of the common linear classification
algorithms is the linear support vector machine (SVM). In this study,
we sought to train a linear SVM classifier to identify whole-brain fMRI
patterns elicited by cognitive processes thought to underlie shifts in
choice preference during cue-approach training. Our hypothesis was
that changes in classifier identification of the level of engagement of
these cognitive processes of interest during training would predict later
choices, reflecting a shift in preferences.

In order to test our hypothesis, we developed a cognitive localizer
task that engages three distinct cognitive processes implicated in value

change during the cue-approach training task: perception, memory
retrieval, and valuation. We used multivariate pattern analysis techni-
ques on fMRI data acquired during this novel task to predict the level of
engagement of these cognitive processes during cue-approach training.
We investigated how changes in these processes (as measured by
classifier predictions) contributed to a shift in preferences at a later
choice phase. This analysis allows us to directly test our hypothesis that
changes in the level of engagement of these particular cognitive
processes during training predicts a shift in choice behavior. We expect
that increases in the engagement of valuation and memory retrieval
processes over the course of cue-approach training will be related to
later choices. Furthermore, we were able to test whether process
engagement progressed differentially for Go and NoGo trials as
training proceeded. We predicted that the differential change in
engagement of valuation and memory retrieval processes from begin-
ning to end of the training phase, rather than the difference in overall
engagement of these processes, would be predictive of later choices as
participants learn to associate the food item with the tone cue as the
training phase progresses. This allowed us the potential to better
understand the neural mechanisms underlying non-reinforced training
that leads to a shift in preferences. Finally, we also used standard
univariate fMRI analysis techniques on probe phase data to replicate
previous findings, and on training phase data to identify changes in
whole-brain activation throughout training.

The design of the current study was optimized for application of
MVPA techniques to identify underlying neurocognitive mechanisms
for the CAT effect. Previous studies have demonstrated the power of
these techniques not only to classify distributed patterns of fMRI
activity elicited by different categories of images while the participant
was viewing them (Cox and Savoy, 2003; Haxby et al., 2001), but also
to classify intentions (Haynes et al., 2007; Soon et al., 2008), atten-
tional states (Rosenberg et al., 2015) and the contents of memory recall
(Polyn et al., 2005) using classifiers trained on different sets of stimuli
from those being classified. Furthermore, and most germane to our
main question of interest in the current study, Gross et al. (2014)
trained an SVM classifier to discriminate levels of subjective value of
foods and predicted the subjective value of engaging activities and vice
versa. This supports the idea of common representation of value and
the valuation process across domains. This finding also suggests that
classifying the valuation process in one task can be used to decode
value from a different task as planned in the current study. Other
studies demonstrated robust cross-modal or cross-task classification
(Lewis-Peacock et al., 2012, 2015). Polyn et al. (2005) trained
classifiers on fMRI data from a localizer task requiring the perception
and evaluation of familiar pictures, and then used these classifiers to
decode the category of stimuli being retrieved from long-term memory
during free recall. Lewis-Peacock and Postle (2008) used the same
localizer task and analysis approach to decode the contents of working
memory during cued recall. Esterman et al. (2009) used fMRI pattern
classifiers to decode which domain of cognitive control (e.g., shifting
visuospatial attention, switching task rules, shifting attention in work-
ing memory) was engaged at any given moment. Together, these
findings suggest that fMRI classifiers trained on long-term memory
retrieval might be able to identify the engagement of this process
during CAT training.

2. Materials and methods

2.1. Participants

Thirty-two healthy right-handed participants (17 female, mean
age=21.8 ± 3.1, age range: 18–29, mean body mass index (BMI)
=22.3 ± 3.8) completed the standard CAT while in a magnetic reso-
nance imaging (MRI) scanner.

All participants had normal or corrected-to-normal vision, no
history of psychiatric, neurologic or metabolic illnesses, no history of
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eating disorders, no food restrictions, and were not taking any
medications that would interfere with the experiment. Participants
were also free of any metal implants or any other contraindications for
MRI. Participants were told that the goal of the experiment was to
study food preferences and were asked to refrain from eating for four
hours prior to arrival at the laboratory (Plassmann et al., 2007). All
participants gave informed consent and the institutional review board
(IRB) at the University of Texas at Austin approved the study.

2.2. Task

2.2.1. Auction
After consenting to take part in the study and filling out standard

MRI safety metal screening forms, participants were endowed with $3,
which they used to take part in an auction. Participants were presented
with one snack item at a time on a computer screen. Food items were
presented in random order. They placed their bid by moving the mouse
cursor along an analog scale that spanned from 0 to 3 at the bottom of
the screen. The auction was self-paced and the next item was presented
only after the participants placed their bid. The auction procedure
allowed us to obtain a measure of willingness to pay (WTP) for each of
56 appetitive food items per participant. The auction followed the BDM
rules (Becker et al., 1964). Participants were told that their best
strategy to win the auction was to bid exactly what each item was
worth to them to purchase from the experimenter at the end of the
experiment and that bidding consistently high or consistently low was a
bad strategy. They were told that a single trial would be drawn at
random at the end of the session and that they could use any amount of
the full $3 for each food item and would not be spreading their
endowment over multiple items. At the end of the session, the
computer generated a counter bid; a random number between $0
and $3 in 25 cent increments. If the computer bid was equal to or
higher than the participant's bid, then he or she lost the auction. If,
however, the participant outbid the computer, then they were offered to
purchase the randomly drawn food item from the experimenter at the
computer's bid lower price.

