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Abstract The primary motor cortex has been shown to coordinate movement preparation and 
execution through computations in approximately orthogonal subspaces. The underlying network 
mechanisms, and the roles played by external and recurrent connectivity, are central open ques-
tions that need to be answered to understand the neural substrates of motor control. We develop 
a recurrent neural network model that recapitulates the temporal evolution of neuronal activity 
recorded from the primary motor cortex of a macaque monkey during an instructed delayed-reach 
task. In particular, it reproduces the observed dynamic patterns of covariation between neural 
activity and the direction of motion. We explore the hypothesis that the observed dynamics emerges 
from a synaptic connectivity structure that depends on the preferred directions of neurons in both 
preparatory and movement-related epochs, and we constrain the strength of both synaptic connec-
tivity and external input parameters from data. While the model can reproduce neural activity for 
multiple combinations of the feedforward and recurrent connections, the solution that requires 
minimum external inputs is one where the observed patterns of covariance are shaped by external 
inputs during movement preparation, while they are dominated by strong direction-specific recur-
rent connectivity during movement execution. Our model also demonstrates that the way in which 
single-neuron tuning properties change over time can explain the level of orthogonality of prepara-
tory and movement-related subspaces.

Editor's evaluation
The study develops a recurrent network model of M1 for center-out reaches, starting from a conven-
tional tuning (or representational) perspective. Through recurrent connectivity, the model shows uncor-
related tuning for movement direction during preparation and execution with the dynamic transition 
between the two states. The continuous attractor model provides an important example of flexible 
switching between neural representations and is supported by convincing simulations and analysis.

Introduction
The activity of the primary motor cortex (M1) during movement preparation and execution plays a 
key role in the control of voluntary limb movement (Evarts, 1968; Whishaw et al., 1993; Whishaw, 
2000; Graziano et al., 2002; Harrison et al., 2012; Scott, 2012; Brown and Teskey, 2014). Classic 
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studies of motor preparation were performed in a delayed-reaching task setting, showing that firing 
rates correlate with task-relevant parameters during the delay period, despite no movement occur-
ring (Hanes and Schall, 1996; Tanji and Evarts, 1976; Churchland et al., 2006a; Churchland et al., 
2006b; Messier and Kalaska, 2000; Dorris et  al., 1997; Glimcher and Sparks, 1992; Glimcher 
and Sparks, 1992; Wurtz and Goldberg, 1972; Darlington et al., 2018; Darlington and Lisberger, 
2020). More recent works have shown that preparatory activity is also displayed before non-delayed 
movements (Lara et al., 2018), that it is involved in reach correction (Ames et al., 2019), and that 
when multiple reaches are executed rapidly and continuously, each upcoming reach is prepared by the 
motor cortical activity while the current reach is in action (Zimnik and Churchland, 2021). Preparation 
and execution of different reaches are thought to be processed simultaneously without interference 
in the motor cortex through computation along orthogonal dimensions (Zimnik and Churchland, 
2021). Indeed, the preparatory and movement-related subspaces identified by linear dimensionality 
reduction methods are almost orthogonal (Elsayed et al., 2016) so that simple linear readouts that 
transform motor cortical activity into movement commands will not produce premature movement 
during the planning stage (Kaufman et al., 2014). However, response patterns in these two epochs 
are nevertheless linked, as demonstrated by the fact that a linear transformation can explain the flow 
of activity from the preparatory subspace to the movement subspace (Elsayed et al., 2016). How 
this population-level strategy is implemented at the circuit level is still under investigation (Kao et al., 
2021, ). A related open question (Malonis et al., 2021) is whether inputs from areas upstream to 
the primary motor cortex (such as from the thalamus and other cortical regions, here referred to as 
external inputs) that have been shown to be necessary to sustain movement generation (Sauerbrei 
et al., 2020) are specific to the type of movement being generated throughout the whole course of 
the motor action, or if they serve to set the initial conditions for the dynamics of the motor cortical 
network to evolve as shaped by recurrent connections (Churchland et al., 2012; Shenoy et al., 2013; 
Hennequin et al., 2014; Sussillo et al., 2015; Kaufman et al., 2016; Vyas et al., 2020).

In this work, we use a network modeling approach to explain the relationship between network 
connectivity, external inputs, and computations in orthogonal dimensions. Our analysis is based on 
electrophysiological recordings from M1 of a macaque monkey performing a delayed center-out 
reaching task. The dynamics of motor cortical neurons during reaching limb movements has been 
shown to be low-dimensional (Gallego et al., 2018). Here, we develop a low-dimensional description 
of the dynamics using order parameters that quantify the covariation between neural activity and the 
direction of motion (see Georgopoulos et al., 1986; Schwartz et al., 1988; Georgopoulos et al., 
1989; Georgopoulos et al., 1993 but also Scott and Kalaska, 1997; Scott et al., 2001). Recorded 
neurons are tuned to the direction of motion both during movement preparation and execution, but 
their preferred direction and amplitude of the tuning function change over time (Hatsopoulos et al., 
2007; Churchland and Shenoy, 2007; Rickert et  al., 2009). Interestingly, major changes happen 
when the activity flows from the preparatory to the movement-related subspaces. We describe 
neuronal selectivity during the task by four parameters: two angular variables corresponding to the 
preferred direction during movement preparation and execution, respectively; and two parameters 
that represent the strength of tuning in the two epochs. We characterized the empirical distribution 
of these parameters, and investigated potential network mechanisms that can generate the observed 
tuning properties by building a recurrent neural network model, whose synaptic weights depend on 
tuning properties of pre and post-synaptic neurons, and external inputs can contain information about 
movement direction. First, we analytically derived a low-dimensional description of the dynamics in 
terms of a few observables denoted as order parameters, which recapitulate the temporal evolution 
of the population-level patterns of tuning to the direction of motion. Then, we inferred the strength 
of recurrent connections and external inputs from data, by imposing that the model reproduce the 
observed dynamics of the order parameters. There are multiple combinations of feedforward and 
recurrent connections that allow the model to generate neural activity that strongly resembles the one 
from recordings both at the single-neuron and population level, and that can be transformed into real-
istic patterns of muscle activity by a linear readout. To break the model degeneracy, we imposed an 
extra cost associated with large external inputs – that likely require more metabolic energy consump-
tion compared to local recurrent inputs. The resulting solution suggests that different network mecha-
nisms operate during movement preparation and execution. During the delay period, the population 
activity is shaped by external inputs that are tuned to the preferred directions of the neurons. During 
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movement execution, the localized pattern of activity is maintained via strong direction-specific recur-
rent connections. Finally, we show how the specific way in which neurons tuning properties rearrange 
over time produces the observed level of orthogonality between the preparatory- and movement-
related subspaces.

Results
Subjects and task
We analyzed multi-electrode recordings from the primary motor cortex (M1) of two macaque monkeys 
performing a previously reported instructed-delay, center-out reaching task (Rubino et al., 2006). The 
monkey’s arm was on a two-link exoskeletal robotic arm, so that the position of the monkey’s hand 
controlled the location of a cursor projected onto a horizontal screen. The task consisted of three 
periods (Figure 1a): a hold period, during which the monkey was trained to hold the cursor on a center 
target and wait 500ms for the instruction cue; an instruction period, during which the monkey was 
presented with one of eight evenly spaced peripheral targets and continued to hold at the center for 
an additional 1,000–1,500ms; a movement period, signalled by a go cue, when the monkey initiated 
the reach to the peripheral target. Successful trials for which the monkeys reached the target were 
rewarded with a juice or water reward. The peripheral target was present on the screen throughout 
the whole instruction and movement periods. In line with previous studies (e.g. Elsayed et al., 2016), 
the preparatory and movement-related epochs were defined as two 300ms time intervals beginning, 
respectively, 100ms after target onset and 50ms before the start of the movement.

Patterns of correlation between neural activity and movement 
direction
Studies of motor cortex have shown that tuning to movement direction is not a time-invariant prop-
erty of motor cortical neurons, but rather varies in time throughout the course of the motor action; 
single-neuron encoding of entire movement trajectories has been also reported (e.g. [Hatsopoulos 
et al., 2007; Churchland and Shenoy, 2007]). We measured temporal variations in neurons preferred 
direction by binning time into ‍160ms‍ time bins and fitting the binned trial-averaged spike counts as a 
function of movement direction with a cosine function. As the variability in preferred direction during 
the delay period alone and during movement execution alone was significantly smaller than the vari-
ability during the entire duration of the task (Figure  1—figure supplement 1), we characterized 
neurons tuning properties only in terms of these two epochs. This simplifying assumption is discussed 
further in Methods and Discussion. We will show later that such a simplification is enough for the 
model to recapitulate neuronal activity both at the level of single-units and at the population level.

Figure 1b–c show two examples of tuning curves, where the trial-averaged and time-averaged 
activity during movement preparation and execution is plotted as a function of the location of the 
target on the screen, together with a cosine fitting curve. In the two epochs, neurons change their 
preferred direction - denoted, respectively, as ‍θA‍ and ‍θB‍ - and their degree of participation, which is 
proportional to the amplitude of the cosine tuning function - denoted as ‍ηA‍ and ‍ηB‍. A scatter plot 
of the preferred directions in preparatory (‍θA‍) and execution (‍θB‍) epochs for all neurons is shown in 
Figure 1d, while a similar scatter plot for the degrees of tuning in preparatory (‍ηA‍) and execution 
(‍ηB‍) epochs is shown in Figure 1e. Neurons preferred direction in the two epochs are moderately 
correlated (circular correlation coefficient ‍r = 0.4, p = 3 10−5

‍), and so are their degree of participation, 
even if to a lesser degree (correlation coefficient ‍r = 0.3, p = 10−4

‍). Neuronal tuning to movement 
direction is reflected in a population activity profile that is spatially localized, as shown in Figure 1f-g, 
were we plot the normalized firing rate for all neurons, as a function of their preferred direction, 
separately for the two epochs. An example of the activity of a single neuron in the two epochs is 
highlighted in red. It illustrates how the activity of single neurons is drastically rearranged across time, 
while the population activity remains localized around the same angular location, which corresponds 
to the location of the target on the screen.

