
SAMPLE MPCS Mathematics Placement Test

This is a sample examination of practice problems to help you prepare for the
MPCS mathematics placement examination. An answer key is included.

You should expect the problems on the actual mathematics placement exam-
ination to consist of mostly proof-based problems, with some computational
problems. You will have 2 hours to complete the actual examination. You
should answer 70% of the problems correctly in order to pass the exam. Skip-
ping any one of the major topics on the Topics List will likely result in your
failing the exam.

Do not consult outside sources when you work on the practice exam.

The actual mathematics placement examination is a closed-book, closed-
note, and closed-note exam. You should use this practice exam to simulate
the actual math placement exam. Consult the answer key after you finish
working on the sample exam, or on a problem or a group of problems from the
sample exam if you practice at different times.
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Problem 1.

1(a) [2 points]
Compute 6161(mod 9) by modular arithmetic.

1(b) [1 points]
State Fermat’s Little Theorem.

1(c) [2 points]
Use part (b) and modular arithmetic to compute 6161(mod 11).
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Problem 2.

Let p, q, and r be distinct prime numbers.

2(a) [3 points]
How many integers n with 1 ≤ n ≤ pqr are relatively prime to pqr?

2(b) [2 points]
Let p = 2, q = 3, and r = 5. Write down all integers n with 1 ≤ n ≤ pqr
and relatively prime to pqr, and show that your formula from part a gives the
correct number.
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Problem 3.

Find the multiplicative inverse of a(mod m) for each of the following pairs of
integers or prove that it does not exist:

3(a) [1 points]
a = 15, b = 72.

3(b) [1 points]
a = 55, b = 204.

3(c) [3 points]
a = k2 − 1, b = k + 1.
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Problem 4.

Use the Chinese Remainder Theorem to find all solutions of the following system
of congruences.

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 4 (mod 11)
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Problem 5.

5(a) [2 points]
How many ways are there to put n identical objects into m distinct containers
so that no container is empty?

5(b) [3 points]
Suppose that S is a set with n elements. How many ordered pairs (A,B) are
there such that A and B are subsets of S with A ⊆ B?
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Problem 6.

You are organizing a dance with students attending from 4 departments: there
are 4 CS students, 4 math students, 4 physics students, and 6 statistics students.
For one of the dances, you need to arrange 10 students to stand in a circle, all
facing the center and holding hands.

6(a) [2 points]
How many different circles of students can you arrange? Two circles are the
same if and only if everyone is holding hands with the same neighbors using the
same hands. Do not simply your answer (e.g., you can leave in factorials, etc.)

6(b) [3 points]
How many different circles of students can you arrange if there must be exactly
1 math student and 1 physics student, with the math student to the right of
the physics student?
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Problem 7.

7(a) [2 points]
Prove: if 7 integers are selected from the first 10 positive integers, there must
be at least two pairs of these integers with the sum 11. Is this statement true if
6 integers are selected rather than 7?

7(b) [3 points]
Prove: whenever 25 girls and 25 boys are seated around a circular table, there
is always a person both of whose neighbors are boys.
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Problem 8.

Let S be the sample space of two-digit odd integers (with leading zeros allowed)
n = d2d1 with 01 ≤ n ≤ 99 chosen uniformly at random.

8(a) [1 points]
What is the size of the sample space S?

8(b) [1 points]
Find the probability of the event A that an element of S has distinct digits
d1 6= d2.

8(c) [1 points]
Define a random variable R to be the sum of the digits of n: thus R(n) = d1+d2.
Find E(R), the expected value of R.

8(d) [1 points]
Let B be the event that R(n) = 10 and event A as in part b. Find the conditional
probability p(B|A).

8(e) [1 points]
Let C be the event that d2 ≥ 5 and D be the event that d1 ≤ 5. Are C and D
independent?
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Problem 9.

9(a) [1 points]
Let S be a sample space. Complete the definition: “A random variable on S is
. . . ”.

9(b) [1 points]
Prove: If Xi, i = 1, 2, . . . , n, n a positive integer, are random variables on S,
then E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn).

9(c) [2 points]
Suppose that X and Y are random variables on S and that X and Y are
nonnegative for all elements s in S. Let U be the random variable defined by
U(s) = max (X(s), Y (s)) for all s in S. Prove that E(U) ≤ E(X) + E(Y ).