2.2.2. Item selection
Items were ranked based on WTP, where item #1 had the highest

WTP and item #56 the lowest. 24 items with fixed rank order numbers
from the full range were selected to serve as stimuli for the cognitive
localizer task (see Section 2.2.3 below). From the remaining 32 items,
eight items were designated as higher-valued (from items ranked 8
through 18) and eight items as lower-valued (from items ranked 39
though 49). Out of each of these eight items, four were associated with
an auditory cue (Go items) and four without any cue to press a button
(NoGo items) during the cue-approach task (Fig. 1). This selection
procedure ensured pairing of high-value Go with high-value NoGo
items and low-value Go with low-value NoGo items such that items in
each pair later presented at probe were on average matched for WTP.
Based on initially stated values during the auction, participants should
a priori be indifferent in choosing between items in these pairs. Of the
56 items presented during auction, 24 were used during the cognitive
localizer task and the other 32 items were used during training. To
maintain 25% cue frequency as is standard in stop-signal tasks (Logan
and Cowan, 1984), 24 out of 32 items were NoGo items during
training. Eight Go and eight NoGo items were presented in pairs
during probe. Of those 32 items that were used during training, only 16
were used during the probe phase (Fig. 1B). Item assignment to Go and
NoGo conditions to be used later in the probe phase was counter-
balanced across participants.

2.2.3. Cognitive localizer
In this task, participants were presented with one food stimulus at a

time and at the bottom of the screen one of three questions appeared
(Fig. 2A). Participants were asked to answer the question relevant to

the item on the screen. Each of 24 items appeared with all three
questions in random order over two runs. The three questions require
three distinct cognitive processes: 1) Valuation: “How much would you
like to eat this item?” Four alternative forced choices were ranked from
1 (most) to 4 (least). 2) Memory retrieval: “When did you last see this
item at a store?” Four alternative forced choices from never to within
the last week. 3) Perceptual decision: “How many items are outside the
packaging?” Two alternative forced choices, either one or several items.
Food stimuli appeared partially unwrapped with some of the product
(either one or several pieces) appearing outside of the packaging.
Stimuli appeared on the screen for a fixed duration of 3.6 s.
Participants were asked to respond within that time limit and their
responses were highlighted from the time they made a response until
the end of the 3.6 s window, when the stimuli disappeared from the
screen. Stimulus presentations were separated by a fixed inter-stimulus
interval (ISI) of 6 s consisting of a central fixation cross. Each of the
two scan runs consisted of 36 trials lasting five minutes and fifty
seconds.

2.2.4. Training
The cue-approach training task was developed by Schonberg et al.

(2014a). For each trial, images of the food items were presented on the
screen for 1.2 s followed by a fixed ISI of 3.6 s (Fig. 2B). Item order was
randomized within a block of 32 trials. Participants were instructed to
press a button on the keypad as fast as possible only when they heard
an infrequent neutral tone and before the item disappeared from the
screen. Items that were assigned to the Go condition were consistently
associated with the tone. The tone appeared on average 950 ms after
the item was presented on the screen (Go-signal delay, GSD). GSD was
adjusted using a ladder technique. We increased the GSD by 17 ms if
participants pressed the button before the item disappeared (to make
the task more difficult) and reduced GSD by 50 ms if the participant
failed to press the button or pressed it after the item disappeared (to
make the task easier). We chose this 3:1 ladder titration ratio to ensure
a 75% success rate in correct button presses. All 32 food items used
during training were presented 12 times each during training. Each of
the six scan runs consisted of two presentations of each stimulus (i.e.
64 trials) lasting five minutes and twelve seconds.

2.2.5. Probe
At the end of training, participants filled out a computer-adapted

version of the Barratt impulsiveness scale questionnaire (BIS-11,
Patton et al., 1995) while undergoing a structural scan. They were
then presented with pairs of food items in a probe task (Fig. 2D). Items
in each pair were matched for WTP and made up of one Go and one
NoGo item (Fig. 1B). Participants were told that a single trial would be
drawn at random at the end of the session and their choice on that trial
would be honored (i.e. they would receive the item that they chose on
the randomly selected trial at the end of the experiment and remain in
the lab to consume it). Pairs of items were presented on the screen for
2.4 s. Item selection was confirmed with a green rectangle drawn
around the selected item (see Fig. 2D), which remained on the screen
from response time to the end of the 2.4 s trial window. If participants
failed to make a choice within two seconds, a brief message asking
them to respond faster appeared for 400 ms. Consecutive stimulus
presentations were separated by a fixed ISI of 3.6 s. Each unique pair of
items was presented in random order twice during probe (i.e. 64 probe
trials total) for a scan run duration of six minutes and twenty-four
seconds.

2.3. fMRI acquisition

Imaging data were acquired on a 3 T Siemens Skyra MRI scanner
with a 32-channel head coil. Functional data were acquired using a
T2*-weighted multiband echo planar imaging sequence (repetition
time (TR)=1200 ms, echo time (TE)=30 ms, flip angle (FA)=63, field
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of view (FOV)=230 mm, acquisition matrix of 96×96). Sixty four
oblique axial slices were acquired with a 2.4 mm in-plane resolution
positioned 30° off the anterior commissure-posterior commissure line
to reduce the frontal signal dropout (Deichmann et al., 2003) and
spaced 2 mm with a 0.4 mm gap to achieve full brain coverage. Slices
were acquired using the multi-band sequence (Moeller et al., 2010) in
an interleaved fashion. Each of the localizer runs consisted of 292
volumes, each of the training runs consisted of 260 volumes, and the
probe run consisted of 324 volumes. In addition to functional data, a
single three-dimensional high-resolution full brain image was acquired
using a magnetization prepared rapid gradient echo (MPRAGE) pulse
sequence (TR=2400 ms, TI=1000 ms, TE=1.94 ms, FA=8,
FOV=205 mm, voxel size=0.8×0.8×0.8 mm) for brain masking and
image registration.

2.4. Analysis

2.4.1. Behavioral analysis
2.4.1.1. Probe. To test whether cue-approach training induced a
preference change, we performed repeated-measures logistic
regression to compare the odds of choosing the Go to NoGo items
against equal odds for the high-value and low-value pairs separately.
We also performed repeated-measures linear regression to test for
differences in reaction time (RT) for choices of Go and NoGo items for
the high-value and low-value pairs separately.