Recurrent neural network model
The experimental observations described above motivated us to build a network model in which 
neuronal selectivity properties match the ones observed in the data. In particular, we built a network 
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Figure 1. Tuning to the direction of motion during movement preparation and execution in a delayed reaching 
task. (a) Schematic of the center-out delayed reaching task and definition of the preparatory (blue) and of the 
movement-related (red) epochs. Black circles represent the time of: target onset; go cue; start of movement; end 
of movement, averaged across trials. (b) Example of the trial averaged firing rate of two neurons during movement 

Figure 1 continued on next page
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model in which neurons are characterized by the four same parameters we use to fit the preferred 
directions ‍θA, θB‍ and degrees of tuning, ‍ηA, ηB‍, leading to a 4-dimensional selectivity space. The 
subspace defined by the coordinates ‍(θA, ηA)‍ is denoted as map ‍A‍, while the subspace defined by 

‍(θB, ηB)‍ is denoted as map ‍B‍. We will denote the coordinate vector by

	﻿‍ x = {θA, θB, ηA, ηB},‍�

and refer to the units in the network as neurons, even though each unit in the model could instead 
represents a group of M1 neurons with similar functional properties, and likewise the connection 
between two units in our model could represent the effective connection between the two function-
ally similar groups of neurons in M1.

In this model, neurons with coordinates (selectivity parameters) ‍x‍ are described by their firing rate 

‍r(x, t)‍ whose temporal evolution is given by:

	﻿‍ τ d
dt r(x; t) = −r(x; t) +

[
Itot(x; t)

]
+ ,‍� (1)

where ‍τ ‍ is the time constant of firing rate dynamics. ‍[ ]+‍ is the threshold-linear (a.k.a. relu) transfer 
function that converts synaptic inputs in firing rates, and ‍Itot(x; t)‍ is the total synaptic input to neurons 
with coordinates ‍x‍. We set the time constant to ‍τ = 25‍ ms, which is of the same order of magnitude 
of the membrane time constant, and we checked that for values of ‍τ ‍ in the range ‍10ms − 100ms‍ our 
results did not quantitatively change. The total input to a neuron is

	﻿‍
Itot(x; t) =

ˆ
dx′ρ(x′)J(x, x′)r(x′; t) + Iext(x; t).

‍�
(2)

The first term in the r.h.s. of (2) is the recurrent input, which depends on the firing rates of presynaptic 
neurons ‍r(x′, t)‍, and on ‍J(x, x′)‍, the strength of recurrent connections from neurons with coordinates 
‍x′‍ to neurons with coordinates ‍x‍. ‍Iext(x; t)‍ is the external input, and ‍ρ(x)‍ is the probability density of ‍x‍.

The recurrent term in ‍Itot‍ is the sum of single neuron contributions: here, we assumed that the 
cortical network is sufficiently large that instead of summing over the contributions of single neurons, 
each one at a given coordinate ‍x = {θA, θB, ηA, ηB}‍, we can integrate over a continuous distribution 
of ‍x‍. The probability density of the coordinates ‍ρ(x)‍ is set to match the empirical distribution of 
the preferred direction and degree of participation. The preferred directions are not significantly 
correlated with the degrees of tuning (Figure 1—figure supplement 2), and we therefore took them 
to be independent:

	﻿‍ ρ(x) = ρd(θA, θB) ρp(ηA, ηB).‍� (3)

The distribution of preferred directions was well fitted by:

preparation as a function of the target location. Solid lines represent the corresponding cosine fit. For one 
example neuron, we show its preferred direction (‍θA‍), defined as the location of the peak of the cosine function; 
and its degree of participation (‍ηA‍), which is proportional to the amplitude of the cosine function. (c) Same as 
in (a), but for the activity of the same neurons during movement execution. The preferred direction is denoted 
as ‍θB‍ and the degree of participation is ‍ηB‍. (d) Scatter plot of the preferred direction during execution (‍θB‍) vs 
preparation (‍θA‍) for all neurons; preferred directions are defined as the location of the peak of the cosine tuning 
functions (circular correlation coefficient ‍r = 0.4‍). The heat map represents the joint distribution over (‍θA, θB‍) 
inferred from the data (Equation 4). (e) Scatter plot of the normalized amplitude of the cosine tuning curve during 
execution (‍ηB‍) vs preparation (‍ηA‍) for all neurons (correlation coefficient ‍r = 0.3‍). Blue line: empirical distribution 
of ‍ηA‍ from kernel density estimation; red line: empirical distribution of ‍ηB‍. (f–g) Trial averaged firing rate for all 
neurons during movement preparation as a function of ‍θA‍ (f) and ‍θB‍ (g), for the condition with target location 
‍= 5π/4‍, indicated by the dashed vertical line. The activity is normalized across condition for each neuron. The 
activity of one neuron chosen at random is indicated by the orange dots in panels f and g.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Variance of preferred directions across time.

Figure supplement 2. Distribution of tuning parameters from data.

Figure 1 continued

https://doi.org/10.7554/eLife.77690
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	﻿‍
ρd(θA, θB) = 1

4π2

[
1 + 2

3 cos(θA − θB)
]

,
‍� (4)

as shown in Figure  1—figure supplement 2, while for the sake of simplicity we assumed 

‍ρp(ηA, ηB) = ρpA(ηA) ρpB(ηB)‍ and estimated ‍ρpA, ρpB‍ non-parametrically using kernel density estima-
tion. The last two ingredients that we need to specify to define the network dynamics are the recur-
rent couplings and external inputs. The strength of synaptic connections from a pre-synaptic neuron 
with preferred directions ‍(θ

′
A, θ′B)‍ and participation strengths ‍(η

′
A, η′B)‍ to a post-synaptic neuron with 

preferred directions ‍(θA, θB)‍ and participation strengths ‍(ηA, ηB)‍ is given by

	﻿‍ J(x′, x) = j0 + jAs ηAη
′
A cos(θA − θ′A) + jBs ηBη

′
B cos(θB − θ′B) + jaηBη

′
A cos(θB − θ′A),‍� (5)

where ‍j0‍ represents a uniform inhibitory term; ‍jAs ‍ and ‍jBs ‍ measure the amplitude of the symmetric 
direction-specific connections in map ‍A‍ and map ‍B‍, respectively; and ‍ja‍ measures the amplitude of 
asymmetric connections from map ‍A‍ to map ‍B‍. In the Methods, we explain how the dynamics of a 
network with such recurrent connectivity can reproduce the spatially localized population activity that 
we observed in the data, and we provide an intuition for the role of the different coupling parameters. 
A schematic depiction of the network is shown in Figure 2a. We parameterized the external input in 
analogy with the recurrent input:

	﻿‍

Iext(x; t) = C0(t) + CA(t)ηA + CB(t)ηB+

ϵA(t)ηA cos(θA − Φext) + ϵB(t)ηB cos(θB − Φext),‍�
(6)

where ‍C0‍ represents an untuned homogeneous external input, ‍CA‍ and ‍CB‍ represent untuned map-
specific inputs to maps ‍A‍ and ‍B‍, respectively, ‍ϵA‍ and ‍ϵB‍ represent directionnally tuned inputs to maps 
‍A‍ and ‍B‍, respectively, and ‍Φext‍ is the direction encoded by external inputs. An example of the spatially 
localized population activity at a given time ‍t‍ visualized in different 2-D subspaces of the 4-D space 
with coordinates ‍x = {θA, θB, ηA, ηB}‍ is shown in Figure 2b, blue and an example of tuning curves from 
the network’s activity is shown in Figure 2c.

Order parameters
The simplicity of the model described by Equations 1–6 allowed us to derive a low dimensional 
description of the model dynamics in terms of a few population-level signals denoted as order param-
eters. The order parameters quantify the average population activity ‍r0(t)‍, and the degree to which 
the population activity is localized in map A (‍rA(t)‍) and B (‍rB(t)‍). These parameters are defined by the 
following equations:

	﻿‍

r0 =
´

dxρ(x) r(θA, θB, ηA, ηB),

rA =
´

dxρ(x) ηA cos(θA − ψA) r(θA, θB, ηA, ηB),

rB =
´

dxρ(x) ηB cos(θB − ψB) r(θA, θB, ηA, ηB).‍

 

�

(7)

Note that ‍rA‍ and ‍rB‍ are the first Fourier coefficient of the population rate over the domain ‍θA‍ and ‍θB‍, 
respectively.

These order parameters can be both computed in the model and from data. Therefore, they can 
provide us with a simple tool to compare model and data, and to infer model network parame-
ters from data. Figure  3a shows the dynamics of the order parameters computed from the data 
during the delayed reaching task. As expected, we see that during the preparatory period the activity 
activity is localized in map ‍A‍ (‍rA(t) > 0‍) but not in map ‍B‍ (‍rB(t) ∼ 0‍). Around the time of the go cue, 
network activity dynamically reorganizes, such as the network becomes now strongly localized in map 
‍B‍ (‍rB(t) > 0‍), while the degree of modulation in map ‍A‍ slowly decreases towards zero. We can think of 
map ‍A‍ and map ‍B‍ as two different coordinate systems that the network can use to produce distinct 
patterns of population activity, that are both localized around the location of the target on the screen, 
but in different ways. A spatially localized activity profile associated with either ‍rA(t) > 0‍ or ‍rB(t) > 0‍ is 
denoted as a bump. A definition of this term provided in the Methods. At different times, the bump of 
activity has different shapes – either localised in map ‍A‍, or in map ‍B‍, or in both maps – but its location 
remains constant. Next, we studied possible mechanisms underlying these observations.

https://doi.org/10.7554/eLife.77690
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Figure 2. Spatially localized activity of the network model. (a) Schematic depiction of the network model. Each shaded disk corresponds to one unit in 
the network. The direction of the blue and red arrows within each disk represents the neurons preferred direction during preparatory (‍θA‍) and execution 
(‍θB‍) epochs, respectively, while the thickness of the arrows represents the degree of participation (‍ηA, ηB‍) in these epochs. The orange arrows show 
the strength of synaptic connectivity (defined by equation 5) between units. It contains both a symmetric component, that depends on the distance 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77690
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Tuned states in the model: External inputs vs recurrent connectivity
We next investigated the network model to understand the mechanisms underlying the observed 
dynamics. We first derived equations governing the temporal evolution of the order parameters (see 
Methods). We then analyzed the stationary solutions of the equations in the absence of tuned inputs 
(‍CA = CB = ϵA = ϵB = 0‍), in the space of the three parameters defining the couplings strength: ‍j0, jAs , jBs ‍. 
We found that, similarly to the ring model (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998), 
there exists two qualitatively distinct regions in the space of parameters characterizing recurrent 
connectivity (Figure 3b). For weak recurrent connectivity (gray area in Figure 3b), the activity in the 
network is uniform in the absence of tuned inputs. Thus, in this region, tuned network activity must 
rely on external inputs. For strong recurrent connectivity (white area in Figure 3b), network activity is 
tuned, even in the absence of tuned inputs. In this case, the location of the bump in network activity 
is determined by initial conditions. These two regimes are separated by a bifurcation line, where the 

between preferred directions of pre and post-synaptic neurons separately for the two epochs (see strong connections between the two top left 
neurons), and an asymmetric component that depends on the distance between the preferred preparatory direction of the pre-synaptic neuron and the 
preferred execution direction of the post-synaptic one (see connections between bottom right neurons). (b) Spatially localized activity of the network at 
a given time ‍t ‍, shown in three different 2-dimensional subspaces of the 4-dimensional selectivity space. Left: activity plotted on map A (‍θA, ηA‍) at fixed 

‍θB, ηB‍. Center: activity plotted on map B (‍θB, ηB‍) at fixed ‍θA, ηA‍. Right: activity plotted as a function of ‍θA, θB‍, at fixed ‍ηA, ηB‍. (c) Network activity at a 
given time ‍t ‍, plotted as a function of ‍θA‍, at fixed ‍θB, ηB‍ and for different values of ‍ηA‍. (d) Network activity at a given time ‍t ‍, plotted as a function of ‍θB‍, 
at fixed ‍θA, ηA‍ and for different values of ‍ηB‍.