9(d) [2 points]
Suppose that X(s) ≤M , where M is a positive real number, for all s in S. Let
Z(s) = X(s) · Y (s). Prove that E(Z) ≤M · E(Y ).
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Problem 10.

Let S be the set of permutations of 10 objects.

10(a) [2 points]
How many elements of S leave the third object fixed?

10(b) [3 points]
Consider the experiment of choosing an element of S uniformly at random. Let
R be the random variable defined by R(σ) = |{j : σ(j) = j}| where σ is a
permutation in S, so R(σ) is the number of fixed points of σ. Compute the
expected value of R.
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Problem 11.

11(a) [2 points]
Suppose that two fair 8-sided dice are rolled. What is the expected value of
the sum of the numbers that come up? What is the variance of the sum of the
numbers that come up?

11(b) [3 points]
Consider a fair 6-sided die. Let X denote the number of times that the side 4
shows up over n throws of the die. Compute an upper bound on P (X ≥ n/2)
using Markov’s inequality.
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Problem 12.

Is the following pair of graphs isomorphic? If yes, give an explicit isomorphism;
if no, explain why they are not isomorphic.
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Problem 13.

13(a) [3 points]
Prove that every connected undirected simple graph on n vertices has at least
n− 1 edges.

13(b) [2 points]
Prove that every undirected simple graph on n vertices with k connected com-
ponents has at least n− k edges.
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Problem 14.

14(a) [1 points]
Complete the following definition: “A tree is . . . ”.

14(b) [4 points]
Prove that a simple undirected graph is a tree if and only if it contains no
simple circuits and the addition of an edge connecting two nonadjacent vertices
produces a new graph that has exactly one simple circuit (where circuits that
contain the same edges are not considered different).
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Problem 15.

Let G be a nonempty simple undirected graph.

Prove: if every vertex of G has even degree, then G contains a simple circuit.
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Problem 16.

Find a recurrence to describe the number of ways to completely cover a 2 × n
checkerboard with 1× 2 dominoes.
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Problem 17.

17(a) [2 points]
Can we draw a closed path made up of 9 line segments, each of which intersects
exactly one of the other segments? If yes, give an example of such a path; if no,
explain why it is not possible.

17(b) [3 points]
Twenty-five checkers are placed on a 25 × 25 checkerboard in such a way that
their positions are symmetric with respect to one of its diagonals. Prove that
at least one of the checkers is positioned on that diagonal.
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ANSWERS

Problem 1.

1(a) [2 points]
Compute 6161 (mod 9) by modular arithmetic.

Ans. Since 61 ≡ −2 (mod 9), we have

6161 ≡ −261 ≡ −2 · 860 ≡ −2 · (−1)61 ≡ −2 ≡ 7 (mod 9).

1(b) [1 points]
State Fermat’s Little Theorem.

Ans. If p is prime, then for any integer a, ap ≡ a (mod p). If gcd(a, p) = 1,
then ap−1 ≡ 1 (mod p).

1(c) [2 points]
Use part (b) and modular arithmetic to compute 6161 (mod 11).

Ans. Since p = 11 is prime and gcd(61, 11) = 1, Fermat’s Little Theorem implies
that 6110 ≡ 1 (mod 11). Hence 6161 (mod 11) ≡ 61 ≡ 6 (mod 11).
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Problem 2.

Let p, q, and r be distinct prime numbers.

2(a) [3 points]
How many integers n with 1 ≤ n ≤ pqr are relatively prime to pqr?

Ans. Define
P = {1 ≤ n ≤ pqr | p|n}

and similarly for Q and R. Then |P | = pqr/p = qr, while |Q| = pr and |R| = pq.
Similarly |P ∩ Q| = pqr/pq = r since p, q, and r are all distinct primes, and
|P ∩ R| = q, |Q ∩ R| = p. Finally, |P ∩Q ∩ R| = 1, so we can apply inclusion-
exclusion:

|{1 ≤ n ≤ pqr | gcd(n, pqr) = 1}| = pqr − |{1 ≤ n ≤ pqr | p|n ∨ q|n ∨ r|n}|
= pqr − |P ∪Q ∪R|
= pqr − qr − pr − pq + r + q + p− 1.

2(b) [2 points]
Let p = 2, q = 3, and r = 5. Write down all integers n with 1 ≤ n ≤ pqr
and relatively prime to pqr, and show that your formula from part b gives the
correct number.