2.4.1.2. Auction. We ran repeated-measures linear regression to test
the two-way interaction between time (pre-training/post-training
auction) and condition (Go/NoGo) on WTP within high-value and
low-value items separately. This interaction tests whether the change in
WTP over time is different for Go and NoGo items. P values for the
effects in the mixed models were calculated using the Kenward-Roger
approximation for degrees of freedom (Kenward and Roger, 1997).

2.4.2. Imaging analysis

2.4.2.1. Imaging data preprocessing. Raw imaging data in DICOM

format were converted to NIFTI format and preprocessed through a
standard preprocessing pipeline using the FSL package version 5
(Smith et al., 2004). Functional image time series were first aligned
using the MCFLIRT tool to obtain six motion parameters that
correspond to the x-y-z translation and rotation of the brain over
time. Second, the skull was removed from the T2* images using the
brain extraction tool (BET) and from the high-resolution T1 images
using Freesurfer (Dale et al., 1999; Ségonne et al., 2004). Spatial
smoothing was performed using a Gaussian kernel with a full-width
half maximum (FWHM) of 5 mm. Data and design matrix were high-
pass filtered using a Gaussian-weighted least-squares straight line fit
with a cutoff period of 100 s. Grand-mean intensity normalization of
each run's entire four-dimensional data set by a single multiplicative
factor was also performed. The functional volumes for each participant
and run were registered to the high resolution T1-weighted structural
volume using a boundary-based registration method implemented in
FSL5 (BBR, Greve and Fischl, 2009). The T1-weighted image was then
registered to the MNI152 2 mm template using a linear registration
implemented in FLIRT (12 degrees of freedom). These two registration
steps were concatenated to obtain a functional-to-standard space
registration matrix.

2.4.2.2. Cognitive localizer. We conducted a GLM analysis on the
cognitive localizer task data. The GLM model included eight regressors
of interest: (i) onsets for valuation trials, modeled with a duration
which equaled the average RT across all trials and participants; (ii)
same onsets and duration as i but modulated by response (1 for like
least to 4 for like most) demeaned across these trials within each run
for each participant; (iii) onsets for perceptual decision trials modeled
with the same duration as for i; (iv) same onsets and duration as iii but
modulated by response (1 for single item and 2 for several items
outside of packaging) demeaned across these trials within each run for
each participant; (v) onsets for memory retrieval trials modeled with
the same duration as for i; (vi) same onsets and duration as v but
modulated by response (1 never saw this item in a store to 4 seen it
within the last week) demeaned across these trials within each run for
each participant; (vii) to account for any differences in RT between trial
types we added a regressor with the onsets of all valid trials and the

Fig. 1. Sorting and pair matching procedure. (A) Items were rank ordered based on bid obtained in the auction (Fig. 2A). Items were classified into high value (8:18) and low value items
(39:49). (B) 8 High and 8 low value items were assigned to one of two training conditions (Go, associated with a go-signal auditory cue and NoGo, not associated with a go-signal). Item
Go/NoGo condition assignments were counterbalanced across participants.
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same duration as all other regressors (average RT across all trials and
participants), while the modulator was the demeaned RT across all
valid trials; (viii) onsets for missed trials. We included the six x, y, z
translation and rotation motion parameters obtained from MCFLIRT,
framewise displacement (FD) and RMS intensity difference from one
volume to the next (DVARS, Power et al., 2012) as confound
regressors. We also modeled out volumes with FD and DVARS that
exceeded a threshold of 0.5 by adding a single time point regressor for
each “to-be-scrubbed” volume (Siegel et al., 2013). All regressors were
entered at the first level of analysis and all (but the added confound
regressors) were convolved with a canonical double-gamma
hemodynamic response function. The temporal derivative of each
regressor (except for the added confound regressors) was included in
the model. The model was estimated separately for each participant
and each run. The raw parameter estimates from this model were used
to train a classifier to decode the three localizer task conditions (i.e.
perceptual decision, memory retrieval, and valuation).

2.4.2.3. Training. The GLM during the training phase included 4
regressors for each of Go and NoGo trial types broken down by the
two subsequent probe trial types (high-value Go versus high-value
NoGo and low-value Go versus low-value NoGo): (i) onsets of the Go
trial, modeled with a fixed duration of 1.2 s; (ii) same onset and
duration as i but modulated by subsequent number of times chosen
during probe; (iii) same onset and duration as i but modulated by
initial WTP; (iv) same onset and duration as i but modulated by the Go-
signal delay for that trial. Thus there were two different Go trials (high
and low) and for each there were four regressors yielding a total of 8
regressors. Then for each of the different types of NoGo trials there
were three regressors similar to above except for modulation by Go
signal delay as there was no go-signal in the NoGo trials. There were
two different NoGo trial types (high- and low-value) and for each there
were three regressors, thus yielding a total of 6 additional regressors.
Additionally, for each high-value and low-value item that was not used
during probe, we included the equivalent to regressors i and iii above to

Fig. 2. Task procedure. (A) Auction. Participants placed their bid by selecting an amount between $0 and $3 using the mouse. (B) Cognitive localizer task. Food items appeared on the
screen one at a time, at the bottom of the screen one of three questions appeared. Participants were asked to answer the question relevant to the item on the screen within 3.6 s, at which
time the trial ended. Successive stimulus presentations were separated by a fixed ISI of 6 s. (C) Cue-approach training. Single food items appeared on the screen for a fixed 1.2 s.
Participants were asked to press a button on the keypad as quickly as possible only when they heard a neutral tone that sounded on average 950 ms after food stimulus onset (GSD).
Stimulus presentations were separated by a fixed 3.6 s ISI. (D) Probe task. Participants chose between two items on the screen. They were told that their choice on a random probe trial
would be honored at the end of the experiment. Choices had to be made within 2 s of trial onset.
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yield four additional regressors. To account for RT differences between
all trials we added a regressor with the onsets of all Go trials and the
modulator was the demeaned RT across all these trials. We further
added a missed trial regressor each for high-value Go and low-value Go
as well as two regressors for an erroneous response for high-value and
low-value NoGo trials. There were a total of 23 regressors. We added
the same covariates as in the probe design matrix, including the six
motion regressors described above, along with FD and DVARS as
confound regressors. This analysis did not yield significant results in
our original study, but we found that we had increased power in the
current study.

