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Abstract Many decisions are expressed as a preference for one item over another. When these items
are familiar, it is often assumed that the decision maker assigns a value to each of the items and chooses
the item with the highest value. These values may be imperfectly recalled, but are assumed to be stable
over the course of an interview or psychological experiment. Choices that are inconsistent with a stated
valuation are thought to occur because of unspecified noise that corrupts the neural representation of
value. Assuming that the noise is uncorrelated over time, the pattern of choices and response times in
value-based decisions are modeled within the framework of Bounded Evidence Accumulation (BEA),
similar to that used in perceptual decision-making. In BEA, noisy evidence samples accumulate over
time until the accumulated evidence for one of the options reaches a threshold. Here, we argue that
the assumption of temporally uncorrelated noise, while reasonable for perceptual decisions, is not
reasonable for value-based decisions. Subjective values depend on the internal state of the decision
maker, including their desires, needs, priorities, attentional state, and goals, which may change over
time. These internal states may change over time, or undergo revaluation, as will the subjective values.
We reasoned that these hypothetical value changes should be detectable in the pattern of choices made
over a sequence of decisions. We reanalyzed data from a well-studied task in which participants were
presented with pairs of snacks and asked to choose the one they preferred. Using a novel algorithm
(Reval), we show that the subjective value of the items changes significantly during a short experimental
session (about 1 hour). Values derived with Reval explain choice and response time better than explicitly
stated values. They also better explain the BOLD signal in the ventromedial prefrontal cortex, known
to represent the value of decision alternatives. Revaluation is also observed in a BEA model in which
successive evidence samples are not assumed to be independent. We argue that revaluation is a
consequence of the process by which values are constructed during deliberation to resolve preference
choices.

Introduction
A central idea in decision theory and economics is that each good can be assigned a scalar utility value
that reflects its desirability. The concept of utility, or subjective value, provides a common currency
for comparing dissimilar goods (e.g., pears and apples) such that decision-making can be reduced
to estimating the utility of each good and comparing them (von Neumann and Morgenstern, 1944;
Samuelson, 1937; Montague and Berns, 2002). The idea is supported by studies that have identified
neurons that correlate with the subjective value of alternatives in various brain structures, most notably
the ventromedial prefrontal cortex, and it is so pervasive that decisions based on preferences are often
referred to as "value-based decisions" (Kable and Glimcher, 2007; Kim et al., 2008; Padoa-Schioppa
and Assad, 2006).

Choice and response time (RT) in simple perceptual and mnemonic decisions are often modeled within
the framework of bounded evidence accumulation (BEA). The framework posits that evidence samples
for and against the different options are accumulated over time until the accumulated evidence for one of
the options reaches a threshold or bound (Ratcliff, 1978; Gold and Shadlen, 2007). A case in point is
the random dot motion (RDM) discrimination task, in which participants must decide whether randomly
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moving dots have net rightward or leftward motion, while the experimenter controls the proportion of
dots moving coherently in one direction, termed the motion strength (e.g., Gold and Shadlen, 2007).
BEA models explain the choice, RT, and confidence in the RDM task under the assumption that the rate
of accumulation, often termed the drift rate, depends on motion strength (van Den Berg et al., 2016;
Kiani et al., 2014). Value-based decisions have also been modeled within the framework of BEA. The
key assumption is that at any given time, decision-makers only have access to a noisy representation of
the subjective value of each item, and the drift rate depends on the difference between the subjective
values of the items (Krajbich et al., 2010; Thomas et al., 2019; Sepulveda et al., 2020; Bakkour et al.,
2019).

A condition that renders the BEA framework normative is that the noise corrupting the evidence samples is
independent, or equivalently, that the evidence samples are conditionally independent given the drift rate.
For example, in modeling the RDM and other perceptual decision making tasks, evidence samples are
assumed to be independent of each other, conditioned on motion strength and direction (e.g., Zylberberg
et al., 2016). This assumption is sensible because (i) the main source of stochasticity in perceptual
decision making is the noise affecting the sensory representation of the evidence, which has a short-lived
autocorrelation, and (ii) these decisions are often based on an evidence stream (e.g., a dynamic random
dot display) that provides conditionally independent samples, by design. The assumption of conditional
independence justifies the process of evidence accumulation, because accumulation (or averaging) can
only remove the noise components that are not shared by the evidence samples.

For value-based decisions, the assumption of conditional independence is questionable. Alternatives
often differ across multiple attributes (e.g., Busemeyer and Townsend, 1993; Tversky, 1977). For
example, when choosing between different snacks, they may differ in calories, healthiness, palatability,
and so on (Suzuki et al., 2017). The weight given to each attribute depends on the decision-maker’s
internal state (Noguchi and Stewart, 2018; Juechems and Summerfield, 2019). This internal state
includes desires, needs, priorities, attentional state and goals. We use the term mindset, or state of
mind, to refer to all of these internal influences on valuation. A mindset can be persistent. For example,
a famished decision-maker may prioritize the nutritional content of each food when making a choice.
Under less pressing circumstances, the salience of an attribute may be suggested by snack alternatives
themselves. For example, seeing French fries may make us aware that we crave something salty, and
saltiness becomes a relevant attribute informing the current decision and possibly future decisions too.
The examples illustrate how a decision-maker’s mindset can shift rapidly or meander, based on the
attributes in focus or the identity of the items under consideration (Shadlen and Shohamy, 2016; Stewart
et al., 2006). Importantly, mindset is dynamic. It can change abruptly, motivated by a thought in an earlier
trial or by interoception during deliberation (e.g., thirst). Unlike perceptual decision-making, where the
expectation of a sample of evidence is thought to be fixed, conditional on the stimulus, the expectation of
the evidence bearing on preference is itself potentially dynamic.

We sought to test the notion that the desirability of an item changes as a result of the deliberation that
leads to a choice. We hypothesized that if subjective values are dynamic, then value-based decisions
should exhibit serial dependencies when multiple decisions are made in a sequence. A choice provides
information not only about which option is preferred, but also about the decision maker’s mindset at
the moment of the choice (e.g., whether they prioritize satiation or palatability). Therefore, a choice is
informative about future choices because the decision maker’s mindset is likely to endure longer than a
single decision, or even multiple decisions.