Ans. Putting p = 2, q = 3, r = 5 gives eight numbers 1, 7, 11, 13, 17, 19, 23, 29
between 1 and pqr = 30 inclusive and relatively prime to 30. The formula from
part b gives

pqr − qr − pr − pq + r + q + p− 1 = 30− 15− 10− 6 + 5 + 3 + 2− 1 = 8.
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Problem 3.

Find the multiplicative inverse of a(mod m) for each of the following pairs of
integers or prove that it does not exist:

3(a) [1 points]
a = 15, b = 72.

Ans. Does not exist because gcd(15, 72) = 3 6= 1.

3(b) [1 points]
a = 55, b = 204.

Ans. We use the Euclidean algorithm to find that gcd(55, 204) = 1 and to write
as a linear combination of 55 and 204:

204 = 3 · 55 + 39 (⇒ 39 = −3 · 55 + 204)

55 = 1 · 39 + 16 (⇒ 16 = 55− 39 = 4 · 55− 204)

39 = 2 · 16 + 7 (⇒ 7 = 39− 2 · 16 = −11 · 55 + 3 · 204)

16 = 2 · 7 + 2 (⇒ 2 = 16− 2 · 7 = 26 · 55− 7 · 204)

7 = 3 · 2 + 1 (⇒ 1 = 7− 3 · 2 = −89 · 55 + 24 · 204)

Now 1 = −89 · 55 + 24 · 204 ≡ −89 · 55(mod 204) so the multiplicative inverse
of 55 ≡ −89 ≡ 115(mod 204).

3(c) [3 points]
a = k2 − 1, b = k + 1.

Ans. Does not exist because gcd(k2 − 1, k + 1) = k + 1 6= 1.
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Problem 4.

Use the Chinese Remainder Theorem to find all solutions of the following system
of congruences.

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 4 (mod 11)

Ans. The Chinese remainder theorem needs to be used here. Following the
notation on page 278 of Rosen, a1 = 1, m1 = 2, a2 = 2, m2 = 3, a3 = 3,
m3 = 5, a4 = 4, m4 = 11, m = 330, M1 = 330/2 = 165,M2 = 330/3 = 110,
M3 = 330/5 = 66, M4 = 330/11 = 30. We find inverses yi of Mi modulo mi

for i = 1, 2, 3, 4: y1 = 1, y2 = 2, y3 = 1, and y4 = 7, respectively (for the last
inverse, 30 ≡ 8(mod 11), so we want to solve 8y4 = 1(mod 11), i.e., y4 = 7). The
simultaneous solution is x = 1 ·165 ·1+2 ·110 ·2+3 ·66 ·1+4 ·30 ·7 = 1643 ≡ 323
(mod 330). Thus the solutions are all integers of the form 323 + 330k, where k
is an integer.
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Problem 5.

5(a) [2 points]
How many ways are there to put n identical objects into m distinct containers
so that no container is empty?

Ans. Since the objects are identical, all that matters is the number of objects
put into each container. If we let xi be the number of objects put into the ith
container, then we are are asking for the number of solutions to the equation x1+
x2 + · · ·+ xm = n with the restriction that each x ≥ 1. This is

(
m+(m−n)−1

m−n
)

=(
n−1
n−m

)
.

5(b) [3 points]
Suppose that S is a set with n elements. How many ordered pairs (A,B) are
there such that A and B are subsets of S with A ⊆ B?

Ans. Each element x of S falls into exactly one of three categories: either it is
an element of A, i.e., x ∈ A; or it is not an element of A but is an element of
B, i.e., x ∈ B −A; or it is not an element of B, i.e., x ∈ S −B. So the number
of ways to choose sets A and B to satisfy these conditions is the same as the
number of ways to place each element x of S into one of these three categories.
Therefore the answer is 3n.
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Problem 6.

You are organizing a dance with students attending from 4 departments: there
are 4 CS students, 4 math students, 4 physics students, and 6 statistics students.
For one of the dances, you need to arrange 10 students to stand in a circle, all
facing the center and holding hands.

6(a) [2 points]
How many different circles of students can you arrange? Two circles are the
same if and only if everyone is holding hands with the same neighbors using the
same hands. Do not simply your answer (e.g., you can leave in factorials, etc.)

Ans. There are 18 students altogether. There are P (18, 10) = 18!/8! ways to
arrange 10 of the students in different orders standing in a row (not a circle).
These orders may be grouped into groups of 10, corresponding to the same circle,
depending of where the first person in the circle is, and proceeding clockwise.
So the answer is P (18, 10)/10.