Figure 2 continued

Figure 3. Dynamics of the order parameters and phase diagram of the model. (a) Dynamics of the order parameters ‍rA‍ (degree of spatial modulation 
of the activity in map A) and ‍rB‍ (degree of spatial modulation in map B) computed from data (solid line; shaded area: ± SEM across trials). Black dots on 
the x-axis represent the trial-averaged time of: target onset, go cue, start of movement and end of movement. (b) Phase diagram of the model, shown 
as a function of the parameters ‍jAs , jBs ‍, that describe how strongly maps A and B are embedded in recurrent synaptic connectivity. Different curves 
correspond to bifurcation lines for different values of the parameter ja, modulating the asymmetric term in synaptic connectivity. The area underneath 
each line (gray) corresponds to the homogeneous phase; the area beyond each line (white) corresponds to the phase where the network exhibit a 
localized activity pattern even in absence of tuned external inputs. (c) Weak coupling scenario: Here, the observed dynamics of the order parameters 
results from external inputs that are tuned to ‍θA‍ during movement preparation and to ‍θB‍ during movement execution. (d) Strong coupling scenario: 
Here, strong recurrent connections sustain the localized pattern of activity; a change in untuned external inputs makes the activity to be localized along 
map A during preparation, and along map B during preparation.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Results are independent on chosen duration of preparatory and movement-related epochs.

https://doi.org/10.7554/eLife.77690
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uniform solution becomes unstable due to a Turing instability (Ben-Yishai et al., 1995; Hansel and 
Sompolinsky, 1998).

This analysis shows that a network activity profile that is localised in a given map, say map A 
(‍rA(t) > 0‍), can be sustained either thanks to the strong recurrent connectivity (i.e. a strong enough 
parameter ‍jAs ‍ in Equation 5), or thanks to the external input term proportional to ‍ϵA(t)‍ (Equation 6). 
Hence, our model can potentially generate the observed dynamics of the order parameters (Figure 3a) 
for different choices of recurrent connections and external inputs parameters, ranging in between the 
following two opposite scenarios:

•	 Recurrent connections are absent: ‍jAs = jBs = ja = 0‍. In this case, the system is simply driven by 
feedforward inputs. The localized activity is the result of external inputs that selectively excites 
or inhibits specific neurons during motor preparation and execution, thanks to sufficiently 
large values of the parameter ‍rA(t) > 0‍ during preparation and ‍ϵB(t) > 0‍ during execution. This 
scenario is depicted schematically in Figure 3c.

•	 The network is strongly recurrent, with strongly direction-specific connections, and external 
inputs are untuned (‍ϵA = 0‍, ‍ϵB = 0‍). Analytical study of the dynamics (Methods) shows that, in 
order for such a system to exhibit tuning, the strength of the couplings has to exceed a critical 
value shown in Figure 3b. Moreover, when the synaptic strength exceeds this value, the activity 
can be localized in map A during preparation and in map B during execution simply as the result 
of homogeneous external inputs changing their strength, without the need for tuned external 
inputs to selectively excite/inhibit specific neurons. This scenario is depicted in Figure 3d.

We next turn to the question of which of these two scenarios best describes the data.

Fitting the model to the data
Our next goal is to infer the strength of recurrent connections (‍j0, jAs , jBs ‍) and feedforward inputs 
(‍C0(t), CA(t), CB(t), ϵA(t), ϵB(t)‍) that best describes the data. To do so, we imposed that our network 
reproduce the dynamics of the population-level order parameters ‍(r0, rA, rB)‍. Specifically, for a given 
set of recurrent connections and feedforward inputs, we can compute analytically the dynamics of the 
order parameters (Methods). Based on these calculations, we build an iterative procedure that mini-
mizes the reconstruction error ‍Erec‍, i.e. the squared difference between the predicted and observed 
dynamics of the order parameters. The results show that there is a large region of the ‍(j0, jAs , jBs )‍-space 
where the reconstruction error has essentially the same value (Figure 4—figure supplement 2). Solu-
tions range from a a network with zero recurrent connections (i.e. a purely feedforward scenario, 
shown in Figure 4a-c) to a network with strong direction-specific connections.

To break the degeneracy of solutions, we added an energetic cost to the reconstruction error. 
This reflects the idea that a biological network where the computation is only driven by long-range 
connections from upstream areas is likely to consume more metabolic energy than a network where 
the computation is processed through shorter-range recurrent connections. Our inference procedure 
minimizes the cost function:

	﻿‍ Etot = αErec + Eext,‍�

where ‍Eext‍ is the total magnitude of external inputs (see Methods, Equation 31). The hyperparameter 
‍α‍ describes the relative strength of these two terms. For very small values of ‍α‍, the algorithm mainly 
minimizes external inputs, and the resulting reconstruction of the dynamics is poor. For very large 
values of ‍α‍, multiple solutions are found, that yield similar dynamics (see Figure 4c and Figure 4i). 
Figure 4—figure supplement 1 shows the results we obtained by using intermediate values of ‍α‍, that 
are small enough to yield a unique solution, but large enough to guarantee a good reconstruction of 
the dynamics. Interestingly, all solutions cluster in a small region of the parameter space, that is close 
to the bifurcation surface in such a way that the parameter ‍jBs ‍ is close to (either larger or smaller) its 
critical value; ‍jAs ‍ is much smaller than its critical value, and ‍ja‍ is zero.

We show the results obtained with two distinct values of ‍α‍ in Figure 4d and Figure 4g; the corre-
sponding dynamics of the inferred external inputs in Figure  4e and Figure  4f; and the resulting 
dynamics of the order parameters from mean field equations in Figure 4f and Figure 4i. In partic-
ular, Figure 4d corresponds to a smaller value of ‍α‍, that is we are penalizing more strongly for large 
external inputs: the resulting coupling parameters are stronger than their critical value. Figure 4g 
corresponds to a larger value of ‍α‍: the strength of the couplings is below the critical line, yielding 

https://doi.org/10.7554/eLife.77690


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bachschmid-Romano et al. eLife 2023;12:e77690. DOI: https://doi.org/10.7554/eLife.77690 � 10 of 29

Figure 4. Inferred dynamics of the external currents required to sustain the observed dynamics of the order parameters for different sets of couplings 
parameters ‍jAs , jBs , ja‍. (a–c) Scenario where neurons are connected by uniform inhibitory connections, in the absence of direction-specific couplings. 
(a) Couplings parameters ‍jAs , jBs , ja‍ are set to zero (orange dot on the phase diagram). The black line represents the bifurcation surface in the space 

‍jAs , jBs ‍, at ‍ja = 0‍. (b) Dynamics of the external inputs inferred from the data. Gray line: homogeneous (untuned) input; light blue/red line: input that 
is specific to map A/B, but untuned to direction; input that is directionally tuned, and specific to map A/B. Black dots on the x-axes represent the 
trial-averaged time of: target onset, go cue, start of movement and end of movement. (c) Dynamics of the order parameters ‍r0, rA, rB‍ computed from 
data (thin line; shaded area: ± SEM across trials) and model (thick line). (d-i) Both couplings parameters and external inputs are inferred from data. 
(d) Solution where the coupling parameters are slightly above the bifurcation line (‍α = 0.17‍). (d) Dynamics of the external inputs inferred from the data. 
Note that tuned inputs are drastically lower than in b, especially during movement execution. (f) Dynamics of the order parameters ‍r0, rA, rB‍ computed 
from data (thin line) and model (thick line). (g) Solution where the coupling parameters are below but close to the bifurcation line (see Figure 4—figure 
supplement 1, ‍α = 0.5‍). (h) Dynamics of the external inputs inferred from the data. (i) Dynamics of the order parameters ‍r0, rA, rB‍ computed from data 
(thin line) and model (thick line).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Value of the couplings parameters ‍jAs , jBs ‍ inferred from data, through minimization of a cost function composed of two terms: 

‍Etot = αErec + Eext‍.

Figure supplement 2. Reconstruction error vs cost function.

Figure supplement 3. Analysis based on data recorded from monkey Rj.

https://doi.org/10.7554/eLife.77690
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larger external inputs (Figure 4h) and a smaller reconstruction error (Figure 4i). The purely feedfor-
ward case is added in Figure 4a-c for comparison. While a purely feedforward network requires a 
strong input tuned to map ‍B‍ right before the movement onset (Figure 4b), in our solution such input 
is either absent (Figure 4e) or much weaker than the corresponding untuned input (Figure 4h). Our 
analysis therefore suggests that recurrent connectivity plays a major role in maintaining the degree of 
spatial modulation observed in the data.

Importantly, the same analysis applied to a second dataset recorded from a different macaque 
monkey performing the same task yielded qualitatively similar results (see Figure 4—figure supple-
ment 3).

The model generates realistic neural and muscle activity
We have shown that the model is able to reproduce the dynamics of the order parameters computed 
from data. Here, we ask how the activity of single neurons in our model compares to data, and 
whether a readout of neural activity can generate realistic patterns of muscle activity. We simu-
lated the dynamics of a network of 16,000 neurons. To each neuron ‍i‍, we assigned the coordinates 

‍θ
(i)
A , θ(i)

B , η(i)
A , η(i)

B ‍ so as to match the empirical distribution of coordinates (Equation 3 and Figure 5—
figure supplement 3a). We added a noise term to the total current that each neuron is subject to, 
modelled as an Ornstein-Uhlenbeck process (see Methods, Equation 33).

First, we checked that the dynamics of the order parameters – previously computed by numeri-
cally integrating the analytical equations – is also correctly reconstructed by simulations (Figure 5—
figure supplement 1b). Figure 5—figure supplement 1 shows the case of a network with couplings 
parameters stronger than their critical value, where the dynamics is dominated by recurrent currents 
and is very sensitive to noise The location of the bump undergoes a small diffusion around the value 
predicted by the mean field analysis (Figure 5—figure supplement 1c and Figure 5—figure supple-
ment 1d).