We reanalyzed data from Bakkour et al. (2019). Participants were presented with pairs of snacks and
had to choose the one they preferred. This Food choice task has been used extensively to study the
sequential sampling process underlying value-based decisions (e.g., Krajbich et al., 2010). Crucially,
in the Bakkour et al. (2019) experiment, each item was presented multiple times, allowing us to infer
how preference for an item changes during a single experimental session. Using a novel algorithm we
call Reval, we show that the subjective value of items changed over the session. The revaluation was
replicated in a sequential sampling model in which successive samples of evidence are not assumed to
be conditionally independent. We argue that the revaluation process we observed reflects a process by
which the value of the alternatives is constructed during deliberation by querying memory and prospecting
for evidence that bears on desirability (Lichtenstein and Slovic, 2006; Johnson et al., 2007).
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Results
Food choice task
We re-examined data from a previous study in which 30 participants completed a food choice task
(Bakkour et al., 2019). In each trial, participants were shown a pair of snack images and had to choose
which one they would prefer to consume at the end of the study (Fig. 1A). Prior to the main experiment
(conducted in an MRI scanner), participants were asked to indicate their willingness to pay for each
snack item on a scale from 0 to US$3 (Fig. 1B). We refer to these explicitly reported values as e-values,
or 𝑣𝑒.
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Figure 1. Food choice task
(A) In the main task, participants were presented with pairs of snack items and asked to choose which one they would
prefer to consume at the end of the session. After making their choice, the chosen item was highlighted by a square
box for an additional 0.5 s. Each of the 30 participants completed 210 trials, with each item appearing 7 times during
the experiment. A subset of 60 item pairs were repeated once.
(B) In an initial ‘ratings’ task, participants were shown 60 individual appetizing snack items and asked to indicate how
much they would be willing to pay for each item using a monetary scale ranging from $0 to $3.
(C) Proportion of trials in which participants selected the right item as a function of the difference in value between the
right and left items (Δ𝑣𝑒). Proportions were first determined for each participant and then averaged across
participants. Error bars indicate the standard error of the mean (s.e.m.) across participants.
(D) Mean response time as a function of the difference in value between the right and left items. Error bars indicate
the s.e.m. across participants. Red curves in panels C-D are fits of a drift-diffusion model (DDM).

The data from Bakkour et al. (2019) replicate the behavior typically observed in the task. Both choice
and response time were systematically related to the difference in e-value, (Δ𝑣𝑒), between the right and
left items. Participants were more likely to choose the item to which they assigned a higher value during
the rating phase (p<0.0001; 0 ∶ 𝛽1 = 0; Eq. 2). They were also more likely to respond faster when the
absolute value of the difference between the items was greater (p<0.0001; 0 ∶ 𝛽1 = 0; Eq. 3).

The relationship between Δ𝑣𝑒, choice, and response time is well described by a bounded evidence
accumulation model (Krajbich et al., 2010; Bakkour et al., 2019). The solid lines in Fig. 1C-D illustrate
the fit of such a model in which the drift rate depends on Δ𝑣𝑒. Overall, the behavior of our participants in
the task is similar to that observed in other studies using the same task (e.g., Krajbich et al., 2010; Folke
et al., 2016; Sepulveda et al., 2020).

Limited power of explicit reports of value to explain binary choices
An intriguing aspect of the decision process in the food choice task is its highly stochastic nature. This
is evident from the shallowness of the choice function (Fig. 1C): participants chose the item with a
higher e-value in only 64% of the trials. This variability is typically attributed to unspecified noise when
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recalling item values from memory (e.g., Krajbich et al., 2010). An alternative explanation is rooted
in constructive value theories, which suggest that the value of each item is constructed, not retrieved,
during the decision process (Lichtenstein and Slovic, 2006; Shadlen and Shohamy, 2016; Johnson et al.,
2007). This construction process is sensitive to the context in which it is elicited (e.g., the identity of
items being compared), so the values reported during the valuation process may differ from those used
in the choice task. According to this idea, the apparently stochastic choice is a veridical reflection of the
constructed values.

If this were true, then the choice on any one cynosure trial—that is, the trial we are scrutinizing—would
be better explained by values inferred from the choices on the other trials than by the e-values. We
therefore compared two regression models that produce the log odds of the choice on each cynosure
trial. The first regression model uses the e-values plus a potential bias for the left or right item. The
second regression model includes one regression coefficient per item plus a left/right bias. It uses all the
other trials (except repetitions of the identical pair of items) to establish the weights. While this model
has more free parameters, the comparison is valid because we are using the models to predict the
choices made on trials that were not used for model fitting. The better model is the one that produces
larger log odds of the choice on the cynosure trial. As shown in Fig. 2, the second regression model is
superior.
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Figure 2. Individual choices are better explained by values inferred from the other trials than values reported
in the ratings task
Gray data points represent the total log-likelihood of each participant’s choices, given two types of predictions:
(abscissa) from a logistic regression, fit to the explicit values; (ordinate) from a procedure that infers the values based
on choices on the other trials. Predictions derived from the other trials is better in all but four participants. The red
markers were obtained using the same procedure, applied to choices simulated under the assumption that the
e-values are the true values of the items. It shows that the inferential procedure is not guaranteed to improve
predictions.

To ensure that this result is not produced artifactually from the algorithm, we performed the same analysis
on simulated data. We fit the experimentally observed choices using a logistic regression model with
Δ𝑣𝑒 and an offset as independent variables, and simulated the choices by sampling from Bernoulli
distributions with parameter, 𝑝, specified by the logistic function that best fit each participant’s choices
(i.e., weighted-coin flips). We repeated the model comparison using the simulated choices and found
that, contrary to what we observed in the experimental data, the model using explicit value reports is the
better predictor (Fig. 2, red).

Taken together, these analyses show that explicit value reports have limited power to predict choices,
which partially explains their apparent stochasticity. In the following sections, we elaborate on this
observation. Not only do the values used to make the binary choices differ from the e-values, they drift
apart during the experiment. We show that these changes arise through the deliberative process leading
to the preference decisions themselves.
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Preferences change over the course of the experiment
In the experiment, a subset of the 60 snack pairs were presented twice, in a random order within the
sequence of trials. These trials allow us to assess whether preferences change over the course of
a session. For these duplicated item pairs, we calculate the average number of times that the same
item was chosen on both presentations—which we refer to as the match probability. Participants were
more likely to select the same option when presentations of the same pair were closer in time (Fig. 3).
To assess the significance of this effect, we fit a logistic regression model using all pairs of trials with
identical stimuli to predict the probability that the same item would be chosen on both occasions. The
regression coefficient associated with the number of trials between repetitions was negative and highly
significant (p<0.0001; t-test, Eq. 8). It therefore follows that preferences are not fixed, not even over the
course of a single experimental session.
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Figure 3. Preferences change over time
Probability of making the same choice on the two trials with the same item pair, shown as a function of the difference
in trial number between them (Δtr). Trial pairs with identical items (N=1726) were sorted by Δtr, and the match
probabilities were smoothed with a boxcar function with a width of 100 observations.

Choice alternatives undergo revaluation
We propose a simple algorithm to characterize how preferences changed over the course of the session.
It assumes that on each decision, the value of the chosen item increases by an amount equal to 𝛿, and
the value of the unchosen item decreases by the same amount (Fig. 4A). We refer to the updated values
as r-values, or 𝑣𝑟, as opposed to the explicitly reported values (e-values).

Fig. 4B illustrates how the value of the items changes over the course of the session, for a given value of
𝛿, for three snack items. For example, while the item shown with the green curve is initially very valuable,
as indicated by its high initial rating, its value decreases over the course of the session each time it was
not selected.

We determined the degree of revaluation that best explained the participants’ choices. For each
participant, we find the value of 𝛿 that minimizes the deviance of a logistic regression model that uses
the r-values to fit the choices made on each trial,

logit[𝑝choice] = 𝛽0 + 𝛽1𝑣
(lef t)
𝑟 + 𝛽2𝑣

(right)
𝑟 , (1)

where 𝑝choice is the probability of choosing the item that was presented on the right. The r-values are
initialized to the explicitly reported values for all items, and they are updated by plus or minus 𝛿 when
an item is chosen or rejected, respectively. Importantly, the updated values only affect future decisions
involving the items.