6(b) [3 points]
How many different circles of students can you arrange if there must be exactly
1 math student and 1 physics student, with the math student to the right of
the physics student?

Ans. Proceeding clockwise around the circle, we must encounter the math
student and physics student in the order M-P. The number of ways to assign
the M and the P is 4 × 4 = 16. The number of spaces continuing clockwise
from P around to M is 8. There are P (10, 8) ways to order 8 of the remaining
4 CS students and 6 statistics students to fit into these spaces. Thus there are
16× P (10, 8) = 16× 10!/2! circles.
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Problem 7.

7(a) [2 points]
Prove: if 7 integers are selected from the first 10 positive integers, there must
be at least two pairs of these integers with the sum 11. Is this statement true if
6 integers are selected rather than 7?

Ans. Group the first 10 positive integers into five subsets of two integers each,
each subset adding up to 11: {1, 10}, {2, 9}, {3, 8}, {4, 7}, {5, 6}. If we select 7
integers from this set, then by the pigeonhole principle (at least) two of them
must come from the same subset. These two integers have a sum of 11. Now
if we ignore the two in the same subset, there are 5 more integers and 4 more
subsets; again by the by the pigeonhole principle (at least) two of them must
come from the same subset. This gives us two pairs of integers, as desired. The
statement is not true if 6 integers are selected: the set {1, 2, 3, 4, 5, 6} has only
5, 6 from the same subset, so there is only one pair with a sum of 11.

7(b) [3 points]
Prove: whenever 25 girls and 25 boys are seated around a circular table, there
is always a person both of whose neighbors are boys.

Ans. Number the seats around the table from 1 to 50, with seat 50 adjacent to
seat 1. There are 25 seats with odd numbers and 25 seats with even numbers.
If no more than 12 boys occupied the odd-numbered seats, then at least 13 boys
would occupy the even-numbered seats, and vice versa. Assume that at least 13
boys occupy the 25 odd-numbered seats. Then at least two of those boys must
be in consecutive odd-numbered seats. The person sitting between those two
boys will have boys as both of his or her neighbors.
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Problem 8.

Let S be the sample space of two-digit odd integers (with leading zeros allowed)
n = d2d1 with 01 ≤ n ≤ 99 chosen uniformly at random.

8(a) [1 points]
What is the size of the sample space S?

Ans. 50.

8(b) [1 points]
Find the probability of the event A that an element of S has distinct digits
d1 6= d2.

Ans. Since A is all of S except for 11, 33, 55, 77, and 99, A has cardinality 45
and p(A) = 45/50 = 9/10.

8(c) [2 points]
Define a random variable R to be the sum of the digits of n: thus R(n) = d1+d2.
Find the expected value E(R).

Ans. Since expectation is linear, E(R) = E(d2) + E(d1). Since the digits are
equally probable, E(d2) = (0+1+2+· · ·+9)/10 and E(d1) = (1+3+5+7+9)/5.
Summing, E(R) = 9.5.

8(d) [2 points]
Let B be the event that R(n) = 10 and A be as in part b. Find the conditional
probability p(B|A).

Ans. If R(n) = 10, then n is one of the 5 numbers 19, 37, 55, 73, and 91. Only
55 is not in A, so

p(B|A) =
p(B ∩A)

p(A)
=

4/50

45/50
=

4

45
.

8(e) [1 points]
Let C be the event that d2 ≥ 5 and D be the event that d1 ≤ 5. Are C and D
independent?

Ans. Yes: p(C ∩ D) = p(C) · p(D). Proof: p(C ∩ D) = 15/50, p(C) = 25/50,
p(D) = 30/50, so

p(C) · p(D) =
30

50
· 25

50
=

15

50
= p(C ∩D).
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Problem 9.

9(a) [1 points]
Let S be a sample space. Complete the definition: “A random variable on S is
. . . ”.
Ans. A random variable on S is a function that assigns a real number to each
element s ∈ S.

9(b) [1 points]
Prove: If Xi, i = 1, 2, . . . , n, n a positive integer, are random variables on S,
then E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn).

Ans.

E(X1 +X2) =
∑
s∈S

p(s)(X1(s) +X2(s))

=
∑
s∈S

p(s)X1(s) +
∑
s∈S

p(s)X2(s)

= E(X1) + E(X2)

Prove true for n > 2 by induction.