Then, we computed tuning curves during the preparatory and execution epochs from simulations, 
and estimated the values ‍θ

(i)
A , θ(i)

B , η(i)
A , η(i)

B ‍ from the location and the amplitude of the tuning functions. 
The reconstructed values of neurons tuning parameters are consistent with the values initially assigned 
to them when we built the network (Figure 5—figure supplement 2b). We noticed (Figure 5—figure 
supplement 2c) that the quality of the cosine fit strongly correlates with the magnitude of ‍ηA, ηB‍, as 
we see in the data (Figure 1—figure supplement 2e-f): for neurons with a low value of ‍ηA, ηB‍ the 
tuning functions poorly resemble a cosine. Overall, tuning curves from simulations strongly resemble 
the ones from data (see Figure 5—figure supplement 3, and Discussion).

Next, we showed that the network activity closely resembles the one from recordings. At the level 
of the population, we used canonical correlation analysis to identify common patterns of activity 
between simulations and recordings, and to show that they strongly correlate (see Figure 5a and 
Methods). At the level of single units, for each neuron in the data we selected a neuron in the model 
network with the closest value of ‍θA, θB, ηA, ηB‍ variables. A side-by-side comparison of the time course 
of responses shows a good qualitative agreement (Figure 5c). We also noted that both the activity 
from recordings and from simulations present sequential activity and rotational dynamics (Figure 5—
figure supplement 4). Finally, a linear readout of the activity from simulations can generate real-
istic patterns of muscle activity, which closely match electromyographic (EMG) signals recorded from 
Monkey Bx during a center-out reaching movement (Figure 5b).

So far in this section, we discussed results from a network with strong couplings; Figure 5—
figure supplement 5 shows that the dynamics of a purely feedforward network is almost indis-
tinguishable from from the strongly recurrent case - although canonical correlations between the 
activity of a purely feedforward network and the data are slightly lower than the ones for networks 
with strong recurrent couplings, during movement execution (average canonical correlation of 
0.74 for the purely feedforward network, and 0.82 for the strongly recurrent one). We also noticed 
that networks with coupling parameters below the bifurcation surface are robust to noise in the 

‍θ
(i)
A , θ(i)

B ‍ variables. Conversely, the solutions above the bifurcation surface that do not require tuned 
external inputs are very sensitive to such noise, and the location of the bump of the activity drifts 
towards a few discrete attractors. When the noise is weak, the drift happens on a time scale that 
is much larger that the time of movement execution; the larger the level of the noise, the faster 
the drift.

https://doi.org/10.7554/eLife.77690
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PCA subspaces dedicated to movement preparation and execution
In the previous sections, we considered the low-dimensional description of the dynamics given by the 
order parameters. Here, we use the commonly used principal component analysis (PCA) to compare 
the dimensionality of data and network model. In particular, we ask whether our formalism can explain 
the orthogonality of the preparatory and movement-related linear subspaces. As previously reported 

Figure 5. Comparisons between model and data, for parameters of Figure 4d. (a) CCA analysis to compare the population activity from simulations 
and from recordings. First, we projected the activity onto the PCA dimensions that captured 90% of the activity variance, for both the data and the 
simulations; then, we applied CCA to look for common patterns in the activity matrices from data and simulations. Top: canonical correlations, activity 
during preparation. Bottom: canonical correlations, activity during execution. (b) Blue lines: electromyographic (EMG) signals from 13 muscles, recorded 
during a center-out reaching movement. Each panel corresponds to a different condition (location of the target on the screen). Black lines: patterns of 
muscle activity predicted by a linear readout of the activity of 1000 units drawn at random from the 16000 units in the network model (cross- validated 
NMSE = 0.0066). (c) For each neuron in the data, we chose the corresponding one from simulations with the closest value of parameters ‍θA, θB, ηA, ηB‍. 
Top row: examples of trial averaged activity from data; bottom row: corresponding neurons from simulations. Different shades of blue correspond to the 
8 different conditions.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Dynamics of the order parameters from simulations, for the coupling parameters indicated in red in panel (a), above but close to 
the bifurcation line.

Figure supplement 2. Network architecture for simulations.

Figure supplement 3. Examples of tuning curves during the preparatory (blue) and movement-related (red) epochs computed from simulations (a) and 
from data (b).

Figure supplement 4. Rotational dynamics and sequential activity.

Figure supplement 5. Simulations of a network with no recurrent connections.

https://doi.org/10.7554/eLife.77690
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in the literature Kaufman et al., 2014; Elsayed et al., 2016, the top panel in Figure 6a shows that the 
top principal components of the preparatory activity explain most of the variance of the preparatory 
activity, but very little variance of the movement-related activity; vice versa, the top movement-related 
principal components explain very little variance of the preparatory activity (Figure 6a, bottom panel). 
The activity of our network model also displays this property (Figure  6b). We also quantified the 
level of orthogonality of the two subspaces using the alignment index as defined in Elsayed et al., 
2016, that measures the percentage of variance of each epoch’s activity explained by both sets of 
PCs. Figure 6c shows that the alignment index is much smaller than the one computed between two 
subspaces drawn at random (random alignment index, explained in the Methods), in both data and 
network simulations. Note that model with uniform degrees of participation (‍ηA = ηB = 1‍) displays a 
higher overlap between the preparatory and movement-related subspaces, as shown in Figure 6—
figure supplement 2c. In the Methods section, we explain how the dimensionality of the activity 
depends on the connectivity of the network.

Discussion
Orthogonal spaces dedicated to movement preparation and execution
Studies on the dynamics of motor cortical activity during delayed reaching tasks have shown that the 
primary motor cortex employs an ‘orthogonal but linked strategy’ (Kaufman et al., 2014; Elsayed 
et al., 2016) to coordinate planning and execution of movements.

In this work, we explored the hypothesis that this strategy emerges as result of a specific recurrent 
functional architecture, in which synaptic connections store information about two distinct patterns 
of activity that underlie movement preparation and movement execution. We built a network model 
in which neurons are characterized by their selectivity properties in both preparatory and movement 
execution epochs (preferred direction and degree of participation), and in which synaptic connectivity 
is shaped by these selectivity properties in a Hebbian-like fashion.

A strong correlation between the selectivity properties of the preparatory and movement-related 
epochs will produce strongly correlated patterns of activity in these two intervals and a strong overlap 
between the respective PCA subspaces. We inferred the distribution of these tuning features from 
data and showed that the correlation between the preparatory and movement-related patterns of 
activity is small enough to allow for almost orthogonal subspaces, which is thought to be important 
for the preparatory activity not to cause premature movement. At the same time, the correlation is 

Figure 6. Orthogonality of the preparatory and movement-related subspaces. (a) Percentage of variance of the preparatory (blue) and movement-
related (red) activity from data explained by the first 11 principal components calculated from preparatory (top) and movement-related (bottom) 
trial-averaged activity. (b) As in a, activity from simulations. (c) The alignment index quantifies the degree of orthogonality between two subspaces. Top: 
alignment index between the preparatory and movement-related activities computed from data, compared to the randomized test (random alignment 
index, distribution in light gray and average in dark grey). Bottom: alignment index computed from simulations.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. PCA analysis of network dynamics in various conditions.

Figure supplement 2. Network with uniform degrees of tuning, ‍ηA = ηB = 1‍ for all neurons.

https://doi.org/10.7554/eLife.77690
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non-zero, and that allows the activity to flow from the preparatory to the movement-related subspaces 
with minimal external inputs, as summarized in the next section.

Interplay between external and recurrent currents
We analytically described the temporal evolution of the population activity in the low-dimensional 
space defined by maps A and B in terms of a few order parameters, which can be easily computed 
from data. Different combinations of the strength of direction-specific recurrent connections and of 
tuned external inputs allow the model to accurately reproduce the dynamics of the order parameters 
from data. We argue that solutions that require less inputs from areas upstream of the motor cortex 
are favorable in terms of metabolic energy consumption. With the addition of a cost proportional to 
the magnitude of external inputs, we find solutions where recurrent connections are strong and direc-
tion specific. In the resulting scenario, during movement preparation, an external input tuned to map 
A sustains a population-level activity localized in map A, and pins the location of the peak of activity. 
During movement execution, the localized activity is sustained mostly by recurrent connectivity; the 
correlation between preferred directions ‍θA‍ and ‍θB‍ allows the activity in map B during movement 
execution to be localized around the same location as it was in map A during movement preparation. 
The inferred strength of recurrent connectivity is close to the critical value above which the recur-
rent network can generate localized patterns of activity in the absence of tuned inputs. Solutions 
well beyond the bifurcation line require an implausible fine tuning of the recurrent connections, as 
heterogeneity in the connectivity causes a systematic drift of the encoded direction of motion on a 
typical time scales of seconds – the larger the structural noise in the couplings, the faster the drift, as 
has been extensively studied in continuous attractor models (Tsodyks and Sejnowski, 1995; Zhang, 
1996; Renart et al., 2003; Itskov et al., 2011; Seeholzer et al., 2019; Compte et al., 2000). It has 
been shown that homeostatic mechanisms could compensate for the heterogeneity in cellular excit-
ability and synaptic inputs to reduce systematic drifts of the activity (Renart et al., 2003) and that 
short-term synaptic facilitation in recurrent connections could also significantly improve the robust-
ness of the model (Itskov et al., 2011) – even when combined with short-term depression (Seeholzer 
et al., 2019). While a full characterization of our model in the presence of structural heterogeneity is 
beyond the scope of this work, we note that solutions close but below the bifurcation line are stable 
with respect to perturbations in the couplings. In this case, tuned inputs are present also during 
movement execution, but their magnitude is much weaker than the untuned ones: direction-specific 
couplings are strong and amplify the weak external inputs tuned to map B, therefore playing a major 
role into shaping the observed dynamics during movement execution.

Our prediction that external inputs are direction-specific during movement preparation but mostly 
non-specific during movement execution needs to be tested experimentally. Interestingly, it agrees 
with several previous studies on the activity of the primary motor cortex during limb movement. In 
particular, Kaufman et al., 2016 showed that changes in neural activity that characterize the transi-
tion from movement preparation to execution reflect when movement is made but are invariant to 
movement direction and type, in monkeys performing a reaching task; Inagaki et al., 2022 detected 
a large, movement non-specific thalamic input to the cortex just before movement onset, in mice 
performing a licking task. The authors of Nashef et al., 2019 used high-frequency stimulation to in- 
terfere with the normal flow of information through the cerebellar-thalamo-cortical (CTC) pathway in 
monkeys performing a center-out reaching task. This perturbation produced reversible motor deficits, 
preceded by substantial changes in the activity of motor cortical neurons around movement execu-
tion. Interestingly, the spatial tuning of motor cortical cells was unaffected, and their early preparatory 
activity was mostly intact. These results are in line with our prediction, if we interpret the condition-
invariant inputs that we inferred during movement execution as thalamic inputs that are part of the 
CTC pathway. We speculate that the direction-specific inputs that we inferred during movement 
preparation have a different origin. Further simultaneous recordings of M1 and upstream regions, as 
well as measures of synaptic strength between motor cortical neurons, will be necessary to test our 
predictions.

