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Decisions about what to eat recruit the orbitofrontal cortex (OFC) and involve the evaluation of food-related attributes such
as taste and health. These attributes are used differently by healthy individuals and patients with disordered eating behavior,
but it is unclear whether these attributes are decodable from activity in the OFC in both groups and whether neural represen-
tations of these attributes are differentially related to decisions about food. We used fMRI combined with behavioral tasks to
investigate the representation of taste and health attributes in the human OFC and the role of these representations in food
choices in healthy women and women with anorexia nervosa (AN). We found that subjective ratings of tastiness and healthi-
ness could be decoded from patterns of activity in the OFC in both groups. However, health-related patterns of activity in
the OFC were more related to the magnitude of choice preferences among patients with AN than healthy individuals. These
findings suggest that maladaptive decision-making in AN is associated with more consideration of health information repre-
sented by the OFC during deliberation about what to eat.
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Significance Statement

An open question about the OFC is whether it supports the evaluation of food-related attributes during deliberation about
what to eat. We found that healthiness and tastiness information was decodable from patterns of neural activity in the OFC in
both patients with AN and healthy controls. Critically, neural representations of health were more strongly related to choices
in patients with AN, suggesting that maladaptive overconsideration of healthiness during deliberation about what to eat is
related to activity in the OFC. More broadly, these results show that activity in the human OFC is associated with the evalua-
tion of relevant attributes during value-based decision-making. These findings may also guide future research into the devel-
opment of treatments for AN.

Introduction
Deciding what to eat involves the evaluation of multiple types of
information and consideration of subsequent consequences and
outcomes. Previous studies have shown that the orbitofrontal
cortex (OFC) plays a central role in representing the subjective
value of individual foods and food choice (Padoa-Schioppa and
Assad, 2006; Plassmann et al., 2007; Clithero and Rangel, 2014;
Suzuki et al., 2017; Ballesta et al., 2020). Other studies have dem-
onstrated that evaluations of tastiness and healthiness—two food
attributes that tend to be unrelated among healthy individuals—
interact to determine food choices (Hare et al., 2009, 2011; Maier
et al., 2015; Lloyd et al., 2020).

The OFC has been further implicated in the integration of
basic food-related attributes during the computation of the
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subjective value placed on foods (Suzuki et al., 2017), and it is of-
ten assumed that these computations also take place during deci-
sion-making. But how are these attributes represented at the
neural level, and how do they contribute to deliberation about
what to eat? One approach to addressing these open questions is
to compare neural activity and choices in populations that differ
in the extent to which they rely on taste versus health attributes
when making food-related decisions. Individuals with anorexia
nervosa (AN) are well known to adhere to a low-fat, low-calorie
diet even to the point of starvation (Arcelus et al., 2011; Walsh,
2011). Given this well-characterized behavioral profile, examina-
tion of the neural representations of taste and health attributes
and their link to behavior in individuals with AN (ANs) may
offer new insights into the mechanisms that perpetuate this dev-
astating illness. This approach can also facilitate understanding
of how food attributes are represented and related to choices
more generally. In the current study, we use multivariate analysis
methods to better understand the representations of tastiness
and healthiness information in the OFC and how these represen-
tations contribute to food choice. Here, we use the word taste to
denote subjective ratings of how tasty different foods are and the
word health to denote subjective ratings of how healthy different
foods are.

Evaluations of taste and health attributes play different roles
during food choices among individuals with AN as compared
with healthy individuals (Foerde et al., 2015, 2018, 2020;
Steinglass et al., 2015, 2016; Uniacke et al., 2020). In an fMRI
study, overall levels of activity assessed in univariate analyses
of taste and health attribute ratings were differentially associated
with choices across individuals, with choice-related ventromedial
prefrontal cortex (vmPFC) activity correlated with tastiness-
related activity among healthy controls (HCs) and healthiness-
related activity among patients with AN (Foerde et al., 2015).
These findings hint at the possibility that neural representations
of taste and health attributes differentially guide choices in indi-
viduals with AN and healthy individuals. Multivariate pattern
analysis, which has greater sensitivity than univariate analyses in
the detection of mental representations (Norman et al., 2006),
may provide deeper insights into differences between patients
with AN and healthy controls (Frank et al., 2016).

We conducted secondary analyses of neuroimaging data from
Foerde et al. 2015 using multivariate pattern analyses. In Foerde
et al. 2015, participants rated the tastiness and healthiness of a
range of different foods and made food choices during fMRI
scanning. The goal of the secondary analysis was to more directly
test whether taste and health attributes are represented in pat-
terns of brain activity within the OFC. Furthermore, the behav-
ioral relevance of such activity was tested by linking it to
individuals’ choices. To do so, we first assessed whether taste and
health attribute information could be decoded using multivariate
pattern analyses in the OFC during taste and health ratings in
both HCs and ANs (within-task classification). Next, we applied
this decoding of taste and health attributes to a subsequent
choice phase (cross-task classification) to test whether evidence
of tastiness- and healthiness-related representations during
choices was related to the actual choices made.

Materials and Methods
Participants
Twenty-one hospitalized women with AN and 21 HC women completed
this study. In the analyses described below, all HC participants were
included. One individual with AN was missing a structural image and

was excluded from analyses because functional registration could not be
performed. This resulted in a final sample of 41 participants.

Participants were right-handed, between the ages of 16 and 39 years
old, taking no psychotropic medications, were not pregnant, and had no
history of significant neurological illness and no contraindication to
MRI. HCs were normal-weight women [Body Mass Index (BMI) between
18kg/m2 and 25kg/m2] and were excluded from participation if they were
taking psychotropic medications, had any history of psychiatric illness, or
were currently dieting. All participants provided written informed con-
sent, and the New York State Psychiatric Institute Institutional Review
Board approved the study.

Eating disorder diagnoses were made via the Eating Disorder
Examination (Fairburn and Terence Wilson, 1993), and co-occurring
diagnoses were assessed via the Structured Clinical Interview for the
Diagnostic and Statistical Manual of Mental Disorders (fourth edition;
DSM-IV; Spitzer et al., 1987). Ten patients met the DSM-5 (American
Psychiatric Association, 2013) criteria for the restricting subtype of AN,
and 11 patients met the criteria for the binge-eating/purging subtype of
AN. For participants with AN, study procedures occurred the day after
hospital admission. Treatment at New York State Psychiatric Institute is
provided at no cost for those interested in and eligible for participation.
HCs received $125 as compensation for their time.

Behavioral task procedures
Prescan intake was standardized and controlled as follows. At 12:00 P.M.,
participants were served a research lunch consisting of;550kcal (turkey
sandwich, Nutrigrain bar, 8 ounces of water). In between lunch and scan-
ning at 2:00 P.M., participants were instructed not to eat or drink any-
thing with the exception of water.

Participants completed three tasks in the scanner: taste rating, health
rating, and food choice. The order of the taste and health rating tasks
was counterbalanced and randomized across participants. Food choices
always followed the two rating tasks. Behavioral task procedures are
described in detail in Foerde et al. (2015).