2.4.2.4. Multivariate pattern analysis
2.4.2.4.1. Localizer task. We performed a multivariate pattern

analysis (MVPA) to classify the pattern of activation during each of
the three cognitive processes engaged during the three trial types in the
cognitive localizer task. We used whole brain raw parameter estimates
obtained from the cognitive localizer task GLM described above as
input into a three-class SVM classifier to classify the pattern for each of
valuation, perceptual decision and memory retrieval cognitive
processes. We then conducted two-way cross validation, where we
trained the classifier on the first half of the cognitive localizer neural
data and tested it on the second half (different runs), then vice versa to
obtain average classifier cross-validation accuracy.

2.4.2.4.2. Cue-approach training. Once we ascertained that the
cross-validation accuracy surpassed chance classification (i.e. within-
localizer task cross-validation accuracy significantly above 33%), we
trained the classifier on all the neural data and applied the classifier to
raw parameter estimates extracted from the GLM on cue-approach
training task data. We obtained classifier evidence scores (i.e. the
classifier's estimate of the match between the test pattern and the
trained patterns) for the valuation, perceptual-decision and memory-
retrieval processes on each cue-approach training trial per participant.
We ran this analysis in order to study changes in classifier evidence
corresponding to each of the cognitive processes thought to be engaged
during cue-approach training and to determine whether the increase in
memory-retrieval and valuation classifier evidence across training
predicts later choice at probe.

2.4.2.5. Probe. In line with the work we had previously carried out
exploring the neural signature of value change following cue-approach
training (Schonberg et al., 2014a), we focused our univariate analysis
in the current study on the probe phase. We used a general linear
model (GLM) for the probe phase that included seven regressors for
each of the two trial types. For high-value Go versus high-value NoGo,
(i) onsets of trials when high-value Go items were chosen with fixed
duration, which was the average RT across all trials and participants;
(ii) to explore the preference for each item, we used the demeaned total
number of choices (on all probe trials where this item appeared) for the
chosen item as a parametric modulator of the above onset regressor,
with the same average RT as above used for duration; (iii) to account
for the difference in pre-training WTP between the items in each pair
we added the WTP difference as a parametric modulator with the
same onsets and durations as regressor i. All of the above three
regressors were added for trials when participants chose the NoGo
item in a pair. To account for RT differences between choices of the Go
and NoGo items we added a regressor with the onsets of all high-value
Go and NoGo trials but as the modulator we added the demeaned RT
across all these trials. We defined the same seven regressors for the
probe trials that compared low-value Go to low-value NoGo, which
resulted in a total of 15 regressors (two trial types times seven)
and an additional regressor for missed trials of all types. The same

motion, FD and DVARS confound regressors described above were
included.

To test which regions showed greater modulation by preference for
an item, we contrasted the parametric modulator of the chosen high-
value Go items (regressor (ii) above) with the same regressor for the
high-value NoGo items. We masked this contrast by our a priori
anatomical mPFC region. The mask was the same as that previously
used in Schonberg et al. (2014a) and encompassed the medial PFC by
combining Harvard-Oxford regions (frontal pole, frontal medial cortex,
paracingulate gyrus and subcallosal cortex) falling between x=14,
y=−14 and z < 0.

Ten participants were excluded from the imaging analysis because
their parametric modulator of choices was a vector of zeroes. Two
chose all high-value Go items in exactly the same proportions and three
chose all high-value NoGo items in the same proportions during probe.
One participant chose all low-value Go and four others chose all low-
value NoGo items in exactly the same proportions. We mean-centered
the choice regressors, resulting in a column of zeroes when they chose
items in a particular category (e.g. high-value Go items) the same
number of times. Thus, the parametric modulator was perfectly
correlated with the intercept regressor (column of ones) resulting in
a rank-deficient design matrix. For all group analyses we averaged
across individual participants by performing a one-sample t-test to
obtain the overall effects for the group. All reported statistical maps
were corrected at the whole-brain level using a cluster-based Gaussian
random field correction for multiple comparisons, with an uncorrected
cluster-forming threshold of z=2.3 and corrected extent threshold of p
< 0.05, except for the comparison between preference modulation of
Go and NoGo during probe, which was small volume corrected only for
the anatomical mPFC mask (as was used in Schonberg et al., 2014a).

3. Results

3.1. Behavioral results

Consistent with previous findings, we found an effect of cue-
approach training on choices during the probe phase (Fig. 3A).
Participants chose high-value Go over high-value NoGo items on 65%
of trials (odds ratio (O.R)=2.21, 95% Confidence Interval (C.I)=[1.48
3.29], p < 0.0001). Also consistent with some previous findings when
cue-approach training included a reduced stimulus set as is the case in
this study, participants chose low-value Go over low-value NoGo items
on 60% of trials (O.R=1.7, C.I=[1.13 2.56], p=0.01). However, the Go
choice effect was larger for high-value than for low-value pairs
(O.R=1.28, C.I=[1.06 1.55], p=0.01).

We repeated the initial auction after probe to test whether the
subjective value placed on individual items changed after training.
Although we had previously reported evidence that cue-approach
training influenced the value of individual items, we did not replicate
that finding in this study. WTP for high-value Go and NoGo items
regressed equally toward the mean and WTP for low-value Go and
NoGo items also increased equally and regressed toward the mean.
There was a main effect of time (pre- to post-training, p < 0.0001), but
no main effect of training condition (Go or NoGo) or interaction
between the factors on WTP (p's > 0.5).