9(c) [2 points]
Suppose that X and Y are random variables on S and that X and Y are non-
negative for all elements s in S. Let U be the random variable defined by
U(s) = max (X(s), Y (s)) for all s in S. Prove that E(U) ≤ E(X) + E(Y ).

Ans. Since X and Y are nonnegative on S, X(s) ≤ X(s) + Y (s) and Y (s) ≤
X(s) + Y (s) for all s in S. Since U(s) is either X(s) or Y (s) for all s in S,
U(s) ≤ X(s)+Y (s) for all s in S. Therefore E(U) ≤ E(X+Y ) = E(X)+E(Y ).

9(d) [2 points]
Suppose that X(s) ≤M , where M is a positive real number, for all s in S. Let
Z(s) = X(s) · Y (s). Prove that E(Z) ≤M · E(Y ).

Ans.

E(Z) =
∑
s∈S

p(s) · Z(s) (by definition)

=
∑
s∈S

p(s)(X(s) · Y (s))

≤
∑
s∈S

p(s)(M · Y (s)) (since X(s) ≤M ∀s ∈ S)

= M
∑
s∈S

p(s) · Y (s)

= M · E(Y ) (by definition)
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Problem 10.

Let S be the set of permutations of 10 objects.

10(a) [2 points]
How many elements of S leave the third object fixed?

Ans. Permutations that fix the third object correspond precisely to permuta-
tions of the n − 1 = 9 objects numbered 1, 2, 4, 5, . . . , 10. Thus there are 9! of
them.

10(b) [3 points]
Consider the experiment of choosing an element of S uniformly at random. Let
R be the random variable defined by R(σ) = |{j : σ(j) = j}| where σ is a
permutation in S, so R(σ) is the number of fixed points of σ. Compute the
expected value of R.

Ans. Let n = 10. For j = 1 to n define an indicator random variable Rj by
Rj(σ) = 1 if σ fixes j and Rj(σ) = 0 otherwise. Then the number of fixed
points is R = R1 +R2 + · · ·+Rn. Since expectation is linear,

E(R) = E(R1) + E(R2) + · · ·+ E(Rn).

But precisely (n− 1)! of the permutations of n objects fix the first object, as in
part (a), so

E(R1) =
(n− 1)!

n!
=

1

n
.

Since there was nothing special about the first object, E(Rj) = 1/n for each j.
Thus E(R) = n · 1/n = 1.
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Problem 11.

Suppose that two fair 8-sided dice are rolled.

11(a) [2 points]
Suppose that two fair 8-sided dice are rolled. What is the expected value of the
sum of the numbers that come up?

Ans. Since expected value is linear, the expected value of the sum is equal to the
sum of the expected values. For each die, each of the outcomes 1 through 8 oc-
curs with probability 1/8, so the expected value is (1/8)(1+2+3+· · ·+8) = 9/2.
Therefore the answer is 9.

What is the variance of the sum of the numbers that come up?

Ans. Since variance is linear for independent random variables, and these ran-
dom variables are independent, the variance of the sum is equal to the sum of
the variances. For each die, V (X) = E(X2) − E(X)2 = (1/8)(12 + 22 + 32 +
· · ·+ 82)− (9/2)2 = (51/2)− (81/4) = 21/4. Therefore the answer is 21/2.

11(b) [3 points]
Consider a fair 6-sided die. Let X denote the number of times that the side 4
shows up over n throws of the die. Compute an upper bound on P (X ≥ n/2)
using Markov’s inequality.

Ans. Let Xi = 1 if the ith throw shows 4 and Xi = 0 otherwise. Then
X =

∑n
i=1Xi and E(X) = nE(Xi) = n/6. So Markov’s inequality implies

P
(
X ≥ n

2

)
≤ n/6

n/2
=

1

3
.
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Problem 12.

Is the following pair of graphs isomorphic? If yes, give an explicit isomorphism;
if no, explain why they are not isomorphic.

Isomorphic: Yes/No

Ans. No, the two graphs are not isomorphic.

Justification: For instance, the first graph has no simple circuit of length 4, the
second graph has two simple circuits of length 4.
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Problem 13.

13(a) [3 points]
Prove that every connected undirected simple graph on n vertices has at least
n− 1 edges.