Cosine tuning
While cosine tuning functions have been extensively used to describe the firing properties of motor 
cortical neurons (e.g. Georgopoulos et al., 1982), and they were also hypothesized to be the optimal 

https://doi.org/10.7554/eLife.77690
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tuning profile to minimize the expected errors in force production (Todorov, 2002), more recent work 
has emphasized that tuning functions in the motor cortex present heterogeneous shapes. Specifically, 
the authors of Lalazar et al., 2016 showed that tuning functions are well fitted by a sum of a cosine-
modulated component, and an unstructured component, often including terms with higher spatial 
frequency. They also argued that the unstructured component is key for a readout of motor cortical 
activity to reproduce EMG activity. In this work, we showed that a noisy recurrent network model that 
is based on cosine tuning reproduces well the ‍R2‍ coefficient of the cosine fit of tuning curves from 
data (see a comparison between Figure 1—figure supplement 2e-f and Figure 5—figure supple-
ment 2c). Moreover, tuning curves from simulations present heterogeneous shapes (Figure 5—figure 
supplement 3), including bimodal profiles, especially for neurons with low values of ‍ηA, ηB‍. Indeed, 
we showed that the ‍R2‍ of the cosine fit strongly correlates with the variables ‍η‍, both in the data and 
in the model. Neurons with a low degree of participation have low ‍R2‍ coefficient of the cosine fit, 
and present heterogeneous tuning curves. We also showed that a linear readout of the activity of 
our model can very accurately reconstruct EMG activity. Finally, our model could easily be extended 
to incorporate other tuning functions. While we leave the analysis of a model with an arbitrary shape 
of the tuning function to future work, we don’t expect our results to strongly depend on the specific 
shape of the tuning function.

Comparison with the ring model
The idea that the tuning properties of motor cortical neurons could emerge from direction-specific 
synaptic connections goes back to the work of Lukashin and Georgopoulos, 1993. However, it was 
with the theoretical analysis of the so called ring model (Amari, 1977; Ben-Yishai et al., 1995; Somers 
et al., 1995; Hansel and Sompolinsky, 1998) that localized patterns of activity were formalized as 
attractor states of the dynamics in networks with strongly specific recurrent connections. Related 
models were later used to describe maintenance of internal representations of continuous vari-
ables in various brain regions (Zhang, 1996; Redish et al., 1996; McNaughton et al., 1996; Seung 
et al., 2000; Tsodyks, 1999; Camperi and Wang, 1998; Compte et al., 2000; Samsonovich and 
McNaughton, 1997; Stringer et al., 2002; Burak and Fiete, 2009) and were extended to allow for 
storage of multiple continuous manifolds (Battaglia and Treves, 1998; Romani and Tsodyks, 2010; 
Monasson and Rosay, 2015) to model the firing patterns of place cells the hippocampus of rodents 
exploring multiple environments. While our formalism builds on the same theoretical framework of 
these previous works, we would like to stress two main differences between our model and the ones 
previously considered in the literature. First, we studied the dynamic interplay between fluctuating 
external inputs and recurrent currents, that causes the activity to flow from the preparatory map to 
the movement-related one and, consequently, neurons tuning curves and order parameters to change 
over time, while at the population level the pattern of activity remains localized around the same 
location. Then, we introduced an extra dimension representing the degree of participation of single 
neurons to the population pattern of activity; this is an effective way to introduce neuron-to-neuron 
variability in the responses, which decreases the level of orthogonality between the preparatory and 
movement-related subspaces, and yields tuning curves whose shape resembles the one computed 
from data – in contrast with the classic ring model, where all tuning curves have the same shape.

Representational vs dynamical system approaches
There has been a debate whether neuronal activity in motor cortex is better described by so-called 
‘representational models’ or dynamical systems models (Churchland and Shenoy, 2007; Michaels 
et al., 2016). Representational models (Michaels et al., 2016; Inoue et al., 2018) are models in which 
neuronal firing rates are related to movement parameters (Evarts, 1968; Georgopoulos et al., 1982; 
Georgopoulos et al., 1984; Paninski et al., 2004; Moran and Schwartz, 1999; Smith et al., 1975; 
Hepp-Reymond et al., 1978; Cheney and Fetz, 1980; Kalaska et al., 1989; Taira et al., 1996; Cabel 
et al., 2001). Dynamical systems models (Sussillo et al., 2015) are instead recurrent neural networks 
whose synaptic connectivity is trained in order to produce a given pattern of muscle activity. Such 
models have been argued to reproduce better the dynamical patterns of population activity in motor 
cortex (Michaels et al., 2016).

In our model, firing rates are described by a system of coupled ODEs, and the synaptic connectivity 
is built from the neuronal tuning properties, in the spirit of the classical ring model discussed above, 
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and of the model introduced by Lukashin and Georgopoulos, 1993. Our model is thus a dynamical 
system where kinematic parameters can be decoded from the population activity.

Importantly, our model is constrained to reproduce the dynamics of a few order parameters that 
are a low-dimensional representation of the activity of recorded neurons. In contrast to kinematic-
encoding models, our model can recapitulate the heterogeneity of single-unit responses. Moreover, 
as in trained recurrent network models, a linear readout of the network activity can reproduce realistic 
muscle signals.

The advantage of our model with respect to a trained RNN is that it yields a low-rank connectivity 
matrix which is simple enough to allow for analytical tractability of the dynamics. The model can be 
used to test specific hypotheses on the relationship between network connectivity, external inputs 
and neural dynamics, and on the learning mechanisms that may lead to the emergence of a given 
connectivity structure. The model is also helpful to illustrate the problem of degeneracy of network 
models. An interesting future direction would be to compare the connectivity matrices of trained 
RNNs and of our model.

Extension to modeling activity underlying more complex tasks
Neurons directional tuning properties have been shown to be influenced by many contextual factors 
that we neglected in our analysis (Hepp-Reymond et al., 1999; Muir and Lemon, 1983), to depend 
on the acquisition of new motor skills (Paz et al., 2003; Li et al., 2001; Wise et al., 1998) and other 
features of movement such as the shoulder abduction/adduction angle even for similar hand kine-
matic profiles (Scott and Kalaska, 1997; Scott et al., 2001), or the speed of movement for similar 
trajectories (Churchland and Shenoy, 2007). A large body of work (Scott et al., 2001; Ajemian et al., 
2000; Gribble and Scott, 2002; Hepp-Reymond et al., 1999; Todorov, 2000; Holdefer and Miller, 
2002; Sergio et al., 2005) has shown that the activity in the primary motor cortex covaries with many 
parameters of movement other than the hand kinematics – for a review, see Scott, 2003. More recent 
studies Michaels et al., 2016; Russo et al., 2018; Sergio et al., 2005; Schroeder et al., 2021 have 
also suggested that the largest signals in motor cortex may not correlate with task-relevant variables 
at all.

Our model can be extended to more realistic scenarios in several ways. A simplifying assumption 
we made is that the task can be clearly separated into a preparatory phase and one movement-related 
phase. A possible extension is one where the motor action is composed of a sequence of epochs, 
corresponding to a sequence of maps in our model. It will be interesting to study the role of asym-
metric connections for storing a sequence of maps. Such a network model could be used to study 
the storage of motor motifs in the motor cortex (Logiaco et al., 2021); external inputs could then 
combine these building blocks to compose complex actions. Moreover, incorporating variability in the 
degree of symmetry of the connections could allow to model features that are not currently included, 
such as the speed of movement.

In summary, we proposed a simple model that can explain recordings during a reaching task. It 
provides a scaffold upon which more sophisticated models could be built, to explain neural activity 
underlying more complex tasks.

Methods
Animals
Figures 1–6 are based on electrophysiological recordings from the primary motor cortex of Macaque 
monkey Rk (141 units, 391 trials), while in Figure 4—figure supplement 3 we analyzed recordings 
from Macaque monkey Rj (57 units, 191 trials). For details on the electrophysiology and on the multi-
electrode array implants, see Russo et al., 2018.

Circular statistics
To define the statistical measures of angular variables (Fisher, 1995; Berens, 2009), let us consider a 
set of angles ‍{θi}i‍, and visualize them as vectors on the plane:
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The mean vector is then defined as

	﻿‍ Θ = 1
N
∑

i Θi‍� (9)

from which we can get the mean angular direction ‍θ‍ using the four quadrant inverse tangent function. 
The length of the mean resultant vector,

	﻿‍ R = ∥Θ∥,‍� (10)

is a measure of how concentrated the data sample is around the mean direction: the closer ‍R‍ is to 1, 
the more concentrated the data is. We quantify the spread in a data set through the circular variance 
given by

	﻿‍ S = 1 − R,‍� (11)

which ranges from 0 to 1. To compute the correlation between two sets of angular variables, ‍{θi}i‍ and 

‍{ϕ}i‍, we used the correlation coefficient (Jammalamadaka and SenGupta, 2001) defined as:

	﻿‍
ρ =

∑
i sin(θi−θ) sin(ϕi−ϕ)√∑
i sin2(θi−θ) sin2(ϕi−ϕ)

,
‍�

(12)

where ‍θ‍ and ‍ϕ‍ are the mean angular directions of the two sets.

Preparatory and movement-related epochs
In our analysis, we characterized neurons’ tuning properties during movement preparation and execu-
tion. The choice of considering only two epochs is an approximation based on the observation that 
neurons preferred directions are more conserved within the delay period alone and within movement 
execution alone than across periods (Figure 1—figure supplement 1). In Figure 1—figure supple-
ment 1, we considered three temporal epochs: the delay period (blue lines), movement execution 
(red) and the whole duration of the task (grey). We binned each epoch into ‍NW ‍ time bins of length 160 
ms: the preparatory and execution epochs consist of ‍NW = 3‍ bins each, while the whole task consists 
of ‍NW = 7‍ bins. For each neuron, we first computed its preferred direction in each time bin, by fitting 
the trial-averaged and time-averaged firing rate with a cosine function. Then, for each epoch, and for 
each neuron, we computed the circular variance of preferred directions across the ‍NW ‍ bins. The cumu-
lative distribution of circular variances is shown in Figure 1—figure supplement 1a: the variability of 
preferred direction within the delay epochs and within movement execution is non-zero, although 
their distribution is skewed towards zero.