Stimuli
Seventy-six food items were presented in each task (Fig. 1). Half of the
food items were low fat (,30% of total calories from fat, as determined
by our staff research nutritionist) and half of the food items were high
fat. In each task, the food items were presented on white plates against a
black background in high-resolution color photographs. These stimuli
are included in the Food Folio by Columbia Center for Eating Disorders
stimulus set (https://osf.io/483mx/; Lloyd et al., 2020; https://doi.org/
10.7916/d8-497c-2724). The order of stimulus presentation was random-
ized in each task. A rating scale was shown below the food item on each
trial.

Taste rating
In the taste rating task (Fig. 1A), participants were asked to rate the tasti-
ness of 76 food items on a 5-point Likert scale from bad to neutral to
good or from good to neutral to bad (the direction of the rating scale
was counterbalanced and randomized across participants). They were
instructed to rate the food items only on taste.

Health rating
In the health rating task (Fig. 1B), participants were asked to rate the
healthiness of 76 food items on a 5-point Likert scale from unhealthy to
neutral to healthy or from healthy to neutral to unhealthy (the direc-
tion of the rating scale was counterbalanced and randomized across
participants).

Food choice
The food choice task was completed after the taste and health rating
tasks (Fig. 1C). For each participant, a reference food item that had been
rated by that participant as neutral in taste and health in the rating tasks
was selected at random by a computer program. If no food items were
rated as being neutral in taste and health, an item that was neutral on
health and positive on taste was selected to minimize biasing choices
based on taste value. For 20 HCs and 18 ANs, the reference item was
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rated by participants as neutral in taste and health. For 1 HC and 1 AN,
the reference item was neutral on health and rated 1 step toward good
on taste. For 1 AN, the reference item was neutral on health and rated 1
step toward bad on taste.

During the food choice task, participants were presented the
reference food and a trial-unique food on 76 trials. The reference
food was always presented on the left side of the screen and was
the same on every trial. The trial-unique food was always pre-
sented on the right. Participants were instructed to choose the
food they would like to eat and indicated their preference on each
trial using a Likert scale with strongly prefer anchoring each end
of the scale. The side-by-side presentation of the foods ensured
that participants were aware their choices were relative to the ref-
erence food.

To incentivize participants to make choices according to their prefer-
ences, participants were told that they would receive a snack-sized por-
tion of one of their chosen foods, selected at random, after the task.
Participants were served a snack-sized portion of one of their chosen
foods at 3:00 P.M., observed by staff.

fMRI acquisition
Neuroimaging was conducted at the Program for Imaging and
Cognitive Sciences at Columbia University on a 3.0T Phillips MRI
system with a SENSE head coil. Functional data were acquired using
a gradient echo T2*-weighted echoplanar imaging (EPI) sequence
with blood oxygenation level-dependent (BOLD) contrast (repetition time

= 2,000 ms, echo time = 19 ms, flip angle = 77°, 3 � 3� 3 mm voxel size;
46 contiguous axial slices). To allow for magnetic field equilibration dur-
ing each functional scanning run, four volumes were discarded before the
first trial. Structural images were acquired using a high-resolution T1-
weighted MPRAGE pulse sequence.

Imaging data preprocessing
Preprocessing of the raw fMRI data was performed using fMRIPrep
1.4.0 (https://doi.org/10.5281/zenodo.852659; Esteban et al., 2018),
which is based on Nipype 1.2.0 (Gorgolewski et al., 2011).

Anatomical data preprocessing
The T1-weighted (T1w) image was corrected for intensity nonuni-
formity with N4BiasFieldCorrection (Tustison et al., 2010), distrib-
uted with Advanced Normalization Tools (ANTs) 2.2.0 (Avants et
al., 2008), and used as T1w reference throughout the workflow. The
T1w reference was then skull stripped with a Nipype implementa-
tion of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as the target template. Volume-based spatial nor-
malization to one standard space (MNI152NLin2009cAsym) was
performed through nonlinear registration with antsRegistration
(ANTs 2.2.0), using brain-extracted versions of both T1w reference
and the T1w template. The following template was selected for spa-
tial normalization: ICBM 152 Nonlinear Asymmetric template ver-
sion 2009c (Fonov et al., 2009).

Figure 1. Task design and behavioral results. A-B, During taste and health ratings, participants viewed and rated 76 foods on a Likert scale from 1 to 5. The order of the taste and health rat-
ing tasks was counterbalanced across participants. A, Taste rating distributions are shown for all HC participants in green and all AN participants in purple. Median splits were performed on
taste ratings for each participant. The dashed black lines indicate the group-level median across each group of participants (HC = 3.956 0.59, AN = 2.906 0.83). For the purposes of multi-
variate pattern analysis, each food was assigned a low- or high-taste label according to participant-specific median splits. B, Health rating distributions are shown for all HC participants in green
and all AN participants in purple. Median splits were performed on health ratings for each participant. The dashed black lines indicate the group-level median across each group of participants
(HC = 3.19 6 0.60, AN = 2.60 6 0.66). Each food was assigned a low/high-health label according to participant-specific median splits. C, The rating tasks were followed by a food choice
task in which participants were asked to choose between a reference food (left), rated neutral in taste and health, and a trial-unique food (right). The reference food was the same on every
trial. Participants rated their choice preference on a Likert scale from 1 to 5. The distribution of choice ratings is shown on the right for HCs (in green) and ANs (in purple).

Xue et al. · Taste and Health Information in Orbitofrontal Cortex J. Neurosci., January 5, 2022 • 42(1):109–120 • 111

https://doi.org/10.5281/zenodo.852659


Functional data preprocessing
For each of the three BOLD runs per subject (across all tasks), the fol-
lowing preprocessing was performed. First, a reference volume and its
skull-stripped version were generated using a custom methodology of
fMRIPrep. The BOLD reference was then coregistered to the T1w refer-
ence using bbregister (FreeSurfer), which implements boundary-based
registration (Greve and Fischl, 2009). Coregistration was configured
with nine degrees of freedom to account for distortions remaining in the
BOLD reference. Head-motion parameters with respect to the BOLD
reference (transformation matrices and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal filtering
using MCFLIRT [Functional MRI of the Brain Software Library (FSL)
5.0.9; Jenkinson et al., 2002]. The BOLD time series (including slice-tim-
ing correction when applied) were resampled onto their original native
space by applying a single composite transform to correct for head
motion and susceptibility distortions. These resampled BOLD time se-
ries are referred to as preprocessed BOLD in original space or just pre-
processed BOLD. The BOLD time series were resampled into standard
space, generating a preprocessed BOLD run in MNI152NLin2009cAsym
space. First, a reference volume and its skull-stripped version were gen-
erated using a custom methodology of fMRIPrep. Several confound-
ing time series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS (root-mean-square inten-
sity difference from one volume to the next), and three regionwise
global signals. FD and DVARS are calculated for each functional
run, both using their implementations in Nipype (following the
definitions by Power et al., 2014). The head-motion estimates cal-
culated in the correction step were also placed within the corre-
sponding confounds file. All resamplings can be performed with a
single interpolation step by composing all the pertinent transfor-
mations (i.e., head-motion transform matrices, susceptibility dis-
tortion correction when available, and coregistrations to anatomical
and output spaces). Gridded (volumetric) resamplings were per-
formed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Many internal operations of fMRIPrep
use Nilearn 0.5.2 (Abraham et al., 2014), mostly within the func-
tional processing workflow. For more details of the pipeline, see
the section corresponding to workflows in the documentation for
fMRIPrep.