Fig. 4C shows the deviance of the logistic regression model for a representative participant, as a function
of 𝛿. For this participant, the best explanation of the choices is obtained with a value of 𝛿 ≈ $0.15. We
fit the value of 𝛿 independently for each participant to minimize the deviance of the logistic regression
model fit to the choices. On average, each choice changed the value of the chosen and unchosen items
by $0.18 ± 0.016 (mean ± s.e.m., Fig. 4C, inset).
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Figure 4. Revaluation algorithm
(A) Schematic example of the revaluation algorithm applied to one decision. After a choice between items A and B,
the value of the chosen item is increased by 𝛿 and the value of the unchosen item is decreased by the same amount.
(B) Example of value changes due to revaluation, for three items, as a function of the presentation number within the
session. In the experiment, each item was presented 7 times. (C) For a representative participant, deviance of the
logistic regression model that uses the revalued values to explain the choices, for different values of 𝛿. The best fitting
value is ∼$0.15. The inset shows a histogram of the best-fitting 𝛿 values across participants.

The values derived from the Reval algorithm explain the choices better than the explicit value reports.
The choices are more sensitive to variation in Δ𝑣𝑟, evidenced by the steeper slope (Fig. 5A). Further,
when Δ𝑣𝑟 and Δ𝑣𝑒 are allowed to compete for the same binomial variance, the former explains away the
latter. This assertion is supported by a logistic regression model that incorporates both Δ𝑣𝑒 and Δ𝑣𝑟
as explanatory variables (Eq. 7). The coefficient associated with Δ𝑣𝑒 is not significantly different from
zero (p = 0.32, t-test; Eq. 7) while the one associated with Δ𝑣𝑟 remains positive and highly significant
(p<0.0001).

More surprisingly, Reval allows us to explain the response times better than the explicit value reports,
even though RTs were not used to establish the r-values. We used the r-values to fit a drift-diffusion
model to the single-trial choice and response time data, and compared this model with the one that was
fit using the e-values (Fig. 5A). To calculate the fraction of RT variance explained by each model, we
subtracted from each trial’s RT the models’ expectation, conditional on Δ𝑣𝑥 (with 𝑥 ∈ {𝑒, 𝑟}) and choice.
The model that relies on the r-values explains a larger fraction of variance in RT than the model that
relies on the e-values (Fig. S1). This indicates that the re-assignment of values following Reval improved
the capacity of a DDM to explain the response times.

The application of Reval revealed that some decisions that were initially considered difficult, because
Δ𝑣𝑒 was small, were actually easy, because Δ𝑣𝑟 was large, and vice versa. Grouping trials by the Δ𝑣𝑟
led to a wider range of mean RTs compared to when we grouped them by Δ𝑣𝑒 (Fig. 5A). The effect can
also be observed for individual participants. For each participant, we grouped trials into two categories
depending on whether the difference in value was less than or greater than the median difference. We
then calculated the mean RT for each of the two groups of trials. The difference in RT between the two
groups was greater when we grouped the trials using the r-values than when we used the e-values. This
implies the r-values were better than the e-values at assessing the difficulty of a decision as reflected in
the response time.

We verified that the improvement in fit was not just due to the additional free parameter (𝛿). To do this,
we again used simulated choices sampled from logistic regression models fit to the participants’ choices,
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Figure 5. Revaluation explains choice and RT better than explicit values
(A) Proportion of rightward choices (top) and mean response time (bottom) as function of the difference in r-value
between the two items. The red solid lines are fits of a drift-diffusion model that uses the r-values. The dashed line
corresponds to the fits of a DDM that uses the e-values (same as in Fig. 1C-D). Error bars indicate s.e.m. across
trials. Participants are more sensitive to r-values than e-values (top) and the r-values better explain the full range of
RTs (bottom). (B) Model-free, empirical support for the superiority of r-values in individual subjects. Data points
represent the difference in mean RTs between difficult and easy decisions. Positive values indicate that difficult
decisions take longer on average than easy ones. Difficult and easy are defined relative to the median of the absolute
value of Δ𝑣𝑒 (left) or Δ𝑣𝑟 (right). The lines connect the mean RTs of each participant. P-value is from a paired t-test.

as we did for Fig. 2. Because the choices are sampled from logistic functions fit to the choice data, they
lead to a psychometric function that is similar to that obtained with the experimental data. We reasoned
that if revaluation were an artifact of the analysis method, then applying the revaluation algorithm to
these simulated data should lead to values of 𝛿 and goodness of fit similar to those of the real data. To
the contrary, the optimal values of 𝛿 for the simulated data were close to zero (Fig. 6A), and we found
no difference in the RT median splits between e-values and r-values (Fig. 6B). This shows that the
improvements in fit quality due to Reval are neither guaranteed nor an artifact of the procedure.

Imperfect value reports do not explain revaluation away
The idea that a choice can induce a change in preference is certainly not new (Festinger, 1957). Choice-
induced preference change (CIPC) has been documented using a free-choice paradigm (Brehm, 1956),
whereby participants first rate several items, and then choose between pairs of items to which they have
assigned the same rating, and finally rate the items again. A robust finding is that items that were chosen
are given higher ratings and items that were not chosen are given lower ratings relative to pre-choice
ratings, leading to the interpretation that the act of choosing changes the preferences for the items under
comparison. However, it has been suggested that the CIPC demonstrated with the free-choice paradigm
can be explained as an artifact (Chen and Risen, 2010). Put simply, the initial report of value may be a
noisy rendering of the true latent value of the item. If two items, A and B, received the same rating but A
was chosen over B, then it is likely that the true value for item A is greater than for item B, not because
the act of choosing changes preferences, but because the choices are informative about the true values
of the items, which are unchanging.

We examined whether Reval could be explained by the same artifact. We considered the possibility that
the items’ valuation in the choice phase are static but potentially different from those reported in the
ratings phase. If the values are static, but different from those explicitly reported, then Reval could still
improve choice and RT predictions by revealing the true subjective value of the items.
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Figure 6. No revaluation in simulated data
(A) Histogram of the best-fitting revaluation update (𝛿) for data simulated by sampling choices from a logistic function
fit to the participants’ choices. The best-fitting 𝛿 values for the simulated choices are centered around 0. For
reference, we have also included a histogram of the 𝛿 values obtained from the fits to the participants’ data, showing
all positive values (gray).
(B) Similar to Fig. 5B, for the simulated data. The values obtained from Reval were no better than the explicit values
at explaining the RTs, as expected, since the 𝛿 values were ∼0 and thus 𝑣𝑟 ≈ 𝑣𝑒.

160 180 200 220 240 260
Deviance (Forward Reval)

160

180

200

220

240

260
D
ev
ia
nc
e
(B
ac
kw
ar
ds

R
ev
al
)

Ba
ck
wa
rd
be
tte
r

tha
n f
orw

ard

Fo
rw
ard

be
tte
r

tha
n b

ac
kw
ard

Figure 7. Reval is sensitive to trial order
Deviance obtained by applying Reval to the trials in the order in which they were completed (abscissa) and in the
reverse order (ordinate). Each point corresponds to a different participant. The deviance is greater (i.e., the fits are
worse) when Reval is applied in the reverse direction.