3.2. Imaging results

3.2.1. MVPA results
3.2.1.1. Localizer. Whole-brain pattern classifiers reliably
distinguished fMRI activity (separately for each participant) from
trials designed to elicit the cognitive processes of valuation,
perceptual decision making, and memory retrieval of appetitive food
items. We obtained above-chance classification accuracy (65.8% on
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average; chance is 33%) for each class. Thus, the classifiers can be
applied to cue-approach task data to estimate the engagement of these
three cognitive processes during training.

3.2.1.2. Cue-approach training. After training the classifier on all the
cognitive localizer task fMRI data, we applied the classifier to fMRI
data acquired during the cue-approach training task to predict the
extent to which each of the cognitive processes of interest were elicited
across training trials. In this analysis, we did not obtain any notable
increases in the estimates across training (i.e. relatively flat lines in
Fig. 4 and no main effect of repetition number on classifier evidence for
any of the three classes). In a mixed-effects linear regression model
testing the interaction between repetition number (i.e. x-axis on plots
in Fig. 4) and Go status (Go solid green lines vs. NoGo dashed red lines
in Fig. 4) on valuation classifier evidence, we found no significant
interaction and no main effects. Testing the same interaction on the

memory classifier evidence, we found a trend-level interaction
(β=−0.002, C.I=[−0.0054 0.0003], p=0.08) and a main effect of Go
status (β=−0.023, C.I=[−0.033 −0.013], p < 0.0001), but no main effect
of repetition number on memory classifier evidence. Finally, testing the
interaction on perceptual classifier evidence, we found a trend-level
interaction (β=0.003, C.I=[−0.0002 0.006], p=0.06) and a main effect
of go status (β=0.015, C.I=[0.004 0.026], p=0.006), but no effect of
repetition number on perceptual classifier evidence.

Given that classification of cognitive processes did not vary mean-
ingfully across the training period, we tested whether we at least had
above-chance cross-task classification accuracy for the valuation pro-
cess, which should be central to the cue-approach task. That is, we
assessed whether valuation processes engaged during the localizer task
were also engaged to some extent, and could be identified by the
classifier, in the training task. To obtain a measure of cross-task
classification accuracy, we trained a classifier on the localizer task data

Fig. 3. Behavioral results for cue-approach study. (A) Proportion of choices of the Go item in pairs of high-value Go versus NoGo and low-value Go versus NoGo items for all
participants. Significance level reflects odds of choosing the Go to NoGo item. (B) WTP before and after cue-approach training for Go and NoGo separately for items in the probe high-
value Go versus high-value NoGo pairs (top) and low-value Go versus low-value NoGo pairs (bottom). The sample includes all participants. Error bars represent one standard error of the
mean (SEM) in A and within-subject SEM in B. ***: p < 0.0001, +: p < 0.05 (two-sided tests).

Fig. 4. Average MVPA classifier evidence during cue-approach training. Three-class SVM classifier was trained on cognitive localizer neural data and applied to each trial of cue-
approach training to obtain classifier evidence for each class split by training trial type (Go [solid green line] or NoGo [dashed red line]) for valuation (left), memory retrieval (middle)
and perceptual decision (right). The shaded areas represent one within-participant SEM. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.).
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to distinguish between low-, medium-, and high-valued items from the
auction. We trained a classifier to distinguish patterns of activity during
the localizer task elicited by three levels of value during valuation trials
(low/medium/high value), then tested the classifier on the cue-
approach task data. The within-localizer task two-way cross-validation
accuracy for this value-level classifier was 61.9% (chance is 33%).
However, the cross-task classification accuracy was only 31.24%, which
was no different than chance accuracy. Thus, we did not achieve proper
cross-task classification accuracy using the item value-level classifier.
This suggests that valuation was not elicited similarly during the
localizer task and the cue-approach training task. Despite non-satis-
factory cross-task validation, we found that there was a significant trial-
by-trial variance in classifier evidence during the training phase, we
sought to test whether trial-by-trial variance explained behavior during
the later probe phase.

In a mixed-effects linear regression model, there was no main effect
of valuation classifier evidence from the last presentation during the
training phase on subsequent choice during probe, but there was an
interaction between valuation classifier evidence from the last pre-
sentation during training and item type (high-value Go/NoGo) on
subsequent choice during probe (Fig. 5, p=0.03). This suggests that the
item-by-item relationship between valuation classifier evidence on the
last presentation during the training phase and subsequent choices
during probe was different for high-value Go and NoGo items. This
interaction effect did not hold for the first training presentation (there
was no three-way interaction between valuation classifier evidence by
item type [high-value Go/NoGo] by presentation number [first/last]).
The interaction also did not hold for low-value Go vs. NoGo, and did
not hold when using memory retrieval or perceptual decision classifier
evidence.

3.2.2. Univariate results

3.2.2.1. Localizer. We tested the parametric modulation of preference
level for foods measured through a four-alternative forced choice (least
to most) to the question “How much would you like to eat this item?”
We found that this measure of value was related to BOLD activity

primarily in vmPFC (Fig. 6 and Table 1), in line with numerous
previous studies that have demonstrated a role for vmPFC in coding
subjective value (for a meta-analysis, see Bartra et al., 2013).

3.2.2.2. Probe. We used the number of times an item was chosen at
probe as a parametric modulator to test whether the vmPFC represents
value change during probe in our task. In line with our previous
published study (Schonberg et al., 2014a), we limited our analysis to a
large anatomical area within mPFC. There were no whole-brain
corrected or small-volume corrected (SVC) results for modulation of
vmPFC BOLD by post-training preference for high-value Go items.
Additionally, the relationship between preference and BOLD in the
vmPFC did not differ for choices of high-value Go and high-value NoGo
items.