Region of interest definitions
We anatomically determined regions of interest (ROIs) using the
Automated Anatomical Labeling (AAL) atlas for SPM12 and transformed
them from MNI sixth generation space to MNI152NLin2009cAsym space
(Tzourio-Mazoyer et al., 2002; Rolls et al., 2015). The lateral orbitofrontal
cortex (lOFC) ROI was created by combining the orbital parts of the left
and right middle frontal gyrus, superior frontal gyrus, and inferior frontal
gyrus (Suzuki et al., 2017). The medial orbitofrontal cortex (mOFC) ROI
was created by combining the medial orbital part of the left and right
superior frontal gyrus (Suzuki et al., 2017). The orbitofrontal cortex
(OFC) ROI was created by combining the lOFC and mOFC ROIs. The
V1 ROI was created by combining the left and right calcarine cortex, as
defined by the AAL atlas (see all ROIs in Fig. 3).

Imaging data analysis
The classification analyses of interest required several steps (Fig. 2).
(1) Standard GLM analyses were run to generate the patterns of ac-
tivity on each trial of each task. (2) Behavioral labels were assigned
for every trial and used for classification. (3) Multivariate pattern
analysis (MVPA) was used to train a classifier by providing it with
patterns of activity in regions of interest along with their labels. (4)
The trained classifier was fed a new pattern of activity it had not
been trained on to predict the label that ought to be assigned to the
pattern. (5) The predicted label was verified as a match with the
actual label or not. (6) Steps 3–5 were repeated multiple times to
determine the accuracy of the classifier. (7) Finally, statistical sig-
nificance of classification accuracy was determined using nonpara-
metric permutation tests.

GLMs for MVPA input
We first conducted separate GLM analyses on the preprocessed imaging
data for each task to generate input for the multivariate analyses
described below. All models were estimated using FSL FEAT (fMRI
Expert Analysis Tool; Woolrich et al., 2001).

GLM Taste. GLM Taste for the taste rating task included three types
of regressors. (1) Onsets for valid trials (participants responded before
the response window ended) were specified by separate regressors. (2)
Onsets for timing of the button presses (valid trial onsets plus reaction
times) were specified by a single regressor. (3) Onsets for missed trials
(participants did not respond within the response window) were speci-
fied by a single regressor. On average, HCs had 75.26 1.2 valid taste rat-
ing trials, and ANs had 74.0 6 4.2 valid taste rating trials (of 76 total).
The two groups had a similar number of valid taste trials (t(39) = 1.35,
p = 0.184).

GLM Health. GLM Health for the health rating task included three
types of regressors. (1) Onsets for valid trials (participants responded
before the response window ended) were specified by separate regres-
sors. (2) Onsets for timing of the button presses (valid trial onsets plus
reaction times) were specified by a single regressor. (3) Onsets for missed
trials (participants did not respond within the response window) were
specified by a single regressor. On average, HCs had 75.6 6 0.6 valid
health rating trials and ANs had 74.4 6 2.0 valid health rating trials (of
76 total). The number of valid health trials differed significantly between
groups (t(39) = 2.60, p = 0.013).

GLM Choice. GLM Choice for the food choice task included three
types of regressors. (1) Onsets for valid trials (participants responded
before the response window ended) were specified by separate regres-
sors. (2) Onsets for timing of the button presses (valid trial onsets plus
reaction times) were specified by a single regressor, (3) Onsets for missed
trials (participants did not respond within the response window) were
specified by a single regressor. There were on average 75.4 6 1.2 valid
food choice trials for HCs and 74.3 6 1.9 valid food choice trials for
ANs (of 76 total). The number of valid food choice trials differed
between groups (t(39) = 2.35, p = 0.024).

GLM regressors. For all three GLMs, regressors of type (1) were mod-
eled with a boxcar with a duration equal to the trial duration (reaction
time), regressor (2) was modeled with a d function, and regressor (3)
was modeled with a fixed boxcar with a duration equal to that of the
response window (4 s). Confound regressors included three translation
parameters (in the x, y, and z cardinal planes) and three rotation param-
eters. As noted in Foerde et al. (2015), quality control analyses indicated
that discarding four volumes was insufficient to allow for magnetic field
equilibration, so we also included a confound regressor to remove the
effects of the first volume by adding a regressor with a 1 for the first vol-
ume and 0s elsewhere. No spatial smoothing was applied. All regressors
were entered into the first level analysis and all (but the added confound
regressors) were convolved with a canonical double g hemodynamic
response function. The models were estimated separately for each partic-
ipant. The parameter estimates for valid trials (regressors of type 1) were
used for subsequent multivariate analyses (Fig. 2A).

Multivariate data analysis: within-task classification
Taste classification. Decoding analyses were conducted to examine

whether taste attribute information was represented in fMRI response
patterns in the lOFC and mOFC. A two-class support vector machine
classifier was trained separately for each participant on patterns of neural
activity during taste ratings. This analysis was conducted using the
PyMVPA toolbox with the trade-off parameter between margin width
and number of support vectors, C = 1 (Hanke et al., 2009).

Definition of features for taste classification. The neural activity pat-
terns used as classification samples were raw parameter estimates for the
effect of valid rating trials on BOLD (regressors of type 1 from GLM
Taste, described above). The raw parameter estimate values from voxels
within each region of interest (see ROI definitions above) were the fea-
tures used to train taste classifiers for each participant (Fig. 2A,D).

Definition of classes for taste classification. To maximize the number
of trials that could be used during training and ensure a balanced num-
ber of classification samples in each class, a median split was performed
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on the taste ratings (Fig. 2B). The median taste rating was calculated
separately for each participant. Median taste ratings were on average
3.95 6 0.59 for HCs and 2.90 6 0.83 for ANs (Fig. 1A). The group-
level medians differed significantly between groups (t(39) = 4.71, p ,
0.0001). Foods rated below the participant’s median rating were
assigned to the low taste class. Foods rated above the participant’s me-
dian rating were assigned to the high taste class. Foods with the me-
dian rating value were assigned to the low or high taste class
depending on which assignment minimized the difference in the num-
ber of trials between classes. For HCs, taste ratings were skewed to-
ward the good tasting end of the rating scale, raising concerns that the
definitions of high/low taste classes may not have been suitable for
participants with skewed taste rating distributions (Fig. 1A). For 10 of
21 HC individuals, the high taste class only consisted of foods that had
the maximum rating of five. For these individuals, classifiers were
trained to distinguish good-tasting foods from somewhat good-, neu-
tral-, somewhat bad-, and bad- tasting foods. Although somewhat
good-tasting items were placed in the low taste class, cross-validation
accuracies were not poorer for HC participants with a median taste
rating of five. Instead, a permutation test showed that across ROIs
(lOFC and mOFC), cross-validation accuracies for these participants
outperformed cross-validation accuracies for participants with lower
median taste ratings (p = 0.001). Despite many skewed taste rating

distributions among HC participants, defining high/low taste classes
using a median split produced separable neural activity patterns.