For each epoch, we computed the median variability in preferred direction and used a bootstrap 
analysis to check its statistical significance. Let us consider the matrix of single trial activity of a given 
neuron, for a specific condition, and during a given epoch; the size of the matrix is ‍NW × n‍, where ‍n‍ 
is the number of trials per condition (in the data, ‍n‍ ranges between 41 and 47). We repeat the same 
procedure for all of the 8 conditions, and z-scored the 8 activity matrices across conditions (this is done 
because the average activity changes across time bins, and in the following we will shuffle time bins). 
To check if tuning curves are exactly conserved across time-bins, we generated ‍B = 1000‍ bootstrap 
samples of the activity matrix for a given condition, where each entry is chosen at random (with repe-
titions) between the possible ‍NW × n‍ entries of the original matrix. For each bootstrap sample matrix, 
we computed the variance of preferred direction as we did for the original matrix. This is repeated for 
all neurons, all epochs, all conditions. The cumulative distribution of all variances of preferred direc-
tion is shown in Figure 1—figure supplement 1b. Then, for each bootstrap sample, we computed 
the corresponding median variance of preferred direction; the histogram is shown in Figure 1—figure 
supplement 1c. From Figure 1—figure supplement 1c, it is obvious that the median variance of 
preferred directions from the data is significantly larger than the one from the bootstrap samples. This 
suggests that neurons do change their preferred direction within epochs, even though major changes 
happen between epochs.

https://doi.org/10.7554/eLife.77690
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Analysis of the model
We studied the rate model with couplings defined by (5) with two complementary approaches. First, 
an analytic approximation based on mean-field arguments and valid in the limit of large network size 
allowed us to derive a low-dimensional description of the network dynamics in terms of a few latent 
variables, and to fit the model parameters to the data. Next, we checked that simulations of the 
dynamics of a network of ‍N = 104‍ neurons reproduce the results that we derived in the limit ‍N → ∞‍.

The mean-field equations are derived following the methods introduced in Ben-Yishai et al., 1995; 
Romani and Tsodyks, 2010. In the limit where the number of neurons is large, the average activity 
of a neuron with coordinates ‍θA, θB, ηA, ηB‍ is described by Equations 1; 2, where we have defined 

‍x = {θA, θB, ηA, ηB}‍. In order to derive a lower dimensional description of the dynamics, we rewrite (1) 
in terms of the average activity rate (14), and of the second Fourier components of the activity rate 
modulated by ‍ηA/B‍:

	﻿‍

ZA ≡
´

dx ρ(x) ηA r(θA, θB, ηA, ηB) eiθA ≡ rAeiψA

ZB ≡
´

dx ρ(x) ηB r(θA, θB, ηA, ηB) eiθB ≡ rBeiψB .‍�
(13)

The phase ‍ψA(/B)‍ is defined so that the parameter ‍rA(/B)‍ is a real nonnegative number, yielding Equa-
tion 14 for ‍rA(/B)‍, and the following equation for the phase ‍ψA(/B)‍, representing the position of the peak 
of the activity profile in map ‍A(/B)‍:

	﻿‍

0 =
´

dx ρ(x) ηA sin(θA − ψA) r(θA, θB, ηA, ηB)

0 =
´

dx ρ(x) ηB sin(θB − ψB) r(θA, θB, ηA, ηB).‍�
(14)

From (1), we see that the order parameters evolve in time according to the following set of equations,

	﻿‍

τ d
dt r0(t) = −r0(t) +

´
dx ρ(x) [Itot(θA, θB, ηA, ηB; t)]+

τ d
dt rA(t) = −rA(t) +

´
dx ρ(x) ηA cos(θA − ψA(t)) [Itot(θA, θB, ηA, ηB; t)]+

τ d
dt rB(t) = −rB(t) +

´
dx ρ(x) ηB cos(θB − ψB(t)) [Itot(θA, θB, ηA, ηB; t)]+

τrA(t) d
dtψA(t) =

´
dx ρ(x) ηA sin(θA − ψA(t)) [Itot(θA, θB, ηA, ηB; t)]+

τrB(t) d
dtψB(t) =

´
dx ρ(x) ηB sin(θB − ψB(t)) [Itot(θA, θB, ηA, ηB; t)]+, ‍�

(15)

where the total input (2) is rewritten as:

	﻿‍

Itot(x; t) = Iext(θA, θB, ηA, ηB; t) + j0r0(t)+
∑

ν=A,B
jνs ην cos

(
θν − ψν (t)

)
rν + jaηB cos

(
θB − ψA(t)

)
rA(t).

‍�
(16)

Stationary states for homogeneous external inputs
We first characterize the model by studying the fixed-points of the network dynamics when subject to 
a constant and homogeneous external input, and focusing on the scenario where the joint distribution 
(3) of the ‍θA, θB‍ is of the form

	﻿‍ ρd(θA, θB) = 1
4π2

[
1 + x cos(θA − θB)

]
,‍� (17)

which fits the empirical distribution of the data well for ‍x = 2/3‍ (Figure 1—figure supplement 2). For 
now, we leave the distributions ‍ρpA(ηA)‍ and ‍ρpB(ηB)‍ unspecified. We first consider the case where the 
external input to the network is a constant that is independent of ‍θA, θB‍:

	﻿‍ Iext(x) = C0 + ηACA + ηBCB.‍� (18)

The stationary solutions of (1,16) are of the form:

	﻿‍ r(x) =
[
Itot]

+ =
[
I0 + IA cos(θA − ψA) + IB cos(θB − ψB)

]
+ ,‍� (19)

where we have defined

https://doi.org/10.7554/eLife.77690
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	﻿‍

I0 = C0 + ηACA + ηBCB + j0r0

IA = jAs ηArA

IB = jBs ηBrB + jaηBrA. ‍�

(20)

Here, ‍{r0, rA, rB}‍ are solutions of the system (15) with the left hand side set to zero. The second term 
on the r.h.s in the last equation of (20) is obtained from (16) by observing that in the stationary state 

‍ψA = ψB‍ if either ‍ja > 0‍ or if ‍θA‍ and ‍θB‍ are correlated (as we are assuming here). As in Ben-Yishai 
et al., 1995; Hansel and Sompolinsky, 1998, we can distinguish broad from narrow activity profiles. 
The term broad activity profile refers to the scenario where the activity of all the neurons is above 
threshold, the dynamics is linear and the stationary state reduces to:

	﻿‍ r(x) = I0 + IA cos(θA − ψA) + IB cos(θB − ψB).‍� (21)

By inserting the above equation in (14), we find that the only solution is homogeneous over the maps 

‍θA‍ and ‍θB‍:

	﻿‍

r0 = C0+⟨ηA⟩CA+⟨ηB⟩CB
1−j0 ,

rA = 0,

rB = 0,

r(ηA, ηB) = C0 + ηACA + ηBCB + j0r0,‍�

(22)

where the notation ‍⟨.⟩‍ represents an average over the measure ‍dµ‍, i.e.

	﻿‍
⟨ηA⟩ =

ˆ 1

0
dη ρpA(η) η, ⟨ηB⟩ =

ˆ 1

0
dη ρpB(η) η.

‍�

First, we notice that a nonzero homogeneous state is present if

	﻿‍
C0+⟨ηA⟩CA+⟨ηB⟩CB

1−j0 > 0.‍�

Then, the stability of this state with respect to a small perturbation ‍{δr0, δrA, δrB}‍ can be studied by 
linearizing (15) around the stationary solution, at fixed ‍ψA = ψB = 0‍. The resulting Jacobian matrix is

	﻿‍




−1 + j0 0 0

0 −1 + jAs FAA + jaFAB jBs FAB

0 jAs FAB + jaFBB −1 + jBs FBB




‍�

where

	﻿‍

FAA =
´

dx ρ(x) η2
A cos(θA)2 = 1

2 ⟨η
2
A⟩

FBB =
´

dx ρ(x) η2
B cos(θB)2 = 1

2 ⟨η
2
B⟩

FAB =
´

dx ρ(x) ηAηB cos(θA) cos(θB) = x
4 ⟨ηA⟩⟨ηB⟩.‍�

The homogeneous solution (22) is stable if ‍j0 < 1‍ and if the couplings parameters ‍{jAs , jBs , ja}‍ satisfy the 
following system of inequalities:

	﻿‍




ja
x
4
⟨ηA⟩⟨ηB⟩ + jAs

1
2
⟨η2

A⟩ + jBs
1
2
⟨η2

B⟩ < 2
(

1 − jAs
1
2
⟨η2

A⟩
)(

1 − jBs
1
2
⟨η2

B⟩
)
−

(
ja + jAs jBs

x
4
⟨ηA⟩⟨ηB⟩

) x
4
⟨ηA⟩⟨ηB⟩ > 0.

‍�

(23)

If ‍j0 ≥ 1‍, the system undergoes an amplitude instability. For values of ‍{jAs , jBs , ja}‍ that exceed the 
threshold implicitly defined by (23), there is a region of the four-dimensional space ‍(θA, θB, ηA, ηB)‍ 
where the total input ‍Itot‍ (19) is negative. The dynamics is no longer linear and the activity profile at the 
fixed point is localized around a particular direction, and characterized by positive stationary values 
of the order parameters ‍rA, rB‍. This ‘bump’ of activity can be localized either more strongly in map A 
(‍rA > rB > 0‍), in map B (‍rB > rA > 0‍) or at the same level in both maps (‍rA = rB > 0‍). Since maps A and 
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B are correlated according to 3, the location of the stationary bump of activity is constrained to be 
the same in the two maps: ‍ψA = ψB ≡ ψ‍, with arbitrary ‍ψ‍. The asymmetric term in the connectivity, 
modulated by the parameter ‍ja‍, further contributes to aligning the location of the bump in map B to 
the one in map A. The system can relax to a continuous manifold of fixed points parameterized by ‍ψ‍ 
that are marginally stable. In this continuous attractor regime, the system can store in memory any 
direction of motion ‍ψ‍, as the activity is localized in absence of tuned inputs.

Examples of two-dimensional cross-sections of the four-dimensional activity profile in the marginal 
phase are shown in Figure 2b. Figure 2c shows one-dimensional cross-sections of the activity as a 
function of ‍θA‍ or ‍θB‍, for different values of ‍ηA‍ and ‍ηB‍. These correspond to the tuning curves of the 
model for stationary external inputs. The tuning profile can have either a full-cosine modulation or a 
rectified cosine modulation, depending on the values of ‍ηA, ηB‍. The plots of Figure 1f-g correspond 
to the activity as a function of ‍θA, θB‍ in the case of a discrete number of neurons – each neuron with a 
different value of ‍ηA, ηB‍.