We reasoned that if values were static, the improvements we observed in the logistic fits when we applied
Reval should be the same regardless of how we ordered the trials before applying it. To test this, we
applied Reval in the direction in which the trials were presented in the experiment, and also in the reverse
direction (i.e., from the last trial to the first). If the values were static, then the quality of the fits should be
statistically identical in both cases. In contrast, we observed that the variance explained by Reval was
greater (i.e., the deviance was lower) when it was applied in the correct order than when it was applied
in the opposite order (Fig. 7; p<0.0001, paired t-test). This rules out the possibility that the values were
static.

Asymmetric value-updating for chosen and unchosen options
So far we have assumed that a choice increases the value of the chosen option by 𝛿 and decreases the
value of the unchosen option by the same amount. Here, we evaluate the possibility that the degree
of revaluation is different for the chosen and unchosen options. We fit a variant of the Reval algorithm
with two values of 𝛿, one for the chosen option (𝛿chosen) and one for the unchosen option (𝛿unchosen). Fig. 8
shows the values that best fit the data. Each point corresponds to one participant. It can be seen that
the degree of revaluation is greater for the chosen option than for the unchosen option. As we speculate
in the discussion, this result may be related to the unequal distribution of attention between the chosen
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and unchosen items (Krajbich et al., 2010).
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Figure 8. Stronger revaluation for the chosen than for the unchosen item
We fit a variant of the Reval algorithm that includes separate update values (𝛿s) for the chosen and unchosen options.
The best-fitting 𝛿 value for the chosen option (abscissa) is plotted against the best-fitting value for the unchosen
option (ordinate). Each data point corresponds to one participant. The increase in value for the chosen option is
greater than the decrease in value for the unchosen option (paired t-test).

Representation of revalued values in the ventromedial prefrontal cortex
Several brain areas, in particular the ventromedial prefrontal cortex (vmPFC), have been shown to
represent the value of decision alternatives during value-based decisions (Kennerley et al., 2009;
Plassmann et al., 2007; Bartra et al., 2013). Based on our finding that the r-values provide a better
explanation of the behavioral data than the e-values, we reasoned that the r-values might explain the
BOLD activity in these areas beyond that explained by the e-values. We included both the e-value and the
r-value of the chosen item in a whole-brain regression analysis of BOLD activity. This parameterization
reveals significant correlation of the BOLD signal in the vmPFC only with the r-value (Fig. 9 and Table S1),
providing additional evidence for revaluation, as capturing a meaningful aspect of the data, in the sense
that it accounts for the activity of brain areas known to reflect the value of the choice alternatives.

Revaluation in other datasets of the food-choice task
To assess the generality of our behavioral results, we applied Reval to other publicly available datasets.
All involve binary choices between food snacks, similar to Bakkour et al. (2019). We analyze data from
experiments reported in Folke et al. (2016) and from the two value-based decision tasks reported in
Sepulveda et al. (2020).

In all cases, Reval yields results similar to those observed in the data from Bakkour et al. (2019). The
values derived from Reval led to a better classification of choice difficulty than the explicit value reports
(Fig. 10). These results show the generality of the revaluation process and allow us to rule out the
possibility that the findings are specific to a particular dataset or laboratory.

Is revaluation a byproduct of deliberation?
We hypothesize that the sequential dependencies we identified with Reval may be a corollary of the
process by which values are constructed during deliberation. The subjective value of an item depends
on the decision-maker’s mindset, which may change more slowly than the rate of trial presentations.
Therefore, the subjective value of an item on a given trial may be informative about the value of the item
the next time it is presented. Subjective values are not directly observable, but choices are informative
about the items’ value.

We assessed the plausibility of this hypothesis with a bounded evidence accumulation model that
includes a parameter that controls the correlation between successive evidence samples for a given
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Figure 9. Revaluation reflected in BOLD activity in ventromedial prefrontal cortex
Brain-wide fMRI analysis revealed a significant correlation between r-values and activity in the vmPFC, after
controlling for e-values. Coordinates are reported in standard MNI space. Heatmap color bars range from z-stat = 2.3
to 3.2. Map was cluster corrected for familywise error rate at whole brain level (p < 0.05).
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Figure 10. Similar results observed in other datasets
We applied the Reval method to other publicly available datasets of the food choice task. We use the same Δ𝑉
comparison as in Figs. 5 and 7.
(A) Data from the experiment of Folke et al. (2016). Participants (N=28) reported their willingness to pay (WTP) for
each of 16 common snack items. In the choice task, they were presented with each unique pair of items and asked to
choose the preferred item. Each unique pair was presented twice for a total of 240 trials per participant. We use the
same Δ𝑉 comparison as in Figs. 5 and 7 to assess whether r-values better explain RTs of the study participants.
(B and C) Data from the experiment of Sepulveda et al. (2020). Participants (N=31) reported their willingness to pay
(WTP) for each of 60 snack items. They were then presented with pairs of items to choose from. Pairs were selected
based on participants’ WTP reports to provide comparisons between pairs of high-value, low-value and mixed-value
items. The choice task was performed under two framing conditions: like-framing, select the more preferred item, and
dislike framing, select the less preferred item. The task consisted of six alternating blocks of like- and dislike-framing
(40 trials per block).

item. We call this the correlated-evidence drift-diffusion model (ceDDM). We assume that the decision is
resolved by accumulating evidence for and against the different alternatives until a decision threshold is
crossed.

The model differs from standard drift-diffusion, where the momentary evidence is a sample drawn from a
Normal distribution with expectation equal to Δ𝑣𝑒 plus unbiased noise,  (0,

√

𝑑𝑡). Instead, the value of
each of the items evolves separately such that the expectations of its value updates are constructed as a
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Markov chain Monte Carlo (MCMC) process thereby introducing autocorrelation between successive
samples of the unbiased noise (see Methods). Crucially, the correlation is not limited to the duration
of a trial but extends across trials containing the same item. When an item is repeated in another trial,
the process continues to evolve from its value at the time a decision was last made for or against the
item.

We fit the model to the data from Bakkour et al. (2019). The model was able to capture the relationship
between choice, response time and Δ𝑣𝑒 (Fig. 11A). Fig. 11B shows the degree of correlation in the
evidence stream as a function of time, for the model that best fit each participant’s data. After 1 second
of evidence sampling, the correlation was 0.1062 ± 0.0113 (mean ± s.e.m. across participants). This
is neither negligible (which would make the model equivalent to the DDM) nor very high (which would
render sequential sampling useless, since it can only average out the noise that is not shared across
time).

The assumptions embodied by the ceDDM are consistent with the results of the Reval analysis. We
applied the Reval algorithm to simulated data obtained from the best-fitting ceDDM. The results were in
good agreement with the experimental data. The best-fitting 𝛿 values were positive for all participants
and in a range similar to what we observed in the data (Fig. 11C). Reval increased the range of RTs
when trials were divided by difficulty, implying that Reval led to a better classification of easy and difficult
decisions (Fig. 11D). Furthermore, Reval applied to the trials in the true order explained the simulated
choices better than when applied in the opposite direction (Fig. 11E). This is because the model assumes
that when an item first appears, the last sample obtained for that item was the value reported in the
ratings phase for that item. As more samples are obtained for a given item, the correlation with the
explicit values gradually decreases. The success of ceDDM implies that the sequential dependencies we
identify with Reval may be the result of a value construction process necessary to make a preferential
choice.