Cross-validation procedure for taste classification. Classifier training
and testing were performed using a 4-fold cross-validation procedure
(Fig. 2D). On each iteration of the cross-validation procedure, the classi-
fiers were trained on three-fourths of taste rating trials. To determine
whether the patterns of activity input to the classifiers contained infor-
mation about taste, we tested whether the trained classifiers could accu-
rately classify each left-out activity pattern from the remaining one-
fourth of trials as being high/low in taste. The samples of data used in
the left-out partition on each fold were unique and randomly selected.
Mean accuracy scores across folds were calculated for each participant
and then averaged across participants.

Determining statistical significance for taste classification. To deter-
mine whether taste attribute information was represented in the lOFC
and mOFC, the statistical significance of the cross-validation accuracies
was tested using permutation tests; the class labels of the trials in the
training set were shuffled, 4-fold cross-validation was performed, and
cross-validation scores were averaged across participants. This proce-
dure was repeated 1000 times to generate a null distribution of mean
cross-validation accuracies. For all permutation tests, p values were the
proportion of permuted cross-validation accuracies in the null distribu-
tion greater than the cross-validation accuracies of interest. Mean cross-

Figure 2. Multivariate pattern analysis approach. A, Standard GLM analyses were conducted to extract BOLD activity patterns from ROIs from each trial of each task. Three-dimensional activ-
ity patterns were transformed into vectors of voxel activity, which constituted the features used in subsequent classification analyses. B, Each trial was assigned a class label. Median splits on
taste ratings were conducted for each participant and used to assign each taste rating trial to a high-taste class or a low-taste class. Each choice trial was then assigned the high/low-taste label
of the chosen food. The same procedure was followed to assign health class labels to health rating trials and choice trials. C, For within-task classification of taste, the taste rating trials were
split into four partitions. Three folds were used for classifier training, and one fold was left out for classifier testing. The same steps were taken for health rating trials. D, For within-task classi-
fication of taste, classifiers were trained on labeled activity patterns from three folds and tested on activity patterns from the left-out fold. The predicted high/low-taste label of taste classifiers
for each test trial was compared with actual test trial labels. Classification accuracy for the test fold was defined as mean accuracy across test trials in the corresponding fold. This procedure
was repeated three times with a different test fold on each iteration of the cross-validation procedure. Taste classification accuracy was defined as mean classification accuracy across test folds.
Separate taste classifiers were trained and tested for each participant, and classification accuracy was averaged across participants in the HC and AN groups. The same procedure was performed
for within-task classification of health, except health rating trials and labels were used instead of taste rating trials and labels. E, The taste classifiers for cross-task classification of taste were
trained on labeled activity patterns from all taste rating trials and tested on activity patterns from all choice trials. These classifiers predicted the level of taste evidence in the activity pattern of
each choice trial. A linear regression model was run to test the relationship between taste classifier evidence and choice preferences on trials in which the trial-unique item was tasty (taste
rating.3). To validate the cross-task classification approach, the continuous measure of taste classifier evidence was converted to a binary score and compared with the high/low-taste label
of the chosen food. Cross-task accuracy was defined as mean accuracy in predicting the taste label of the chosen food. Separate taste classifiers were trained and tested for each participant.
The same procedures were performed for cross-task classification of health, except health rating trials and labels were used instead of taste rating trials and labels.
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validation accuracies were considered signifi-
cant if they were greater than the 95th percen-
tile of the null distribution.

The statistical significance of differences in
cross-validation accuracies between groups
(HC and AN) and ROIs (lOFC and mOFC) was
also tested using permutation tests. A null dis-
tribution for group differences was generated
by computing group differences 1000 times af-
ter shuffling the group labels of cross-validation
scores calculated for each participant. The null
distribution for ROI differences was generated
similarly, but with shuffled region labels instead
of shuffled group labels, and p values were cal-
culated as described above.

Health classification. To test whether health
attribute information could be decoded from
fMRI response patterns in the lOFC and
mOFC, the procedures described for taste clas-
sification were followed. Any differences in pro-
cedure are detailed below.

Definition of features for health classifica-
tion. The procedure used to extract neural ac-
tivity patterns for health classification was
identical to the procedure for taste classifica-
tion, except that raw parameter estimates for
the effect of valid rating trials on BOLD were from regressors of type 1
from GLMHealth (Fig. 2A).

Definition of classes for health classification. Median health ratings
were calculated separately for each participant (group-level median
health ratings: HC = 3.19 6 0.60, AN = 2.60 6 0.66; Fig. 1B). The
group-level medians differed significantly between groups (t(39) = 3.05,
p = 0.004). Foods rated below the participant’s median rating were
assigned to the low health class. Foods rated above the participant’s me-
dian rating were assigned to the high health class. Foods with the median
rating value were assigned to the low or high health class depending on
which assignment minimized the difference in the number of trials
between classes. The suitability of the low and high class assignments
was not assessed here because the health ratings, unlike the taste ratings,
were fairly evenly distributed in both groups (Fig. 1B).

Saturation classification. Control analyses based on decoding of
objective visual information were undertaken to evaluate the classifica-
tion approach (Suzuki et al., 2017). The analysis steps were identical to
those performed for taste and health within-task classification, except for
the ROI used. Any deviations in procedures are noted below.

Definition of features for saturation classification. The procedure for
extracting features was identical to that used for taste and health classifi-
cation, except these features were extracted from V1.

Definition of classes for saturation classification. The saturation of
each pixel of each image was extracted using the rgb2hsv function in
MATLAB. The mean saturation across pixels for each image was used to
define high and low saturation labels according to a median split. This analysis
was conducted separately for neural activity during the taste and health
ratings.

Cross-validation procedure for saturation classification. The cross-
validation procedure for taste and health classification was also per-
formed for saturation decoding from patterns of neural activity during
the taste and health ratings.

Determining statistical signifiance for saturation classification.
Permutation tests as described for the taste and health classification analy-
ses were also conducted to assess the statistical significance of saturation
decoding. The 95th percentiles were calculated from the resulting taste and
health null distributions, and p values were calculated as described above.

Exploratory searchlight analyses. To examine whether brain regions
other than the lOFC and the mOFC contain information about taste and
health, we conducted exploratory searchlight analyses. The searchlight
analyses were conducted with a searchlight diameter of five voxels (i.e.,
15 mm) and 4-fold cross-validation using PyMVPA (Hanke et al., 2009).
The resulting searchlight maps were spatially smoothed with a

6 mm full-width at half-maximum (FWHM) Gaussian kernel. To assess
the statistical significance of the searchlight maps and to compare the
searchlight maps for HCs and ANs, we used a nonparametric two-sam-
ple unpaired t test against zero and corrected for multiple comparisons
using threshold-free cluster enhancement with 5000 permutations.
These statistical tests were performed using the FSL tool randomise
(Winkler et al., 2014). As a control, we also conducted searchlight analy-
ses of saturation, following the same procedure above.