Time-dependent external input
The activity of motor cortical neurons shows no signature of being in a stationary state but instead 
displays complex transients. To model the data, we assumed that the neurons are responding both to 
recurrent inputs and to fluctuating external inputs that can be either homogeneous or tuned to ‍θA, θB‍, 
with peak at constant location ‍ΦA = ΦB ≡ Φ‍ (Equation 6). The total input 2 that neurons are subject 
to at a given time ‍t‍ is:

	﻿‍ Itot(x; t) = I0(t) + IA(t) ηA cos(θA − Φext) + IB(t) ηB cos(θB − Φ),‍� (24)

where

	﻿‍

I0(x; t) = C0(t) + ηACA(t) + ηBCB(t) + j0r0(t)

IA(t) = jAs rA(t) + ϵA(t)

IB(t) = jBs rB(t) + jarA(t) + ϵB(t). ‍�

(25)

In order to draw a correspondence between the model and the data, we note that the activity 
of each neuron in the data corresponds to the activity rate at a specific coordinate ‍θA, θB, ηA, ηB‍ in 
the model. From Equations 1 and 24 we see that, if we assume that changes in the external inputs 
happen on a time scale larger than ‍τ ‍, the modulation of the activity profile in map A at each time ‍t‍ is 

‍cos(θA − Φ)‍ and has amplitude proportional to ‍ηA‍, while the modulation of the activity profile in map 
B is ‍cos(θB − Φ)‍ and has amplitude proportional to ‍ηB‍. Accordingly, for each recorded neuron ‍θA‍ and 

‍θB‍ represent the location of the peak of the neuron’s tuning curve computed during the preparatory 
and movement-related epoch, respectively, while ‍ηA‍ and ‍ηB‍ are proportional to the amplitude of the 
tuning curves.

Fitting the model to the data
Neurons activity rates were computed by smoothing the spike trains with a Gaussian kernel with s.d. 
of 25ms and averaging them across all trials with the same condition; ‍r

(i)
k (t)‍ denotes the rate of neuron 

‍i‍ at time ‍t‍ for condition ‍k‍, each condition corresponding to one of the 8 angular locations of the 
target on the screen. Since trials had highly variable length, we normalized the responses along the 
temporal dimension before averaging them over trials, as follows. We divided the activity into three 
temporal intervals: from the target onset to the go cue; from the go cue to the start of the move-
ment; from the start of the movement to the end of the movement. For each interval, we normalized 
the response times to the average length of the interval across trials. We then aggregated the three 
intervals together. We defined the preparatory and execution epochs – denoted by A and B – as two 
300ms time intervals beginning, respectively, 100ms after target onset and 50ms before the start of 
the movement, in line with (Elsayed et al., 2016). Figure 3—figure supplement 1 shows that our 
results do not change qualitatively when the lengths of the preparatory and execution intervals are 
increased. For each neuron ‍i‍, we fitted the activity rate averaged across time within each epoch as a 
function of the angular position ‍Φ‍ of the target with a cosine function:

	﻿‍ a(i)
ν + b(i)

ν cos(θ(i)
ν − Φ), ν = A, B,‍�
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where the parameters ‍θ
(i)
A ‍ and ‍θ

(i)
B ‍ represent the neuron’s preferred direction during the preparatory 

and execution epochs. In our the model, the direction modulation of the rates, see (25), is propor-
tional to ‍ηA\B‍, that measures how strongly the neuron participates in the two epochs of movement; 
hence, we defined ‍η

(i)
A\B‍ to be proportional to the amplitude of the tuning curve:

	﻿‍ η(i)
ν = b(i)

ν / maxi(b(i)
ν ), ν = A, B.‍� (26)

The scatter plot of ‍ηA, ηB‍ (Figure 1e) shows an outlier with ‍ηB ∼ 1‍. We checked that our results hold 
true if we discard that point. Figure 1—figure supplement 2 shows that both ‍ηA‍ and ‍ηB‍ strongly 
correlate with the ‍R2‍-coefficient of the cosine fit. In other words, neurons with a higher value of ‍ηA, ηB‍ 
are the ones whose tuning curves more strongly resemble a cosine (this holds true in our simulations 
too, see Figure 5—figure supplement 2c, and Discussion). The order parameters (14) are computed 
at each time ‍t‍ by approximating the integrals with the sums:

	﻿‍

rdata
0 (t) = 1

N
1
nc

∑
i

∑
k

r(i)
k (t),

rdata
A/B (t) = 1

N
1
nc

∑
i

∑
k
η(i)

A/B cos
(
θ(i)

A/B − ψ(k)
A/B(t)

)
r(i)

k (t) for k = 1, . . . , nc,
‍�

(27)

where ‍N ‍ is the number of neurons and ‍nc = 8‍ is the number of conditions. The angular location of the 
localized activity ‍ψ

(k)
A/B(t)‍ can be computed from (14) as

	﻿‍
0 = 1

N
∑

i
η(i)

A/B sin
(
θ(i)

A/B − ψ(k)
A/B(t)

)
r(i)

k (t).
‍�

(28)

However, this estimate is strongly affected by the heterogeneity in the distribution of ‍θA, θB‍ - deviating 
from the rotational symmetry of the model. That is why in Figure 2 we approximated ‍ψ

(k)
A/B(t)‍ by the 

‍k − th‍ angular location of the target on the screen. We checked that computing ‍ψ
(k)
A/B(t)‍ by using either 

method does not affect the dynamics of the order parameters ‍r
data
A/B (t)‍.

We assumed that the observed dynamics of the order parameters ‍r0(r), rA(t), rB(t)‍ obeys Equations 
15; 16 with time-dependent external inputs of the form (6). We inferred the value of the parame-
ters ‍{C0(t), CA(t), CB(t), ϵA(t), ϵB(t)}t‍ of the external currents and ‍j0, jAs , jBs , ja‍ of the coupling matrix that 
allow us to reconstruct the dynamics of the order parameters ‍r0, rA, rB‍ computed from data; since this 
inference problem is undetermined, we required as further constraint that the model reconstruct the 
dynamics of the following two additional order parameters:

	﻿‍

τ d
dt r0A(t) = −rA(t) +

´ ´
dx ρ(x) ηA [Itot(θA, θB, ηA, ηB; t)]+

τ d
dt r0B(t) = −rB(t) +

´ ´
dx ρ(x) ηB [Itot(θA, θB, ηA, ηB; t)]+.‍�

(29)

In this way, for given coupling parameters ‍j0, jAs , jBs , ja‍, we can uniquely identify the external 
currents parameters that produced the observed dynamics. Still, an equally good reconstruction of 

‍r0, rA, rB, r0A, r0B‍ can be obtained for different choices of coupling parameters (2). Hence, we inferred 
the model parameters by minimizing a cost function composed of two terms: one that is proportional 
to the reconstruction error of the temporal evolution of the order parameters and the other that 
represents an energetic cost penalizing large external inputs.

Fitting the model to the data: details
The fitting procedure was divided in the following steps:

1.	 The time interval ‍T ‍ going from the target onset till the end of the movement was binned into 
‍∆t = 5ms‍ time bins: ‍T = {∆t1,∆t2, . . .∆tT}‍.

2.	 The couplings parameters were initialized to zero: ‍j0 = 0, jAs = 0, jBs = 0, ja = 0‍. At the first time 
bin, the external currents parameters were initialized to zero:
	﻿‍ C0(∆t1) = CA(∆t1) = CB(∆t1) = ϵA(∆t1) = ϵB(∆t1) = 0‍ �

and the reconstructed order parameters (r0, …) were initialized to the order parameters esti-
mated from the data (‍r

data
0 , . . .‍):

https://doi.org/10.7554/eLife.77690
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	﻿‍

r0(∆t1) = rdata
0 (∆t1), rA(∆t1) = rdata

A (∆t1), rB(∆t1) = rdata
B (∆t1),

r0A(∆t1) = rdata
0A (∆t1), r0B(∆t1) = rdata

0B (∆t1). ‍�

3.	 For each time step ‍∆ti, i = 2, . . . , T ‍:
•	 We started from the reconstructed order parameters at the previous time step:

	﻿‍ r0(∆ti−1), rA(∆ti−1), rB(∆ti−1), r0A(∆ti−1), r0A(∆ti−1),‍ �

and we let the dynamical system (15, 29) with external currents parameters ‍C0, CA, CB, ϵA, ϵB‍ 
evolve for ‍∆t = 5ms‍ to estimate the order parameters at the current time step:

	﻿‍ r0(∆ti), rA(∆ti), rB(∆ti), r0A(∆ti), r0A(∆ti).‍�

•	 We inferred the value of the external currents parameters

by minimizing the reconstruction error:

	﻿‍

E∆t(C0, CA, CB, ϵA, ϵB) = [r0(∆t)−rdata
0 (∆t)]2

1
T
∑

i rdata
0 (∆ti)

+ [rA(∆)−rdata
A (∆t)]2

1
T
∑

i rdata
A (∆ti)

+ [rB(∆t)−rdata
B (∆t)]2

1
T
∑

i rdata
B (∆ti)

+ [r0A(∆t)−rdata
0A (∆t)]2

1
T
∑

i rdata
0A (∆ti)

+ [r0B(∆t)−rdata
0B (∆t)]2

1
T
∑

i rdata
0B (∆ti)

,
‍� (30)

that quantifies the difference between the order parameters estimated from the data and the 
reconstructed ones; note that the dependence of the cost function ‍E‍ on ‍C0, CA, CB, ϵA, ϵB‍ is 
implicitly contained in the reconstructed order parameters. We minimized the cost function 
(30) by using an interior point method algorithm [Byrd et al., 1999] starting from the initial 
condition

	﻿‍ C0(∆ti−1), CA(∆ti−1), CB(∆ti−1), ϵA(∆ti−1), ϵB(∆ti−1);‍�

we imposed that ‍ϵA > 0, ϵB > 0‍ and added a ‍L1‍ regularization term to the external inputs, not 
to infer pathologically large positive and negative inputs that balance each other. This favors 
solutions with smaller external inputs and non-zero reconstruction error with respect to ones 
with larger inputs and almost-zero reconstruction error.
The external currents inferred with step 3 depend on our initial choice of of the couplings 
parameters ‍j0, jAs , jBs , ja‍.