Discussion
We identified sequential dependencies between choices in a value-based decision task. Participants
performed a task in which they had to make a sequence of choices among a limited set of items. The
best explanation for future choices was obtained by assuming that the subjective value of the chosen item
increases and the value of the unchosen item decreases after each decision. Evidence for revaluation
was obtained by analyzing the probability that participants make the same decision in pairs of trials with
identical options. We also identified revaluation using an algorithm we call Reval. The same algorithm
allowed us to identify revaluation in other datasets obtained with the food-choice task (Folke et al., 2016;
Sepulveda et al., 2020), with results similar to those we obtained from the dataset of Bakkour et al.
(2019).

The sequential effects we identified can be interpreted as a manifestation of choice-induced preference
change. The usual paradigms for detecting the presence of CIPCs are based on the comparison of
value ratings reported before and after a choice (for a review see Izuma and Murayama, 2013; Enisman
et al., 2021). After a difficult decision, the rating of the chosen alternative often increases and that
of the rejected alternative often decreases—an effect termed the “spreading of alternatives”. Many
variants of the free choice paradigm have been developed to control for or eliminate the statistical artifact
reported by Chen and Risen (2010). One common approach is to compare the “spreading of alternatives”
observed in the free-choice paradigm (rate-choose-rate, or RCR) with a control task in which a different
set of participants rate the items twice before the choice phase (RRC). Any spread observed in the RRC
condition cannot be explained by the CIPC, since in the RRC condition there is no choice between the
two rating phases. The CIPC is measured indirectly, as the difference in the spread of the alternatives
between the RCR and the RRC. Other approaches involve asking participants to rate an item that they
are led to believe they have chosen, when in fact they have not (Sharot et al., 2010; Johansson et al.,
2014). Any change in ratings cannot be due to the information provided by a choice, since no real choice
was made. In addition to the complications introduced by deceiving the participants (e.g., participants
may suspect the deception but not mention it to the experimenter), the elimination of a real choice
prevents these paradigms from being used to study the process through which subjective values undergo
revision during decision formation.
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Figure 11. Revaluation occurs in a DDM with temporally-correlated noise
A drift-diffusion model with non-independent noise (ceDDM) captures the main features of revaluation. (A) The ceDDM accounts for choices (top) and
response times (bottom), plotted as a function of the difference in values obtained from explicit reports (Δ𝑣𝑒). Same data as in Fig. 1C-D. Red curves are
simulations of the best-fitting model. Each trial was simulated 100 times. Simulations were first averaged within trials and then averaged across trials.
Error bars and bands indicate s.e.m. across trials. (B) Noise correlations as a function of time lag, obtained from the best-fitting model. Each curve
corresponds to a different participant. Each curve corresponds to a different participant. (C) 𝛿 parameters derived by applying Reval to simulated data
from the best fitting ceDDM model to each participant’s data. As in the data, 𝛿 > 0 for all participants. (D) Similar analysis as in Fig. 5B applied to
simulations of the ceDDM. As for the data, Reval increased the range of RTs obtained after grouping trials by difficulty (by e-values on the left and r-values
on the right; p-value from paired t-test). (E) Similar analysis to that of Fig. 7, using the simulated data. As observed in the data, the deviance resulting from
applying Reval in the correct trial order (abscissa) is smaller than when applied in the opposite order (p-value from paired t-test).

In contrast, our approach to identify changes in value does not require pre- and post-choice ratings.
Instead, it requires a sequence of trials in which the same items are presented multiple times (as in
Luettgau et al., 2020). The revaluation effect we find cannot be explained by the artifact identified by
Chen and Risen (2010). Using trials with identical items, we show that the nearer in time the trials with
identical items are to each other, the more likely people are to choose the same option. Further, the
revaluation algorithm explains choices better when applied in the order in which the trials were presented
than when applied in the reverse order. These observations are inconsistent with the notion that item
values are fixed (i.e., do not change) during the experiment, regardless of whether values are the same
or different from those reported during the rating phase.

We cannot determine with certainty whether the revaluation occurs after the decision or during the
deliberation process leading up to the decision. At face value, it might seem that Reval implements
change after each decision (Festinger, 1957). Yet, Reval simply identifies a change in value, which may
well occur during the deliberation leading to the decision, perhaps owing to a comparison of other items
(on other trials) that happen to suggest a dimension of comparison that increases in importance on the
current trial (Lee and Daunizeau, 2020; Lichtenstein and Slovic, 2006). More broadly, the subjective
value of an option depends on the mindset of the decision maker. This internal state, which in the
food-choice task includes aspects such as degree of satiety or sugar craving, can vary over time, causing
the value of the items to vary as well. If changes in mindset are slow—that is, lasting longer than the
duration of a decision—then the value of items will be correlated over time.
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We proposed a decision model (ceDDM) in which evidence samples are correlated over time. Fitting the
model to account for each participant’s choices and response times produces a revaluation of magnitude
similar to what we observed experimentally. It also predicts that applying Reval in the direction in which
the trials were presented explains the choices better than applying it in the opposite direction, as we
observed in the data. This modeling exercise suggests that the CIPC-like effects we identified may be
due to processes that occur during the deliberation leading up to a choice, rather than post-decision
processes that attempt to reduce cognitive dissonance. To be clear, we interpret the ceDDM only as a
proxy for a variety of more nuanced processes. If the mindset endures many individual decisions, the
subjective value of an item will be correlated over time. While the ceDDM captures only a small aspect
of this complex process, it has allowed us to explain the sequential dependencies we identified with
Reval.

The ceDDM belongs to a class of sequential sampling models in which the drift rate varies over time.
Such models have already been studied in the context of value-based decisions. For example, in
the attentional drift-diffusion model (Krajbich et al., 2010), the drift rate varies depending on which
item is attended, as if the value of the unattended items are discounted by a multiplicative factor. In
Dynamic Field Theory (Busemeyer and Townsend, 1993), the drift rate varies depending on which
attribute is attended. Recently, Lee and Pezzulo (2022) showed that a sequential sampling model in
which the drift rate varies over time can explain the ‘spreading of alternatives’ (SoA) characteristic of
choice-induced preference change. Lee and Pezzulo (2022) propose that the initial rating of the items
may be constructed using only the most salient attributes of each item, while in a difficult decision
more attributes may be considered, leading to a revaluation that informs the rating reported after the
decision phase (see also Voigt et al., 2019). Consistent with our proposal, Lee and Pezzulo (2022)
argue that thinking about non-prominent features during decision-making increases the likelihood that
these features will be recalled when evaluating options in subsequent instances.

We observed that the degree of revaluation was higher for the chosen item than for the unchosen item.
This was revealed by a variant of the Reval algorithm in which we allowed both items to have different
updates. We speculate that this difference can be explained by the asymmetric distribution of attention
between the chosen and unchosen items. It is known that the chosen item is looked at longer than the
unchosen item (Krajbich et al., 2010). Further, CIPC is more likely for items that are remembered to
have been chosen or unchosen (Salti et al., 2014). So one possibility is that the revaluation is larger for
the chosen than for the unchosen item because participants spent more time looking at the chosen item
and thus are more likely to remember it, leading to a larger change in value (Voigt et al., 2019).