Multivariate data analysis: cross-task classification of taste and health
during the choice phase

Cross-task classification. Once it was determined that taste and health
attribute information could be decoded from neural activity patterns in
the lOFC and the mOFC, we examined whether neural representations of
taste and health attributes were evident in fMRI responses during the
choice phase. This classification analysis was conducted using scikit-learn
with the regularization parameter C = 1 (Pedregosa et al., 2011).

Definition of features. There were no differences between the lOFC
and mOFC in the results of the taste and health decoding analyses, and
subsequent analyses involving the choice task were conducted on the
combined OFC ROI (Fig. 3A,B). Separate taste and health classifiers
were trained on all valid taste and health trials for each participant, and
the classifiers were tested on raw parameter estimates for the effect of
valid choice trials on BOLD (regressors of type 1 from GLM Choice
described above; Fig. 2E).

Cross-task classification output. For each choice task trial, the classi-
fiers output a classifier evidence score between 0 and 1, where a score
,0.5 indicated evidence of low taste/health, and a score .0.5 indicated
evidence of high taste/health (Fig. 2E). The classifier evidence scores
were obtained from the predict_proba function from scikit-learn
(Pedregosa et al., 2011).

Predicting choice ratings from taste and health brain patterns. To
examine whether classifier evidence of taste/health information was
related to participants’ choices, we ran mixed-effects linear regression
models testing the three-way interaction among taste/health classifier
evidence scores (continuous), participant group (HC was coded as 0,
and AN was coded as 1), and the binarized tastiness/healthiness of the
trial-unique item (trials with tasty/healthy trial-unique items (taste/
health rating.3) were coded as 0, and trials with trial-unique items that
were not tasty/healthy (taste/health rating �3) were coded as 1) on
choice ratings (1–5, with 1 indicating a strong preference for the refer-
ence item on the left, 3 indicating no preference, and 5 indicating a
strong preference for the trial-unique item on the right). The binarized
tastiness and healthiness of the trial-unique item were included in the

Figure 3. The OFC represents information about tastiness and healthiness. A, Mean within-task cross-validation accuracy
for decoding of tastiness from the lOFC (left) and mOFC (right) for HCs (green) and ANs (purple). There were no differences
between groups (p = 0.21) or subregions (p = 0.76). B, Mean within-task cross-validation accuracy for decoding of healthi-
ness from the lOFC (left) and mOFC (right) for HCs and ANs. Within-task cross-validation accuracies did not differ between
groups (p = 0.10) or subregions (p = 0.33). C, Mean cross-validation accuracy for decoding of saturation in V1 from patterns
of activity during taste ratings. Similar results were obtained for decoding of saturation from health-related patterns of activ-
ity in V1. There were no differences between groups in saturation decoding (from taste rating neural activity, p = 0.20; from
health rating neural activity, p = 0.42). Gray dashed lines indicate chance performance. Violin plots depict the null distribu-
tions obtained from permutation tests for each group. The cross-validation accuracies were all greater than the 95th percen-
tiles of the null distributions (all p values � 0.005). Anatomically defined regions of interest (lOFC, mOFC, V1) are
highlighted in blue in the brain images below each subplot.
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taste and health models, respectively, to account for the assumption that
choice ratings would differ depending on whether the trial-unique item
was tastier/healthier than the neutral reference item. More specifically, if
participants’ choices were driven by neural evidence of taste, taste classi-
fier evidence should only be positively related to choice ratings when the
trial-unique item was tastier than the reference item. Similarly, if choices
were driven by neural evidence of health, there should only be a positive
relationship between classifier evidence of health and choice ratings
when the trial-unique item was healthier than the reference item. In
both models, we included a random intercept and random slope for
each participant.

Definition of classes for cross-task accuracy. During the choice task,
two food images were presented simultaneously (Fig. 1C), leaving ambi-
guity about how the images were represented in the neural response. In
the choice models relating classifier evidence to behavior, we assumed
that the chosen item was more saliently represented than the unchosen
item in the neural response and labeled the choice trials with the high/
low taste/health of the chosen items (Fig. 2E). The alternative possibility
that the trial-specific item (i.e., item on the right) was more saliently rep-
resented than the reference item (i.e., item on the left, which was the
same on every trial) during each choice trial was also tested. Here, the
choice trials were labeled with the high/low taste/health of the trial-spe-
cific items. We also verified that inclusion of the reference item on every
trial did not induce novelty preferences over time in the choice phase by
testing whether trial number influenced choices for the trial-unique
option (no main effect of trial number: odds ratio (OR) = 0.997, 95%
confidence interval (CI) = [0.992, 1.002], p = 0.264; no interaction
between trial number and group: OR = 1.00, 95% CI = [0.995, 1.009],
p = 0.611).

After removing choice trials with a neutral choice rating, on which
neither the reference nor the trial-specific item was selected, and trials
on which the taste rating of the trial-specific item was not provided,
there were 69.9 6 4.9 choice trials for HCs and 60.8 6 8.1 choice trials
for ANs (t(39) = 4.39, p , 0.0001). The number of choice trials with
health ratings for the trial-specific items and nonneutral choice ratings
was 70.3 6 4.7 for HCs and 61.4 6 8.6 for ANs (t(39) = 4.15, p ,
0.0002).

Cross-task accuracy calculation. Classifier evidence scores were con-
verted to binary predictions (scores of,0.5 to 0; scores of�0.5 to 1; Fig.
2E) and compared with the high/low taste/health label of the chosen
item, as determined by a median split (Fig. 2B). To examine whether
mean cross-task classification accuracy across participants for each
group was significantly above chance performance (50%), we used one-
tailed one-sample t tests. Cross-task accuracies calculated using the rat-
ings of the chosen items and trial-specific items were compared in a
mixed-effects linear regression model in R (Bates et al., 2015).

Data availability
Analysis code and outputs are available at https://github.com/alicexue/
FCT_MVPA.

Results
Participant characteristics
The mean age of the HC group was 22.7 6 3.1 years, and the
mean age of the AN group was 26.46 6.5 years. Age differed sig-
nificantly between groups (t(39) = �2.30, p = 0.03). The HC
group had a mean BMI of 21.5 6 1.9, and the AN group had a
mean BMI of 15.7 6 2.1. BMI differed significantly between
groups (t(39) = 9.19, p, 0.0001).