We ran the same analysis on the low value pair trials, since there
was a behavioral effect in both low-value and high-value pair trials in
this sample (unlike in Schonberg et al., 2014a). In this analysis, we
found an amplified BOLD signal modulation by preference for choices
of low-value Go over low-value NoGo items when restricting the
analysis to an extensive anatomical mask of mPFC (SVC, Fig. 7 and
Table 2). There was no significant effect within the vmPFC for the
modulation of BOLD by choices of low-value Go or NoGo items in the
whole brain analysis.

3.2.2.3. Training. Consistent with previous findings, there were no
differences in the Go stimulus onset driven activations for the last run
of training compared to the first run. We also used the same parametric
modulator as in the probe phase (i.e. the number of times a particular
item was chosen) to test for preference change related signals during
the last run of training. There was no effect within the vmPFC for the
modulation of BOLD response by preference for any of high- or low-
value Go or NoGo items. The lack of effect here fails to replicate
previous findings. Additionally, the relationship between BOLD and
preference for high-value and low-value Go vs. NoGo were no different,
replicating previous lack of findings. However, the change in
modulation by choice preferences (number of times a particular item
is later chosen at probe) over time (run 6 minus run 1) is stronger for
Go than for NoGo items in a number of regions that include left dlPFC

Fig. 5. Linear mixed-effects regression model interaction of item training type (high-
value Go or NoGo) and value classifier evidence from the last cue-approach training trial
on the number of times a particular item was later chosen at probe. The lines depict the
group-level linear effects and the shaded areas depict 95% confidence curves.

Fig. 6. Localizer task imaging results (N=32) for the modulation by preference level
measured by a four-alternative forced choice (least to most) to the question “How much
would you like to eat this food?”. Coordinates reported in standard MNI space. Heatmap
color bars range from z-stat=2.3–3.7. This map was cluster-corrected at a whole-brain
level p < 0.05, two sided linear regression. To see the full map go to http://neurovault.
org/images/24109/. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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and vlPFC (Fig. 8 and Tables 3 & 4). This analysis includes both high-
and low-value item training trials since we found a behavioral effect in
both trial types. This finding is novel and was not present in the
original study. The increased trial count may account for the positive
finding in the current sample compared to the original study .

4. Discussion

Shifting preferences is key to behavioral change. Focus has recently
turned to target automatic cognitive processes to influence choice
behavior (Marteau et al., 2012). Previous work by our group has
established the cue-approach training task as a viable paradigm to
influence choice behavior without reverting to effortful self-control and
external reinforcement (Schonberg et al., 2014a). The full underlying
neural mechanism responsible for a shift in preferences following cue-
approach training remains unknown. In the current study, we sought to

Table 1
Regions showing significant activations for the imaging contrast presented in Fig. 6. The
list shows all regions from the Harvard-Oxford atlas that contained more than 10 active
voxels within the clusters, along with the peak x/y/z location for the cluster in MNI space.

Cluster Region # voxels Cluster x y z peak Z
Number in region size

1 L Lingual Gyrus 872 1989 −10 −74 −2 6.92
L Intracalcarine
Cortex

431

L Occipital
Fusiform Gyrus

178

L Occipital Pole 102
R Lingual Gyrus 45
L Precuneous
Cortex

12

L Supracalcarine
Cortex

10

2 L Paracingulate
Gyrus

175 538 0 50 2 4.35

R Paracingulate
Gyrus

116

L Frontal Pole 79
L Cingulate Gyrus,
anterior division

74

R Cingulate Gyrus,
anterior division

42

3 R Cingulate Gyrus,
anterior division

171 435 −2 36 20 3.98

L Cingulate Gyrus,
anterior division

113

L Paracingulate
Gyrus

80

R Paracingulate
Gyrus

38

4 R Angular Gyrus 156 430 64 −50 18 3.39
R Middle
Temporal Gyrus,
temporooccipital
part

155

R Supramarginal
Gyrus, posterior
division

73

R Lateral Occipital
Cortex, superior
division

16

R Lateral Occipital
Cortex, inferior
division

12

5 L Supramarginal
Gyrus, posterior
division

241 382 −54 −44 48 4.05

L Angular Gyrus 65
L Supramarginal
Gyrus, anterior
division

49

L Lateral Occipital
Cortex, superior
division

18

6 R Inferior Frontal
Gyrus, pars
triangularis

161 380 50 28 0 3.93

R Inferior Frontal
Gyrus, pars
opercularis

50

R Insular Cortex 44
R Frontal
Operculum Cortex

31

R Frontal Pole 25
R Central
Opercular Cortex

21

R Frontal Orbital
Cortex

10

(continued on next page)

Table 1 (continued)

Cluster Region # voxels Cluster x y z peak Z
Number in region size

7 L Middle Frontal
Gyrus

244 378 −34 30 46 4.11

L Superior Frontal
Gyrus

80

Fig. 7. Probe imaging results (N=22) for the modulation by number of times a particular
lower-value Go item was chosen greater than the modulation by number of times a
particular lower-value NoGo item was chosen. Coordinates reported in standard MNI
space. Heatmap color bars range from z-stat=2.3–3.2. This map was cluster-corrected
within an a priori defined anatomical mPFC mask (SVC) p < 0.05, two sided linear
regression. To see the full SVC map go to http://neurovault.org/images/24110/. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Regions showing significant activations for the imaging contrast presented in Fig. 7. The
list shows all regions from the Harvard-Oxford atlas that contained more than 10 active
voxels within the cluster, along with the peak x/y/z location for the cluster in MNI space.

Cluster Region #voxels Cluster x y z peak Z
Number in region size

1 L Frontal Pole 143 237 4 56 −6 3.7
L Inferior Frontal
Gyrus, pars
triangularis

75
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investigate neural changes during cue-approach training that predict
subsequent choices using multivariate pattern analysis as well as
traditional univariate techniques.