Another possibility derives from the constructive view of preferences and the potential role of attention
in decision-making. It is often assumed that value-based decisions involve gathering evidence from
different alternatives, and that more evidence is gathered from alternatives that are attended to for longer
(Callaway et al., 2021; Li and Ma, 2021; Krajbich et al., 2010). In the ceDDM, the correlation in value for a
given item decreases with the number of evidence samples collected from the item (Fig. 11B). Therefore,
the more that attention is focused on a given item, the greater the difference between the item’s value
before and after the decision. Because chosen items are attended to for longer than unchosen items
(e.g., Krajbich et al., 2010), the chosen item should exhibit larger revaluation than the unchosen one,
which is what we observed in the data (Fig. 8).

Our research contributes to a growing body of work exploring the impact of memory on decision-making
and preference formation (Biderman et al., 2020), and in particular to the CIPC. It has been suggested
that the retrieval of an item’s value during decision-making renders it susceptible to modification, leading
to a revaluation that influences subsequent valuations through a process that has a neural correlate in the
hippocampus (Luettgau et al., 2020). The link between memorability and preference is also supported
by experiments in which the presentation of an item coincides with an unrelated rapid motor response
that increases subsequent preference for the item (Botvinik-Nezer et al., 2021) and by experiments
demonstrating that people prefer items to which they have previously been exposed (Zajonc, 1968). As
in these studies, ours also highlights the role of memory in revaluation. Due to the associative nature
of memory, successive evidence samples are likely to be dependent (Rhodes and Turvey, 2007). A
compelling illustration of this effect was provided by Elias Costa and colleagues (Elias Costa et al.,
2009). Participants were asked to report the first word that came to mind when presented with a word
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generated by another participant, which was then shown to yet another participant. The resulting chain
resembled Lévy flights in semantic space, characterized by mostly short transitions to nearby words
and occasional large jumps. Similar dynamic processes have been used to describe eye movements
during visual search (Bella-Fernández et al., 2021) and the movement of animals during reward foraging
(Brown et al., 2007; Hills et al., 2015). It is intriguing to consider that a similar process may describe how
decision-makers search their memory for evidence that bears on a decision.

Methods
Food choice task
A total of 30 participants completed the snack task, which consisted of a rating and a choice phase. The
experimental procedures were approved by the Institutional Review Board (IRB) at Columbia University,
and participants provided signed informed consent before participating in the study. The data were
previously published in Bakkour et al. (2019).

Rating Phase. Participants were shown a series of snack items in a randomized order on a computer
screen. They indicated their willingness to pay (WTP) by using the computer mouse to move a cursor
along an analog scale ranging from $0 to $3 at the bottom of the screen. The process was self-paced, and
each snack item was presented one at a time. After completing the ratings for all 60 items, participants
were given the opportunity to revise their ratings. The 60 items were re-displayed in random order, with
the original bids displayed below each item. Participants either chose to keep their original bid by clicking
"NO" or to revise the bid by clicking "YES," which re-displayed the analog scale for bid adjustment. We
take the final WTP that is reported for each item as the corresponding explicit value (e-value).

Choice phase. From the 60 rated items, 150 unique pairs were formed, ensuring variation in Δ𝑣𝑒. Each
of the 60 items was included in five different pairs. The 60 item pairs were presented twice, resulting in
a total of 210 trials per participant. Item pairs were presented in random order, with one item on each
side of a central fixation cross. Participants were instructed to select their preferred food item and were
informed that they would receive their chosen food from a randomly selected trial to consume at the
end of the experiment. The task took place in an MRI scanner. Participants indicated their choice on
each trial by pressing one of two buttons on an MRI-compatible button box. They had up to 3 seconds to
make their choice. Once a choice was made, the chosen item was highlighted for 500 ms. Trials were
separated by an inter-trial interval (ITI) drawn from a truncated exponential distribution with a minimum
ITI of 1 and a maximum ITI of 12 seconds. The resulting distribution of ITIs across trials had a true mean
of 3.05 seconds and a standard deviation of 2.0 seconds.

Data analysis
Association between the e-values, choice and RT. We used the following logistic regression model
to evaluate the association between the e-values and the probability of choosing the item on the
right:

logit[𝑝right] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i + 𝛽1Δ𝑣𝑒, (2)

where 𝐼i is an indicator variable that takes the value 1 if the trial was completed by subject 𝑖 and 0
otherwise. We used a t-test to evaluate the hypothesis that the corresponding regression coefficient is
zero, using the standard error of the estimated regression coefficient.

Similarly, we used a linear regression model to test the influence ofΔ𝑣𝑒 on response times:

RT =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i + 𝛽1 ||Δ𝑣𝑒|| + 𝛽2Σ𝑣𝑒, (3)

where | ⋅ | denotes absolute value and Σ𝑣𝑒 is the sum of the value of the two items presented on each
trial. The last term was included to account for the potential influence of value sum on response time
(Smith and Krajbich, 2019).

Predicting choices in cynosure trials. We used two logistic regression models to predict the choice
in each trial using observations from the other trials. We refer to the trial under consideration as the
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cynosure trial (Fig. 2). One model uses the explicitly reported values:

logit[𝑝right] = 𝛽0 + 𝛽1Δ𝑣𝑒 , (4)

while the other model uses the choices made on other trials:

logit[𝑝right] = 𝛽0 +
𝑁items
∑

𝑖=1
𝛽𝑖𝑓 (𝑖), (5)

where

𝑓 (𝑖) =

⎧

⎪

⎨

⎪

⎩

1 if item 𝑖 is on the right

−1 if item 𝑖 is on the left

0 otherwise

(6)

For this model, we included an L2 regularization with 𝜆 = 0.5. Both models were fit independently for
each participant. We only included trials with the first appearance of each item pair (i.e., we did not
include the repeated trials) so that the choice prediction for the cynosure trial is not influenced by the
choice made in the paired trial containing the same items as in the cynosure trial.

Association between r-values and choice. We tested the association between r-values and choice with
a logistic regression model fit to the choices. We included separate regressors for Δ𝑣𝑟 and Δ𝑣𝑒:

logit[𝑝right] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i + 𝛽1Δ𝑣𝑒 + 𝛽2Δ𝑣𝑟 (7)

Choice and response time functions. When plotting the psychometric and chronometric functions
(e.g., Fig. 1C-D), we binned trials depending on the value of Δ𝑣𝑒 (or Δ𝑣𝑟). The bins are defined by
the following edges: { −∞,-1.5,-0.75,-0.375,-0.1875,-0.0625, 0.0625,0.1875,0.375,0.75,1.5,∞ }. We
averaged the choice or RT for the trials (grouped across participants) within each bin and plotted them
aligned to the mean Δ𝑣𝑥 of each bin.

Match probability. We used logistic regression to determine if the probability of giving the same
response to the pair of trials with identical stimuli depended on the number of trials in between (Fig. 3).
The model is:

logit[𝑝𝑚𝑎𝑡𝑐ℎ] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i +

𝑁subj
∑

𝑖=1
𝛽1,𝑖𝐼i|Δ𝑣𝑒| + 𝛽2

(

T2𝑛𝑑 − T1𝑠𝑡
)

(8)

where 𝑝𝑚𝑎𝑡𝑐ℎ is the probability of choosing the same item on both occasions, 𝐼i is an indicator variable
that takes a value of 1 if the pair of trials correspond to subject 𝑖, and zero otherwise, and 𝑇1𝑠𝑡 and 𝑇2𝑛𝑑
are the trial number of the first and second occurrences of the same pair, respectively. We used a t-test
to evaluate the hypothesis that 𝛽2 = 0 (i.e., that the separation between trials with identical stimuli had no
effect on 𝑝match.