Representations of tastiness and healthiness in the OFC
Neural representations in the OFC reflect information about tast-
iness and healthiness in both healthy controls and patients with
anorexia nervosa
To test whether activity patterns in the OFC reflect high/low
taste and health attribute ratings, we trained classifiers to decode
high/low taste ratings from brain activity during evaluation of

the tastiness of foods and high/low health ratings from brain ac-
tivity during evaluation of the healthiness of foods. In both
groups, taste attribute information could be decoded from the
OFC (Fig. 3A; all p values� 0.001). The HC null distribution for
taste decoding was higher than the AN null distribution. This
effect appeared to be driven by HC participants for whom the
high taste rating class solely included foods with the highest pos-
sible rating of five. We found no differences in decoding accu-
racy, however, between groups (p = 0.21) or subregions of the
OFC (p = 0.76). Similarly, health attribute information could be
decoded from the OFC in both HCs and ANs (Fig. 3B; all p val-
ues � 0.003), again with no differences between groups (p =
0.10) or subregions (p = 0.33). Permutation tests indicated that
all classification scores were significantly above chance level, and
the magnitude of scores was similar to the range of scores
reported in a study that used the same methods (Suzuki et al.,
2017). Furthermore, a control analysis decoding objective visual
information (saturation) from V1 resulted in mean cross-valida-
tion scores that fell in the same range (Fig. 3C).

These findings extend prior work showing that the OFC is
involved in the evaluation of taste and health attribute informa-
tion in healthy individuals (Hare et al., 2009, 2011; Londerée
and Wagner, 2020) by demonstrating that taste and health at-
tribute ratings could be decoded from neural activity patterns.
Additionally, these basic attributes of food could be decoded
among individuals with AN, who make very different food
decisions.

Neural representations of tastiness and healthiness are differen-
tially distributed in healthy controls and patients with anorexia
nervosa
The representation of tastiness and healthiness throughout the
brain in HCs and ANs was examined in exploratory whole-brain
searchlight analyses (Fig. 4). Searchlight maps and tables listing
significant brain regions can also be viewed on NeuroVault
(https://neurovault.org/collections/MHPZTYJS/). Taste attribute
information was decodable frommore brain regions among HCs
compared with ANs, and tastiness decoding in HCs outper-
formed tastiness decoding in ANs in several regions. The lOFC
and mOFC were included among the regions from which tasti-
ness decoding in HCs outperformed tastiness decoding in ANs.
The distribution of above-chance accuracy for healthiness decod-
ing across the brain did not differ significantly between groups.
These analyses suggest that outside the OFC, there are differen-
ces between groups in the decodability of tastiness information
but not healthiness information.

Relationship between neural representations of tastiness/
healthiness and choice behavior
Neural representations of health are more strongly related to the
magnitude of choice preferences in patients with anorexia nerv-
osa than in healthy controls
Participants provided continuous responses in the behavioral
choice task indicating how much they preferred to eat the refer-
ence item (i.e., item neutral in taste and health, the same on every
trial, and presented on the left) or the trial-unique item (i.e., item
on the right; Fig. 1C). We sought to examine the extent to which
neural evidence of taste/health attribute information in the OFC
was related to the magnitude of food choice preferences by enter-
ing the continuous choice responses into mixed-effects linear
regression models. In these models, we included a binary factor
indicating whether the trial-unique item was tasty/healthy (see
above, Predicting choice ratings from taste and health brain
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patterns) to account for the assumption that choice ratings
would depend on whether the trial-unique item was tastier/
healthier than the neutral reference item.

Greater taste classifier evidence in the OFC in HCs was not
associated with a stronger preference for tasty trial-unique items
(no main effect of classifier evidence; Fig. 5A; Table 1), and the
relationship between taste classifier evidence and choice prefer-
ences did not differ between groups (no interaction between clas-
sifier evidence and group; Fig. 5A; Table 1).

There was a stronger positive relationship between health
classifier evidence in the OFC and choice preferences for ANs
compared with HCs on trials with healthy trial-unique items
(significant interaction between classifier evidence and group;
Fig. 5B; Table 1). Health classifier evidence in the OFC was not
related to a stronger preference for healthy trial-unique items in
HCs (no main effect of classifier evidence; Fig. 5B; Table 1).
These findings provide support for the idea that the OFC plays
an important role in the overconsideration of health information
during maladaptive decision-making.

Control analyses to validate cross-task classification
We sought to establish that taste/health classifier evidence was a
meaningful measure to assess during the choice phase as partici-
pants were not instructed to consider tastiness or healthiness
when making their choices, and participants viewed two items
on each trial of the choice task and only one item on each trial of
the rating tasks. Because the output of the cross-task classifiers
for each choice trial was a continuous measure of evidence of
taste/health, there was ambiguity about which item this evidence
was reflective of. To assess the validity of the cross-task classifica-
tion approach, we tested whether the level of classifier evidence
on each trial was reflective of the label of the chosen food (our
assumption) or, alternatively, the label of the trial-unique food,
neither of which was not known to the classifiers (Fig. 2E).

Cross-task accuracy for the tastiness of the chosen food was
defined as the proportion of trials on which the high/low level of
taste classifier evidence matched the high/low taste label of the

chosen food. Note that the chosen food could have been the ref-
erence food (i.e., the same item always presented on the left) or
the trial-unique food (i.e., the item on the right). Cross-task clas-
sification accuracy for the tastiness of the chosen food was signif-
icantly above chance for HCs (t(20) = 5.27, p , 0.0001), but not
ANs (t(19) = 0.53, p = 0.302; Fig. 5C). Similarly, cross-task accu-
racy for the healthiness of the chosen food was defined as the
proportion of trials in which the high/low level of health classifier
evidence matched the high/low health label of the chosen food.
Cross-task classification accuracy for the healthiness of the cho-
sen food was significantly above chance for both HCs (t(20) =
2.56, p = 0.009) and ANs (t(19) = 2.44, p = 0.012; Fig. 5D).

We also tested the alternative possibility that taste/health clas-
sifier evidence from patterns of neural activity during choices
reflected attributes of the trial-specific items more so than those
of the chosen items. Cross-task classification of the tastiness and
healthiness of the chosen items outperformed cross-task classifi-
cation of the tastiness and healthiness of the trial-specific items
(main effect of chosen/trial-specific item on cross-task accuracy:
b = 6.01, 95% CI = [1.22, 10.79], p = 0.015). Because trial-spe-
cific items were always presented on the right-hand side of the
screen, this result also suggests that the classifiers were not sim-
ply decoding leftward or rightward responses. Although the
order of the rating scales was counterbalanced across partici-
pants, we further assessed the possibility of a left/right response
confound by relating classifier evidence to the participants’
choices for the item on the right-hand side of the screen.
Classifier evidence of taste did not predict choices for the item
on the right side of the screen (no main effect of classifier evi-
dence: OR = 2.28, 95% CI = [0.65, 8.03], p = 0.20), and this rela-
tionship did not differ between groups (no interaction: OR =
0.20, 95% CI = [0.03, 1.25], p = 0.09). Similarly, classifier evi-
dence of health did not predict choices for the item on the right
side of the screen (no main effect of classifier evidence: OR =
0.96, 95% CI = [0.13, 7.10], p = 0.96), and this relationship did
not differ between groups (no interaction: OR = 1.25, 95% CI =
[0.05, 28.38], p = 0.89). Together, these findings suggest that

Figure 4. Whole-brain searchlight maps for tastiness and healthiness decoding. A–C, Whole-brain searchlight maps for within-task taste attribute decoding (A), within-task health attribute
decoding (B), and saturation decoding from the taste rating task (C). Decoding results for HCs are displayed below the green column heading. Decoding results for ANs are displayed below the
purple column heading. Maps depicting where decoding accuracy in HCs was greater than decoding accuracy in ANs are shown below the brown column heading. Coordinates are reported in
MNI152 space. Color bars indicate statistical significance.
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attributes of the chosen food are reflected in the measure of clas-
sifier evidence and support the validity of the cross-task classifi-
cation approach.