Ans. Proof by induction on n. Basis: n = 1. A simple graph with 1 vertex
has 1 − 1 = 0 edges. Inductive step: Assume the inductive hypothesis: every
connected simple graph on k vertices has at least k − 1 edges, for some k ≥ 2.
Let G be a connected simple graph with k + 1 vertices: we must show that G
has at least k edges.
Since G is connected, every vertex of G must have degree 1 or greater.
Case 1: if every vertex of G has degree 2 or greater, then the sum of the degrees
is at least 2(k+ 1). Therefore, by the handshake theorem, the number of edges
is at least k + 1, which is greater than k.
Case 2: suppose G has at least one vertex of degree 1. Call it v. Remove v and
its adjacent edge from G. Since deg(v) = 1, this does not disconnect G. Thus
G − v is still connected, and it has k vertices, so by the inductive hypothesis,
G − v has at least k − 1 edges. Since G has one more edge than G − v, G has
at least k edges, and the proof is complete.

13(b) [2 points]
Prove that every undirected simple graph on n vertices with k connected com-
ponents has at least n− k edges.

Ans. Generalize your proof for part a!
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Problem 14.

14(a) [1 points]
Complete the following definition: “A tree is . . . ”.

Ans. A tree is a connected undirected graph with no simple circuits.

14(b) [4 points]
Prove that a simple undirected graph is a tree if and only if it contains no
simple circuits and the addition of an edge connecting two nonadjacent vertices
produces a new graph that has exactly one simple circuit (where circuits that
contain the same edges are not considered different).

Ans. First assume that G is a tree. We must show that G contains no simple
circuits (which is immediate by definition) and that the addition of an edge
connecting two nonadjacent vertices produces a graph that has exactly one
simple circuit. Clearly the addition of such an edge e = (u, v) results in a graph
with a simple circuit, namely u, e, v, P, u, where P is the unique simple path
joining v to u in G. Since P is unique, this is the only simple circuit that can
be formed. (You may need to prove property: An undirected graph is a tree if
and only if there is a unique simple path between any two of its vertices.)
To prove the converse, suppose that G satisfies the given conditions; we want
to prove that G is a tree; i.e., that G is connected (since one of the conditions is
already that G has no simple circuits). Suppose, to the contrary, that G is not
connected. Then there exists two vertices u and v that lie in different connected
components of G. Then edge (u, v) can be added to G without the formation of
any simple circuits, contradicting the assumed condition. Therefore G is indeed
a tree.
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Problem 15.

Let G be a nonempty finite simple undirected graph.

Prove: if every vertex of G has even degree, then G contains a simple circuit.

Ans. Let P = u1, u2, . . . , uk, where ui are vertices in G, be a simple path of
maximal length in G. Since deg(u1) ≥ 2, there is at least one other edge (v, u1)
in G having u1 as a vertex. If v is one of the vertices of the path P , then the
subpath from u1 to v, concatenated with the edge (v, u1), forms a simple circuit
in G. If v is not a vertex of path P , then the path v, u1, u2, . . . , uk is a simple
path whose length is greater than the length of P , contradicting the assumption
that the length of P is maximal.
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Problem 16.

Find a recurrence to describe the number of ways to completely cover a 2 × n
checkerboard with 1× 2 dominoes.

Ans. Let an be the number of coverings. Consider separately the covering
where the position in the top right corner of the checkerboard is covered by a
domino positioned horizontally and where it is covered by a domino positioned
vertically.
If the rightmost domino is positioned vertically, then we have a covering of the
leftmost n − 1 columns, and this can be done in an−1 ways. If the rightmost
domino is positioned horizontally, then there must be another domino directly
beneath it, and these together cover the last two columns. The first n − 2
columns therefore will need to contain a covering by dominoes, and this can
be done in an−2 ways. Thus we obtain the recurrence an = an−1 + an−2, the
Fibonacci recurrence.
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Problem 17.

17(a) [2 points]
Can we draw a closed path made up of 9 line segments, each of which intersects
exactly one of the other segments? If yes, give an example of such a path; if no,
explain why it is not possible.

Ans. Such a closed path is not possible. If such a closed path were possible, then
all the line segments could be partitioned into pairs of intersecting segments.
But then the number of segments would have to be even.

17(b) [3 points]
Twenty-five checkers are placed on a 25 × 25 checkerboard in such a way that
their positions are symmetric with respect to one of its diagonals. Prove that
at least one of the checkers is positioned on that diagonal.

Ans. If no checker occurred on the diagonal, then the checkers could be parti-
tioned into pairs, placed symmetrically with respect to the diagonal. Therefore,
there must be one (and in fact an odd number) of checkers on the diagonal.
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