We designed a cognitive localizer task that engages three distinct
cognitive processes assumed to be implicated during cue-approach
training to influence subsequent choices: valuation, memory and
perceptual processing. Previous behavioral findings support the in-
volvement of these processes during CAT training (Bakkour et al.,
2016). We built a classifier to distinguish between whole-brain patterns
of activity elicited by these three cognitive processes of interest (for a
review of decoding techniques applied to fMRI, see Norman et al.,
2006; Tong and Pratte, 2012). This classifier would in theory then have
allowed us to obtain a measure of the degree to which each of these
cognitive processes were engaged during cue-approach training. Any
changes in the obtained classifier evidence measures could then be
regressed against choices at probe to determine the contribution of
changes in the involvement of these cognitive processes during training
in shifting preferences. Previous research supported this design.
Indeed, several studies have demonstrated robust classification of
abstract cognitive processes such as intentions (Haynes et al., 2007;
Soon et al., 2008), attention (Rosenberg et al., 2015) and valuation
(Gross et al., 2014) to name only a few. Further demonstrating the
power of MVPA classifiers, the three-class classification discriminating
the cognitive processes of memory retrieval, valuation and perceptual
processing performed well above chance in a standard two-way cross-
validation applied to the localizer task fMRI data. However, to our
surprise, this classifier did not generalize well from the localizer task to
the cue-approach training task. To better quantify the cross-task
generalization of this classifier technique in our data, we trained
another classifier to differentiate the patterns of brain activation
elicited by three levels of value (low, medium, and high) during
valuation trials of the localizer task. This value classifier performed
well above chance in standard cross-validation applied to the localizer
task fMRI data (for a simple guide on this method, see Mur et al.,
2009), consistent with previous reports of value representation in the
cortex (Krajbich et al., 2009; McNamee et al., 2013). However, this
classifier did not perform above chance when applied to the cue-
approach training task fMRI data. It is worth noting that we had a
measure of willingness-to-pay for all foods presented during the
training task and thus accurately labeled each food stimulus in terms
of its level of value in the same way we labeled the level of value for
localizer task stimuli. This labeling allowed us to accurately determine
cross-task classification accuracy. The lack of cross-task value classifi-
cation suggests that valuation, assumed to be elicited during cue-
approach training, is not expressed in a similar enough manner in
neural activation patterns as during the localizer task. One possibility
for this discrepancy is that the localizer and cue-approach tasks are
very different. The localizer task asks participants to process images of
food items and answer two or four alternative forced choice questions,
whereas during the cue-approach training task, participants are asked
to simply view images of food unless they hear a tone that cues them to
press a button. It appears that the patterns of activity elicited by
potentially shared cognitive processes do not overlap enough to solve
the classification problem posed. The lack of cross-task classification in
this study stands in contrast to other studies that have demonstrated
strong cross-task classification (Eger et al., 2009; Etzel et al., 2008;
Lewis-Peacock and Postle, 2008; Meyer et al., 2010; Shinkareva et al.,
2011). The lack of cross-task value-level classification success was
surprising given previous work demonstrating cross-domain value-
level classification (Gross et al., 2014). The lack of cross-task classifica-
tion in the current study calls for future studies aimed at better defining
the conditions under which cross-task classification is possible.

Despite the lack of expected average classification differences
between training task conditions, we partially replicated previous
behavioral results, and obtained novel imaging findings. First and
foremost, the current study replicates the now well-established cue-

Fig. 8. Training imaging results (N=27). Changes in BOLD modulation by number of
times a particular GO item was later chosen at probe from the beginning to the end of
training grater than changes in BOLD modulation by number of times a particular NOGO
item was later chosen at probe from beginning to the end of training. Coordinates
reported in standard MNI space. Heatmap color bars range from z-stat=2.3–3.2. This
map was cluster-corrected at a whole-brain level p < 0.05, two sided linear regression. To
see the full map go to http://neurovault.org/images/24111/. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Regions showing significant activations for the imaging contrast presented in Fig. 8. The
list shows all regions from the Harvard-Oxford atlas that contained more than 10 active
voxels within the clusters, along with the peak x/y/z location for the cluster in MNI space.

Cluster Region # voxels Cluster x y z peak Z
Number in region size

1 R Postcentral
Gyrus

565 1365 10 −52 68 3.92

R Superior Parietal
Lobule

215

R Precentral Gyrus 193
R Precuneous
Cortex

118

L Precentral Gyrus 85
R Supramarginal
Gyrus, anterior
division

47

2 L Middle Frontal
Gyrus

319 373 −42 12 42 3.46

L Precentral Gyrus 26

3 L Frontal Pole 143 258 −44 36 10 3.84
L Inferior Frontal
Gyrus, pars
triangularis

75

Table 4
Pearson correlations between the map in Fig. 8 and formal term-based reverse inference
maps using Neurosynth (Yarkoni et al., 2011).

Term Correlation (r)

prefrontal 0.141
semantic 0.125
medial prefrontal 0.12
theory mind 0.11
default 0.107
mind 0.106
default mode 0.098
parietal 0.096
medial 0.094
mode 0.094