Discussion
The current study examined representations of key food-related
attributes—taste and health—in the OFC, and the role of these
representations in food choice. Taste and health attribute infor-
mation were represented in the OFC not only among healthy
individuals, but also among patients with AN. The latter rou-
tinely make very different and maladaptive food choices com-
pared with HCs (Hadigan et al., 2000; Steinglass et al., 2015;
Schebendach et al., 2019). Notably, information about subjective
ratings of health in the OFC was a better indicator of the magni-
tude of choice preferences among individuals with AN than
HCs. These findings demonstrate that representations of health
in the OFC are differentially related to normative and maladap-
tive decisions about food.

Neuroimaging studies investigating the OFC in AN have
focused primarily on structural alterations. Higher gray matter
volume in the mOFC among patients with AN relative to that of
HCs (Frank et al., 2013; Lavagnino et al., 2018) raises the ques-
tion of whether informational content in this region differs
between groups. Restrictive eating among patients with AN
could potentially result from amplified representations of health
attribute information or diminished representations of taste at-
tribute information. In our ROI-based analyses, there were no
differences between HCs and ANs in the decodability of either
type of information from the OFC. In a whole-brain searchlight

analysis and consistent with previous
findings, tastiness and healthiness were
decodable from many brain regions
other than the OFC (Suzuki et al., 2017;
Avery et al., 2021). The role of these
other brain regions in representing
food-related attributes and choices
about food is not well understood and
should be investigated. Furthermore,
tastiness was significantly more decod-
able from several brain regions among
HCs compared with ANs, including the
OFC. This discrepancy with the region of
interest analyses is attributed to the strin-
gency of familywise error correction for
multiple comparisons in whole-brain
analyses. Diminished representations of
the tastiness of foods in ANs across the
brain extend prior work showing weaker
representations of gustatory information
in this clinical population (Frank et al.,
2016). Together, these findings suggest
that more attention should be devoted to
understanding whether and how weak
neural representations of directly experi-
enced taste qualities translate to weak
representations of inferred tastiness in
AN.

Converging evidence suggests that
informational content in the OFC dif-
fers along the mediolateral axis. More
specifically, different OFC subregions
are thought to have distinct roles in
supporting value-based decisions; the

lOFC encodes identity-specific attributes, and the mOFC enco-
des general value (Howard et al., 2015; Suzuki et al., 2017;
Vaidya and Fellows, 2020; Howard and Kahnt, 2021). Although
these findings may suggest that taste and health attributes are
selectively represented in the lOFC, we did not find differences
between OFC subregions in decoding accuracy for taste or health
attribute information in HCs. Among patients with AN, there
was a similar pattern of results. Taste and health attributes may
have comparable representations in these OFC subregions
because they each encompass the values of a wide array of food
characteristics (Lloyd et al., 2020). Unlike specific nutritive
attributes (Suzuki et al., 2017), or the sweet and savory qualities
of foods (Howard et al., 2015), taste and health attributes may be
invariably represented in value signals in both the lOFC and the
mOFC (Hare et al., 2014; Lloyd et al., 2020). However, our ability
to address these questions is limited because the current study
was not designed to probe differences in informational content
in different subregions of the OFC.

Here, we used multivariate pattern analysis techniques to
assess whether the diminished influence of taste attributes and
enhanced influence of health attributes on food choices among
patients with AN are related to patterns of neural activity in the
OFC. Previous univariate analyses of this dataset suggested that
taste representations in the vmPFC influence choices in HCs,
whereas health representations in the same region influence
choices in ANs (Foerde et al., 2015). Contrary to our expecta-
tions, we did not find that neural evidence of taste attribute in-
formation in the OFC was related to a stronger preference for
tasty items in normative decision-making. This could potentially

Figure 5. Health classifier evidence in the OFC was related to the magnitude of choice preferences in patients with anorexia
nervosa. A, On trials with tasty trial-unique items (taste rating.3), taste classifier evidence was not related to HC participants’
preference for the trial-unique option. The relationship between taste classifier evidence and choice preferences did not differ
between HCs and ANs (Table 1). B, On trials with healthy trial-unique items (health rating.3), health classifier evidence and
choice preferences were more strongly related for ANs compared with HCs (Table 1). Plots in A and B depict mean choice ratings
across participants for binned classifier evidence. Error bars indicate SEM. C, Cross-task accuracy for the taste of the chosen item
was significantly above chance for HCs (in green; t(20) = 5.27, p, 0.0001) but not ANs (in purple; t(19) = 0.53, p = 0.302). D,
Cross-task accuracy for the health of the chosen item was significantly above chance for HCs and ANs (HCs: t(20) = 2.56, p =
0.009; ANs: t(19) = 2.44, p = 0.012). Error bars in C and D indicate SEM. Gray dashed lines in C and D indicate chance perform-
ance. **p, 0.001, *p, 0.05.
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be explained by the skewed distribution of taste ratings among
healthy individuals. Ten of 21 HC participants had a high-taste
class that only included foods with a rating equal to the maxi-
mum rating of five. Lower levels of taste classifier evidence for
these HC participants could be indicative of representations of
tastiness that correspond to a rating of four (somewhat tasty).
This reduced sensitivity to tastiness may explain why classifier
evidence of taste among HCs did not predict the magnitude of
their choice preferences. Future studies that employ food stimu-
lus sets with more normally distributed taste ratings among
participants may have more success in characterizing the contri-
bution of OFC representations of tastiness to choices in norma-
tive decision-making (Lloyd et al., 2020).

For health information, there was a stronger brain-behavior
relationship in ANs compared with HCs. Neural evidence of
health attribute information in patterns of activity in the OFC
was predictive of the magnitude of choice preferences made by
individuals with AN, suggesting that the OFC has a fundamental
role in using health information to guide food choices among
these patients. This complements behavioral findings that
patients with AN—more so than healthy individuals—consider
health more strongly in their food-related choices (Foerde et al.,
2015, 2020; Steinglass et al., 2015, 2016; Uniacke et al., 2020).
These findings point to an important role for the OFC in the
overconsideration of health information during maladaptive de-
cision-making in AN and complement previous work showing
that the vmPFC is related to the ability to exert executive control
and bias the influence of food-related attributes on choice in
healthy individuals (Hare et al., 2009; Maier et al., 2015).
Studying how health information is learned and encoded by
patients with AN may provide additional insights into the neural
mechanisms underlying maladaptive decision-making in this
disorder. The contribution of hippocampal-based memory sys-
tems to the retrieval of knowledge about elemental attributes of
foods during food valuation may be an interesting avenue of
future research (Barron et al., 2013; Tang et al., 2014; Bakkour et
al., 2019).