4.	 Using step 3, the value of the couplings parameters ‍j0, jAs , jBs , ja‍ is inferred by minimizing the cost 
function
	﻿‍ Etot = αE rec + E ext‍ �
composed of two terms: the reconstruction error and a term that favors small external currents:

	﻿‍

Erec = 1
T
∑T

i=2
{

E∆ti
[
C0(∆ti), CA(∆ti), CB(∆ti), ϵA(∆ti), ϵB(∆ti)

]}
,

Eext = 1
T
∑T

i=2
[
|C0(∆ti)| + |CA(∆ti)| + |CB(∆ti)| + ϵA(∆ti) + ϵB(∆ti)

]
.‍� (31)

The minimization is done using a surrogate optimization algorithm [Gutmann, 2001].
The result does not depend on the choice of the time bin ‍∆t‍. Also, the result weakly depends on 

the time constant ‍τ ‍ in the mean field equations (e.g. 15), if ‍τ ‍ varies on in the range: 10 – 100ms. We 
set ‍τ = 25‍ ms.

Simulations of the model
We simulated the dynamics of a finite network of ‍N ‍ neurons. To each neuron ‍i‍, we assigned the vari-
ables ‍θ

(i)
A , θ(i)

B , η(i)
A , η(i)

B ‍ as follows.

•	 In the ‍θA\B‍-space, we sampled ‍Nθ‍ points ‍{θ
(i)
A , θ(i)

B }Nθ

i=1‍ equally spaced along the lines

	﻿‍ θA − θB = const‍�

in such a way that their joint distribution matches the distribution of the data (4), as shown in 
Figure 5—figure supplement 2a.

•	 In the ‍ηA\B‍-space, we drew ‍Nη‍ points ‍{η
(i)
A , η(i)

B }Nη

i=1‍ at random from the empirical distribution 

‍ρpA(ηA)ρpB(ηB)‍.
•	 For ‍i = 1, 2, . . .Nθ‍, we assigned to a block of ‍Nη‍ neurons the same coordinates ‍θ

(i)
A , θ(i)

B ‍ in the 

‍θA\B‍-space, and all possible coordinates ‍{η
(j)
A , η(j)

B }Nη

j=1‍ in the ‍ηA\B‍-space, so that the overall number 
of neurons is ‍N = NθNη‍.

https://doi.org/10.7554/eLife.77690
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The network dynamics we simulated is defined by the following stochastic differential equation:

	﻿‍

τ
dri(t)

dt
= −ri(t) +


 1

N

N∑
j=1

Jijrj(t) + Iext
i (t) + ξi(t)




+

,
‍�

(32)

	﻿‍ dξi(t) = −γξi(t)dt + σndW,‍� (33)

where

	﻿‍

Jij = j0 +
∑

ν=A,B jνs η
(i)
ν η

(j)
ν cos(θ(i)

ν − θ
(j)
ν ) + jaη(i)

B η
(j)
A cos(θ(i)

B − θ
(j)
A ),

Iext
i = C0(t) + η(i)

A CA(t) + η(i)
A cos(θ(i)

A − Φ)ϵA(t)

+η(i)
B CB(t) + η(i)

B cos(θ(i)
B − Φ)ϵB(t);

.

‍�

(34)

‍W ‍ in (33) is a Wiener process, and the parameters ‍γ = 75/s,σn = 0.35Hz/
√

s‍ set the magnitude of the 
noise fluctuations. The level of noise is chosen so that the results of the PCA analysis (see next section) 
match the data. Note that by setting the noise to zero and taking the limit ‍N → ∞‍ we recover the 
mean-field Equation 1. The results of Figure 3 are obtained from a network of ‍N = 16000‍ neurons; 
we simulate the network dynamics for 8 location of the external input ‍Φ‍ and 10 trials for each of the 
8 conditions, that is 10 instances of the noisy dynamics. The order parameters shown in Figure 3 are 
computed from single-trial activity, and then averaged over trials. The correlation-based analysis, 
instead, is obtained from trial-averaged activity.

Correlation-based analysis
The correlation-based analysis explained in this section was performed both on the smoothed and 
trial-averaged spike trains from recordings, and on the trial-averaged activity rates from simulations. 
Out of the 16,000 units in the simulated network model, we considered a subset of the same size 
‍N = 141‍ as the recorded neurons. In particular, for each neuron in the data, we chose the corre-
sponding one from simulations with the closest value of parameters ‍θA, θB, ηA, ηB‍ - the one with 
smallest euclidean distance in the space defined by (‍θA, θB, ηA, ηB‍). To compute signal correlations, we 
preprocessed the data as follows, both for the recordings and for the simulations. For each neuron, we 
normalized the activity by its standard deviation (computed across all times and all conditions); then, 
we mean-centered the activity across conditions. The ‍T = 300‍ ms long preparatory activity for all ‍C = 8‍ 
conditions was concatenated into a ‍N × TC‍ matrix denoted by ‍P‍, and the movement-related activity 
was grouped into an analogous matrix ‍M ‍.

CCA: We used a canonical correlation analysis (CCA) to compare the population activity from data 
and simulations. First, we projected the activity onto the ‍K ‍ PCA dimensions that captured 90% of the 
activity variance across conditions; for the preparatory epoch, ‍K = 20‍ for both the data and the simu-
lations; for the movement-related epoch, ‍K = 14‍ for the data, and ‍K = 10‍ for the simulations. We then 
applied CCA to look for common patterns in the activity matrices from data and simulations. In brief, 
CCA finds a set of linear transformations of the activity matrices, in such a way that the transformed 
variables (called canonical variables) are maximally correlated. Figure 5a shows a high correlation 
between the sets of canonical variables from data and simulations. We repeated the procedure for the 
simulations of the purely feedforward network. In this case, the movement-related activity is slightly 
higher dimensional than for the recurrent network (‍K = 12‍), and the average canonical correlation is a 
bit lower. Note that both activities are trial-averaged, and the same realization of the noise was used 
in both sets of simulations (feedforward and recurrent).

PCA: We obtained correlation matrices relative to preparatory and movement related activity 
by computing the correlations between the rows of the respective matrices. We then identified the 
prep-PCs and move-PCs by performing PCA separately on the matrices ‍P‍ and ‍M ‍. The degree of 
orthogonality between the prep- and move- subspaces was quantified by the Alignment Index ‍A‍ 
(Elsayed et al., 2016), measuring the amount of variance of the preparatory activity explained by the 
first ‍K ‍ move-PCs:

	﻿‍
A = Tr(ET

movCprepEmov)∑K
i=1 σprep(i) ,

‍�

https://doi.org/10.7554/eLife.77690
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where ‍Emov‍ is the matrix defined by the top ‍K ‍ move-PCs, ‍Cprep‍ is the covariance matrix of the prepara-
tory activity and ‍σprep(i)‍ is the ‍i‍-th eigenvalue of ‍Cprep‍ was set to the number of principal components 
needed to explain 90% of the execution activity variance. Hence, the Alignment Index ranges from 0 
(orthogonal subspaces) to 1 (aligned subspaces). As random test, we computed the Random Align-
ment Index between two sets of ‍K ‍ dimensions drawn at random within the space occupied by neural 
activity, using the Monte Carlo procedure described in Elsayed et al., 2016. We performed the same 
analysis on both the data (‍K = 14‍) and the model (‍K = 10‍) trial averaged activity.

The dimensionality of the preparatory and movement-related subspaces can be understood 
as follows. The activity of the ring model encoding the value of a singular angular variable is two-
dimensional in the Euclidean space. Similarly, the activity of the double-ring model encoding two 
distinct circular maps is four-dimensional. Our model is an extension of the double-ring model, where 
both the connectivity matrix and the external fields (Equations 5; 6) are a sum of several terms, each 
one composed of an ‍η‍-dependent term multiplying a ‍θ‍-dependent term. The connectivity matrix is 
still rank-four, but its eigenvectors are modulated by the ‍η‍ variables. Although the dynamics is four-
dimensional, we have shown that during movement preparation the activity is localized only in map A, 
while during movement execution it is predominantly localized in map B: in either epoch, we expect 
only two eigenvalues to explain most of the activity variance, as we indeed see from simulations in 
absence of additive noise (Figure 6—figure supplement 1). The noise term introduces extra random 
dimensions; as the dynamics gets higher dimensional, both the alignment index and the random 
alignment index get smaller.

jPCA: We quantified the rotational structure in the data by applying the jPCA (Churchland et al., 
2012) dimensionality reduction technique to both simulated activity and recordings during movement 
execution. jPCA is a technique to identify the dimensions that capture rotational dynamics in the data. 
Given the matrix of activity ‍M ‍ defined above, jPCA finds the best fit for the real skewed-symmetric 
matrix ‍R‍ that transforms the activity ‍M ‍ into its derivative ‍Ṁ ‍:

	﻿‍ Ṁ = RM.‍�

The plane capturing the strongest rotations is spanned by the eigenvectors of the matrix ‍R‍ associated 
with the two largest eigenvalues. Figure 5—figure supplement 4 shows that the trajectories from 
simulations qualitatively resembled the ones from data when projected onto the jPCA subspace that 
capture most of the variance.

EMG signals
The EMG signals were recorded from macaque monkey Bx during the execution of a center-out 
reaching movement, as described in Balasubramanian et al., 2020. Bi-polar electromyographic elec-
trodes were implanted in 13 individual muscles (Anterior Deltoid, Posterior Deltoid, Pectoralis Major, 
Biceps Lateral, Biceps Medial, Triceps Long head, Triceps Lateral, Brachioradialis, Flexor Carpi Ulnaris, 
Flexor Digitorum Superficialis, Extensor Carpi Radialis, Extensor Digitorum Communis, Extensor Carpi 
Ulnaris). The signals were amplified individually and bandpass filtered between 0.3 and 1 kHz prior to 
digitization and sampled at 10 kHz. The EMG signals shown in Figure 5b were rectified and smoothed; 
signals from different trials were rescaled to match the average length of movement execution, and 
then averaged over trials. The linear readout of the activity from simulations was defined as

	﻿‍
zk(t) =

N∑
j=1

Wk,jrj(t) + Wk,0
‍
 
�

(35)

where ‍rj‍ is the trial-averaged activity from simulations, with the ‍C = 8‍ conditions concatenated into a 
matrix of dimensions ‍N × TC‍, where ‍T ‍ the average duration of movement execution; ‍z‍ is a matrix with 
dimension ‍m × TC‍, ‍m = 13‍ being the number of recorded muscles. For each muscle ‍k‍, the EMG signal 

‍zk(t)‍ was regressed onto the activity rate ‍{rj(t)}j‍ to find the readout weight vector ‍{Wk,j}N
j=0‍. For the 

reconstructed EMG signals shown in Figure 5b, we used as inputs the activity of N = 1000 units drawn 
at random from the 16000 units in the network model. For each muscle ‍k‍, we cross-validated the 
regression by randomly partitioning the TC time-steps into 10 folds of non-consecutive time points. 
The decoder was trained on 9 folds using LASSO regression, and tested on the left-out fold. We 
repeated the procedure 10 times and reported a normalized mean squared error of 0.0066.

https://doi.org/10.7554/eLife.77690
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