Drift-diffusion model
We fit the choice and RT data with a drift-diffusion model. It assumes that the decision variable, 𝑥,
is given by the accumulation of signal and noise, where the signal is a function of the difference in
value between the items, Δ𝑣, and the noise is equal to

√

𝑑𝑡, where 𝑑𝑡 is the time step, such that the
accumulated noise after 1 second of unbounded accumulation, the variance of the accumulated noise is
equal to 1. The decision variable follows the difference equation,

𝑥𝑡+1 = 𝑥𝑡 + 𝜅 𝑑𝑡 (𝜇+𝜇0) +
√

𝑑𝑡 𝜂𝑡, (9)

where 𝜂𝑡 is sampled from a normal distribution with a mean 0 and variance 1, 𝜅 is a signal-noise parameter,
𝜇 is the drift rate and 𝜇0 is a bias coefficient that is included to account for potential asymmetries between
right and left choices.

We assume that the drift rate is a (potentially nonlinear) function of Δ𝑣𝑥. We parameterize this relationship
as a power law, so that

𝜇 = sign(Δ𝑣𝑥)|Δ𝑣𝑥|𝛾 , (10)

where sign is the sign operation, || indicates absolute value, and 𝛾 is a fit parameter.
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The decision terminates when the accumulated evidence reaches an upper bound, signaling a rightward
choice, or a lower bound, signaling a leftward choice. The bound is assumed to collapse over time. It is
constant until time 𝑑, and then it collapses at rate 𝑎:

𝐵(𝑡) = ±

{

𝐵0 if 𝑡 < 𝑑
𝐵0exp−𝑎(𝑡−𝑑) otherwise.

(11)

Collapsing bounds are needed to explain why choices that are consistent with the value ratings are
usually faster than inconsistent choices for the same Δ𝑣𝑥.

The response time is the sum of the the decision time, given by the time taken by the diffusing particle to
reach of the bounds, and a non-decision time which is assumed to be normally distributed with mean 𝜇𝑛𝑑

and standard deviation 𝜎𝑛𝑑 .

The model has 8 parameters: {𝜅, 𝐵0, 𝑎, 𝑑, 𝛾, 𝜇0, 𝜇𝑛𝑑 , 𝜎𝑛𝑑}. The standard deviation of the non-decision
times (𝜎𝑛𝑑) was fixed to 0.05 s. For the fits shown in Fig. 1C-D and Fig. 5A, we fit the model to grouped
data from all participants. For the analysis of variance explained (Fig. S1), we fit the model separately
for each participant. The model was fit to maximize the log of the likelihood of the parameters given the
single-trial choice and RT:

log L(parameters) =
𝑛trials
∑

𝑖=1
log

(

𝑝
(

choice(𝑖),RT(𝑖)
|Δ𝑣(𝑖), parameters

))

. (12)

We evaluate the likelihood by numerically solving the Fokker-Planck (FP) equation that described the
dynamics of the drift-diffusion process, using the Chang-Cooper fully-implicit method (Chang and Cooper,
1970; Kiani and Shadlen, 2009; Zylberberg et al., 2016). For computational considerations, we bin
the values of Δ𝑣𝑥 to multiples of $0.1. From the numerical solution of the FP equation, we obtain the
distribution of decision times, which is convolved with the truncated Gaussian distribution of non-decision
latencies. The truncation ensures that the non-decision times are non-negative, which could otherwise
occur during the optimization process for large values of 𝜎𝑛𝑑 . The parameter search was performed
using the Bayesian Adaptive Direct Search (BADS) algorithm (Acerbi and Ma, 2017).

Revaluation algorithm
The Reval algorithm was applied to each participant independently. The values are initialized to those
reported during the ratings phase. They are then revised, based on the outcome of each trial, in the
order of the experiment. The value of the chosen item is increased by 𝛿 and the value of the unchosen
item is decreased by the same amount. The revaluation affects future decisions in which the same item
is presented.

We searched for the value of 𝛿∗ that minimizes the deviance of the logistic regression model specified by
Eq. 1. The model’s deviance is given by:

DEV =
𝑁tr
∑

𝑖=1
2 loge

(

1
𝑐𝑖

)

(13)

where the sum is over trials and 𝑐𝑖 is the probability assigned to the choice on trial 𝑖 obtained from the
best-fitting logistic regression model.

We complemented this iterative algorithm with a second approach that estimates 𝛿∗ using the history
of choices preceding each trial. Nearly identical 𝛿 values are derived using a single logistic regression
model in which the binary choice made on each trial depends on the number of times each of the two
items was selected and rejected on previous trials. The model is:

logit[𝑝right] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼𝑖 +

𝑁subj
∑

𝑖=1
𝛽1,𝑖𝐼𝑖Δ𝑣𝑒 +

𝑁subj
∑

𝑖=1
𝛽2,𝑖𝐼𝑖Δ𝑐ℎ (14)

where, as before, 𝐼𝑖 is an indicator variable that takes a value of 1 if the trial was completed by subject
𝑖 and 0 otherwise. The key variable is Δ𝑐ℎ. It depends on the number of past trials in which the item
presented on the right in the current trial was chosen (𝑛rightch ) and not chosen (𝑛right¬ch ), and similarly, the
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number of past trials in which the item presented on the left in the current trial was chosen (𝑛lef tch ) and not
chosen (𝑛lef t¬ch):

Δ𝑐ℎ = 𝑛rightch − 𝑛right¬ch + 𝑛lef t¬ch − 𝑛lef tch . (15)

The variable Δ𝑐ℎ represents the influence of past choices. The signs in Eq. 15 are such that a positive
(negative) value of Δ𝑐ℎ indicates a bias toward the right (left) item. To obtain the 𝛿∗ in units equivalent to
those derived with Reval, we need to divide the regression coefficient 𝛽2,𝑖 by the sensitivity coefficient 𝛽1,𝑖,
separately for each subject 𝑖. As can be seen in Fig. S2, the values obtained with this method are almost
identical to those obtained with the Reval algorithm.

Correlated-evidence DDM
The model assumes that at each moment during the decision-making process, the decision-maker can
only access a noisy sample of the value of each item. These samples are normally distributed, with
parameters such that their unbounded accumulation over one second is also normally distributed with a
mean equal to 𝜅𝑣𝑒, where 𝑣𝑒 is the explicit value reported during the Ratings phase and 𝜅 is a measure
of signal-to-noise, and a standard deviation equal to 1.

Crucially, for each item, the noise in successive samples is correlated. To generate the correlated
samples, we sample from a Markov chain using the Metropolis-Hastings algorithm (Chib and Greenberg,
1995). The target distribution is the normally distributed value function described in the previous
paragraph. The proposal density is also normally distributed. Its width determines the degree of
correlation between consecutive samples. Typically, the correlation between successive samples is
considered a limitation of the Metropolis-Hastings algorithm. Here, however, it allows us to generate
correlated samples from a target distribution. The standard deviation of the proposal density is

√

𝑑𝑡∕𝜏.
Higher values of 𝜏 result in a narrower proposal density, hence more strongly correlated samples. We
sample from the same Markov chain across different trials in which the same item is presented, so that
the last sample obtained about an item in a given trial is the initial state of the Markov chain the next
time the item is presented.