Whereas the encoding of subjective value in the OFC has
been well established (Levy and Glimcher, 2012), the process by
which value-based food choices are made remains disputed. One
prevailing theory posits that the OFC supports preference-based
decisions by integrating value-predictive attributes into an
abstract, common currency for comparison (Wallis, 2007;
O’Doherty et al., 2021). Alternatively, relevant attributes may be
directly compared in the OFC (Perkins and Rich, 2021).
Although the current study was not designed to test whether

information about food attributes is integrated or simply com-
pared, we found evidence of taste and health attribute represen-
tations in the OFC during choices among healthy individuals.
Future studies with tasks specifically designed to address these
theories, along with the cross-task multivariate analysis approach
taken here, may be able to elucidate (1) whether choice option
attributes, like healthiness, are compared during choice delibera-
tion and (2) whether these comparative processes support value
construction.

Studies of food choice that have assessed decision-making as
a function of tastiness and healthiness (Hare et al., 2009, 2011;
Foerde et al., 2015; Maier et al., 2015) generally assume that
weighted sums of these attributes are computed to guide deci-
sions. Here, the taste and health rating tasks were used to obtain
subjective ratings of these attributes (Hare et al., 2009, 2011;
Sullivan et al., 2015; Lloyd et al., 2020; Maier et al., 2020).
Although participants were instructed in the taste rating task to
only evaluate foods on taste, assessment of how good or bad dif-
ferent foods taste could potentially be thought of as similar to
value assignment, during which features other than palatability
are considered (Suzuki et al., 2017). Although participants were
not asked to report their interpretation of the taste rating task
instructions, we follow previous studies in conceiving of the tasti-
ness ratings as measurements of a single component of food
value (Hare et al., 2009, 2011; Maier et al., 2020).

Subjective value judgments, unlike judgments of tastiness, are
sensitive to personal goals and context. Among healthy individu-
als, value signals in the vmPFC are responsive to long-term die-
tary goals and cues to attend to the healthiness of foods (Hare et
al., 2009, 2011). The relationship between tastiness and value,
however, has been somewhat challenging to characterize in
healthy individuals, as previous findings indicate that drawing
attention to tastiness does not enhance the influence of this at-
tribute on choices or neural value signals (Hare et al., 2011;
Tusche and Hutcherson, 2018). In the study of decision-making
among individuals with AN, the distinction between these con-
cepts is particularly important to consider because this clinical
population is less influenced by tastiness in their food choices
(Foerde et al., 2015; Steinglass et al., 2015; Uniacke et al., 2020).
Contrary to our expectations, we did not find differences
between groups in the role of tastiness neural evidence in the
OFC in choice ratings. The mechanisms by which tastiness exerts
less influence on subjective value in AN thus remain a largely
unexplored field of inquiry. Future work studying whether tasti-
ness information is more strongly incorporated in OFC value
signals in obesity or addiction could provide insights into the

Table 1. The effects of classifier evidence and group on the magnitude of food preferences

Taste Health

Fixed effects b 95% CI p Value Fixed effects b 95% CI p Value

Classifier evidence 0.42 [�0.28, 1.11] 0.24 Classifier evidence �0.41 [�1.78, 0.95] 0.56
Group �0.38 [�1.07, 0.31] 0.28 Group �1.02 [�2.19, 0.14] 0.09
Trial-unique item was not tasty �1.68 [�2.06, �1.30] ,0.0001 Trial-unique item was not healthy �0.21 [�0.62, 0.20] 0.31
Classifier evidence � group �0.77 [�1.90, 0.35] 0.18 Classifier evidence � group 2.51 [0.29, 4.72] 0.03
Classifier evidence � trial-unique item was not tasty �0.26 [�1.09, 0.57] 0.54 Classifier evidence � trial-unique item was

not healthy
0.07 [�0.80, 0.93] 0.88

Group � trial-unique item was not tasty 0.56 [�0.03, 1.14] 0.06 Group � trial-unique item was not healthy 0.01 [�0.77, 0.79] 0.98
Classifier evidence � group � trial-unique
item was not tasty

�0.16 [�1.34, 1.01] 0.78 Classifier evidence � group � trial-unique
item was not healthy

�3.33 [�4.86, �1.81] ,0.0001

The relationship between taste/health classifier evidence and choice preferences. For the group variable, HC was coded as 0, and AN was coded as 1. In the taste model, the binarized tastiness of the trial-unique item was
coded as follows: Trials with tasty trial-unique items (taste rating.3) were coded as 0, and trials with trial-unique items that were not tasty (taste rating �3) were coded as 1. In the health model, the binarized healthiness
of the trial-unique item was coded as follows: Trials with healthy trial-unique items (health rating.3) were coded as 0, and trials with trial-unique items that were not healthy (health rating �3) were coded as 1.
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role of tastiness evaluation in subjective value computations
more generally. This line of research on the role of attribute con-
sideration in value-based decision-making may also benefit from
investigations of the evolution of value signals and attribute rep-
resentations in the OFC over the course of choice deliberation
(Sullivan et al., 2015; Motoki et al., 2018; Maier et al., 2020).

The present study was not specifically designed to undertake
the analyses presented here, and some limitations warrant con-
sideration. The distribution of taste ratings among HCs was
skewed relative to that of ANs, resulting in high/low-taste
food labels that did not capture the well-characterized
influence of taste on choices among HCs that was also pre-
viously observed in this sample (Foerde et al., 2015). This
did not appear to alter the decoding results presented here,
but future studies that seek to employ classification meth-
ods could specifically select stimulus sets to address such
concerns (https://osf.io/483mx/; Lloyd et al., 2020; https://
doi.org/10.7916/d8-497c-2724). It should be noted that the
magnitude of decoding accuracies should be interpreted
with caution because these measures can be influenced by
ROI size, degree of voxel smoothing, and the size of training
and test datasets, among other factors (Haynes, 2015). As is
the case in most decoding studies, the question of interest
concerned the prevalence of specific information in certain
ROIs. Nonparametric permutation tests, which provide
more valid population-level inference than t tests, revealed
that taste and health attribute information were decoded
from lOFC and mOFC significantly above chance (Allefeld
et al., 2016).

The results from the present study contribute to understand-
ing the valuation process undertaken during food choices and
provide insight into differences in the neural mechanisms that
support how information about food is used during decision-
making in healthy individuals and maladaptive decision-making
in patients with AN. These findings point to the importance and
complexity of health information in food choice in this eating
disorder. Recent advances in real-time fMRI neurofeedback tech-
nology or neuromodulation (e.g., repetitive transcranial mag-
netic stimulation) can perhaps be used in conjunction with
multivariate analysis methods as promising avenues for under-
standing the mechanisms underlying the use of health and taste
attributes to guide food choices in individuals with AN (Thut
and Pascual-Leone, 2010; Watanabe et al., 2017; Dalton et al.,
2020). Ultimately, the aim of this work would be to downgrade
the importance of health during food-related decisions among
these patients. The current findings indicate that food decisions
involve balancing different attributes of choice options (like
health and taste) and that overconsideration of one attribute
over others may cause disruptions in choice behavior and lead to
persistent maladaptive behavior.
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