A. Bakkour et al. NeuroImage 151 (2017) 92–104

101



approach behavioral effect. In the probe phase, participants chose
items that were previously associated with a cued button press during
the training phase over items that were not associated with a cue but
that were matched for pre-experimental preference (Fig. 2A). Several
other studies from our group (Bakkour et al., 2016) were conducted in
order to narrow down the possible mechanisms engaged during cue-
approach training to cause a preference shift. These studies suggest
that a cued motor response that requires sustained attention prior to
the cue is necessary to induce a change in choice behavior. Indeed, a
cue alone without a motor response or an uncued motor response alone
during the training phase are not sufficient to bias choices.
Furthermore, eliminating the go-signal delay and sounding the cue to
make a motor response concurrently with the onset of food stimuli
without delay during the training phase eliminated the choice effect at
probe. Finally, requiring participants to make choices using eye move-
ments rather than manual button presses revealed a preference shift
following standard cue-approach training involving a cued manual
motor response with the cue sounding after the food stimulus appears.
This last result provides evidence suggesting that the choice shift was
not calculated within manual or ocular motor circuits but rather that
the shift in preference is likely due to modulation of more general value
coding regions in the brain such as vmPFC. Current findings further
bolster the claim that cue-approach training modulates subjective value
of individual items. Although cross-task classification for the level of
value (low/medium/high value) from localizer task to cue-approach
training was not significant, we leveraged the trial-by-trial variance in
value classifier evidence from the three-class (value/memory/percept)
classifier and found that the relationship between value classifier
evidence on the last presentation and the number of times each food
was later chosen at probe differed for high-value Go and NoGo items
(Fig. 5). Taking these results together, we suggest that cue-approach
training engages attentional mechanisms during behaviorally relevant
points in time in order to modulate value coding of items that were
associated with the Go signal.

Previous imaging findings point to a more positive relationship
between BOLD activation in the vmPFC and preference for choices of
high-value Go when compared to choices of high-value NoGo items
(Schonberg et al., 2014a). This finding was not replicated in the current
study. Failure of replication could be due to low power. Our complete
sample included 32 participants, which is considered adequate for
fMRI studies. However, our contrasts of interest were based on
participant behavior and we had to exclude participants who chose
items within a category at the same rate, which represented a larger
proportion of the sample than in a previous imaging study, significantly
reducing our power to detect an effect in this analysis. Indeed, several
participants chose items the same number of times during probe. This
measure was entered as a parametrically modulated regressor in our
probe phase GLM. In order to ensure that the parametric regressor is
not correlated with the unmodulated regressor, we demeaned the
choice measure entered into the parametric regressor, resulting in a
column of zeroes when items were chosen the same number of times,
and rendering the matrix rank deficient. We excluded ten participants
from this analysis for this reason, reducing our sample size from 32 to
22 for the replication analysis. Furthermore, poor signal-to-noise ratio
(SNR) in the vmPFC might be another reason for this lack of
replication (Stenger, 2006). However, there was a strong relationship
between ratings of how much participants wanted to eat an item during
the cognitive localizer task and signal in the vmPFC (Fig. 6), attesting
to adequate SNR in that region. In our original imaging study,
participants did not choose Go items more often that NoGo items in
low-value pairs and we saw no difference in the modulation of the
number of times lower-value items were chosen during probe in the
imaging analysis. However, in the current study, we found a behavioral
effect in the low-value as well as the high-value pairs (Fig. 3A).
Consistent with the behavioral effect, the imaging analysis revealed
that the modulation of probe phase BOLD by number of times a

particular item was chosen was higher for low-value Go than for low-
value NoGo items in the vmPFC (Fig. 7). This suggests that the neural
mechanism responsible for modulating item values during CAT is
similar regardless of the initial value of the item.

Beyond the imaging findings during probe, we set out to look for
neural changes during cue-approach training that might predict later
choices, thus the motivation for the MVPA classifier analyses discussed
above. Given that we did not achieve appropriate cross-task classifica-
tion and that we found a behavioral effect in both low- and high-value
pairs at probe, we pooled across both high- and low-value item trials
during training for traditional univariate analyses on the training phase
data. Consistent with previous findings, there were no differences in the
Go stimulus onset-driven activations for the last run of training
compared to the first run. This is likely due to the simple nature of
the training phase and the fact that no decisions regarding the food
were required during the training phase. The doubling of training trials
for analysis (i.e. combining across high- and low-value item trials)
increased our power to detect an effect (Liu and Frank, 2004) during
training over our original study (Schonberg et al., 2014a). Changes in
the relationship between BOLD and later preference from the begin-
ning to the end of cue-approach training differed between Go and
NoGo trials mainly in lateral prefrontal cortical areas (Fig. 8). These
areas are typically associated with task control (Dosenbach et al., 2007;
2006). Additionally, activity in the dlPFC has been shown to modulate
the activity of the vmPFC (Hare et al., 2009), a region thought to code
for subjective value (Bartra et al., 2013; Padoa-Schioppa and Assad,
2006). We suggest that task control increases for Go item trials as
training progresses, given that Go food items are consistently asso-
ciated with a tone and button press thus participants learn that they are
in a Go trial when a Go item appears by the end of training. We also
venture that task control does not change as training progresses for
NoGo item trials. We further speculate that the increased task control
subserved by dlPFC modulates subjective value of Go items coded in
vmPFC.

Understanding the neural changes during non-reinforced training
that underlie a later shift in choice preferences is important to the
study of behavioral change. In the current study, we found that the
extent to which a participant's whole-brain pattern of activity during a
Go trial at the end of training reflected a valuation process determined
the number of times he or she later chose that item. We also found that
BOLD activity in a network of frontal regions was differentially related
to later choices for Go and NoGo items as CAT training progressed.
These findings could help us further increase the effectiveness of CAT
training in nudging individuals to make lasting, positive changes in
their choice behavior.

5. Conclusions

The cue-approach task continues to prove to be a useful paradigm
for the study of behavioral change and potentially for the development
of real-world interventions to help change and maintain habits. Its
non-reliance on effortful self-control and its targeting of automatic
processes in the brain render it particularly appealing. This research
shows promise for the development of new real-world, non-externally
reinforced behavioral change paradigms by tapping attentional and
memory mechanisms that act at behaviorally relevant points in time to
modify valuation of particular stimuli. Training regimens that do not
rely on external reinforcement, such as cue-approach training, could
inspire the development of novel, lightweight behavioral treatments
that help combat addiction, eating disorders and other ills by affecting
lasting changes in choice behavior.
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