At each moment (𝑑𝑡 = 40𝑚𝑠), we sample one value for the left item and another for the right item,
compute their difference (right minus left), and accumulate this difference until it crosses a threshold at
+𝐵0, signaling a rightward choice, or at −𝐵0, signaling a leftward choice. The decision time is added to
the non-decision time, 𝜇𝑛𝑑 , to obtain the response time.

We fit the model to the data as follows. For each item, we simulate many Markov chains. In each trial,
𝑖, we take samples from each chain until the accumulation of these samples reaches one of the two
decision thresholds. Then we calculate the likelihood (𝐿) of obtaining the choice and the RT displayed
by the participant on that trial as:

𝐿(choicei,RTi) =
1
𝑁

𝑁
∑

𝑗=1
𝐿𝑗(choicei,RTi)

𝐿𝑗(choicei,RTi) = 𝟙𝑖,𝑗  (RTi|RT
(j)
i , 𝜎nd)

(16)

where 𝑁 = 1, 000 is the number of Markov chains, 𝟙 is an indicator function that takes the value 1 if the
choice made on chain 𝑗 is the same as the choice made by the participant on trial 𝑖 and 0 otherwise,
 (𝑥|𝑦, 𝑧) is the normal probability density function with mean 𝑦 and standard deviation 𝑧 evaluated at 𝑥,
and 𝜎𝑛𝑑 is a parameter fit to the data.

When an item is presented again in a future trial, the initial state of each Markov chain depends on
the state it was in the last time the item was presented. The initial state of each chain is obtained by
sampling 1,000 values (one per chain) from the distribution given by the final state of each chain. The
sampling is weighted by the value of 𝐿𝑗 of each chain (Eq. 16), so that chains that better explained the
choice and RT in the last trial are more likely to be sampled from in future trials.

The model has 5 parameters per participant: 𝜅, 𝐵0, 𝜏, 𝜇𝑛𝑑 , 𝜎𝑛𝑑 , which were fit to maximize the sum, across
trials, of the log of 𝐿 using BADS (Acerbi and Ma, 2017).
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fMRI analysis
Acquisition. Imaging data were acquired on a 3T GE MR750 MRI scanner with a 32-channel head coil.
Functional data were acquired using a T2∗-weighted echo planar imaging sequence (repetition time (TR)
= 2 s, echo time (TE) = 22 ms, flip angle (FA) = 70◦, field of view (FOV) = 192 mm, acquisition matrix
of 96 x 96). Forty oblique axial slices were acquired with a 2 mm in-plane resolution positioned along
the anterior commissure-posterior commissure line and spaced 3 mm to achieve full brain coverage.
Slices were acquired in an interleaved fashion. We acquired three runs of the food choice task, each
composed of 70 trials. Each of the food choice task functional runs consisted of 212 volumes and lasted
7 minutes. In addition to functional data, a single three-dimensional high-resolution (1 mm isotropic)
T1-weighted full-brain image was acquired using a BRAVO pulse sequence for brain masking and image
registration.

Preprocessing. Raw imaging data in DICOM format were converted to NIFTI format and preprocessed
through a standard preprocessing pipeline using the Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Software Library (FSL) package version 5 (Smith et al., 2004). Functional
image time series were first aligned via Motion Correction using FMRIB’s Linear Image Registration
Tool (MCFLIRT) to obtain six motion parameters that correspond to the x- y-, and z- axis translations
and rotations of the brain over time. Then, the skull was removed from the T2∗ images using the Brain
Extraction tool (BET) and from the high-resolution T1 images using Freesurfer (Fischl et al., 1999;
Ségonne et al., 2004). Spatial smoothing was performed using a Gaussian kernel with a full-width half
maximum (FWHM) of 5 mm. Data and design matrix were high-pass filtered using a Gaussian-weighted
least-squares straight line fit with a cutoff period of 100 s. Grand-mean intensity normalization of each
run’s entire four-dimensional data set by a single multiplicative factor was performed. The functional
volumes for each participant and run were registered to the high resolution T1-weighted structural volume
using a non-linear boundary-based registration method implemented in FSL5 (Greve and Fischl, 2009).
The T1-weighted image was then registered to the MNI152 2 mm template using FMRIB’s Linear Image
Registration Tool (FLIRT, 12 degrees of freedom). These two registration steps were concatenated to
obtain a functional-to-standard space registration matrix.

Analysis. We conducted a GLM analysis to look at BOLD activity related to r-values and e-values.
This model included eight regressors: (i) onsets for all valid trials, modeled with a duration equal to the
average RT across all valid choices and participants; (ii) same onsets and duration as (i) but modulated
by |Δ𝑣𝑒 | de-meaned across these trials within each run for each participant; (iii) same onsets and
duration as (i) but modulated by |Δ𝑣𝑟 | demeaned across these trials within each run for each participant;
(iv) same onsets and duration as (i) but modulated by RT demeaned across these trials within each run
for each participant; (v) same onsets and duration as (i) but modulated by the e-value of the chosen
item demeaned across trials within each run for each participant; (vi) same onsets and duration as
(i) but modulated by the r-value of the chosen item demeaned across these trials within each run for
each participant; (vii) to account for any differences in right/left choices between trial types we added a
regressor with the same onsets and durations as (i), while the modulator was an indicator for right/left
response; (viii) onsets for missed trials. The map in Fig. 9 was generated using this model.

The model includes the six 𝑥, 𝑦, 𝑧 translation and rotation motion parameters obtained from MCFLIRT,
framewise displacement (FD) and RMS intensity difference from one volume to the next (Power et al.,
2012) as confounding regressors. We also modelled volumes with FD and DVARS exceeding a threshold
of 0.5 by adding a single time point regressor for each ‘to be scrubbed’ volume (Siegel et al., 2014). All
regressors were entered at the first level of analysis, and all (except the added confounding regressors)
were convolved with a canonical double-gamma hemodynamic response function. The time derivative of
each regressor (except the added confounding regressors) was included in the model. Models were
estimated separately for each participant and run.

GLMs were estimated using FSL’s FMRI Expert Analysis Tool (FEAT). The first-level time-series GLM
analysis was performed for each run per participant using FSL’s FILM. The first-level contrast images
were then combined across runs per participant using fixed effects. The group-level analysis was
performed using FMRIB’s Local Analysis of Mixed Effects (FLAME1) (Beckmann et al., 2003). Group-
level maps were corrected to control the family-wise error rate using cluster-based Gaussian random
field correction for multiple comparisons, with an uncorrected cluster-forming threshold of z=2.3 and
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corrected extent threshold of p < 0.05.
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Figure S1. RT variance explained by r-values and e-values
Percentage of variance in response times explained by a DDM in which the drift rate is proportional to either Δ𝑣𝑟
(abscissa) or Δ𝑣𝑒 (ordinate). Each data point corresponds to a different subject. For most participants, the model
based on the revalued values explained a greater proportion of the variance.
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Figure S2. Similar 𝛿 values obtained by Reval and logistic regression
Comparison of the 𝛿 values obtained by the Reval algorithm, and by an alternative approach that uses a single
logistic regression model, applied to each participant’s data, that takes into account the number of times the items in
the current trial were presented and either chosen or not chosen in previous trials (Eq. 14). Each data point
corresponds to one participant. The method lead to values of 𝛿 which are almost identical to Reval.
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Table S1. Activation table for map in Fig. 9
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