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A Mental Model for Early Arithmetic

Janellen Huttenlocher, Nancy C. Jordan, and Susan Cohen Levine

The authors examined young children's ability to solve nonverbal calculation problems in which
they must determine how many items are in a hidden array after items have been added into or
taken away from it. Earlier work showed that an ability to reliably solve such problems emerges
earlier than verbal calculation ability but did not examine when it first appears. The authors
propose that the ability to solve such problems involves domain-general symbolic processes similar
to those involved in symbolic play and the use of physical models. Hence the ability to calculate
should appear at about 2 years and should be related to overall level of intellectual competence. The
authors show that the ability to reliably solve nonverbal calculation tasks emerges only after 2 years
of age and that performance on nonverbal calculation problems is highly related to overall level of
intellectual competence in children between 3 and 4 years of age.

It is well known that children can carry out numerical
transformations involving addition and subtraction by 5 or 6
years of age (e.g., Siegler & Shrager, 1984; Siegler &
Jenkins, 1989; and our own earlier papers, Levine, Jordan,
& Huttenlocher, 1992; Jordan, Huttenlocher, & Levine,
1992). They can answer questions such as "What is 3 + 2?"
and "What is 4 — 1?" They also can solve simple story
problems such as: "John has four marbles. Harry gives him
two more marbles (or, alternatively, "Harry takes away two
of his marbles."); how many marbles does John have?"
Clearly, the ability to solve such verbal calculation prob-
lems requires mastery of conventional arithmetic skills. Yet
a child need not possess these conventional skills to be able
to carry out calculations. Consider the following nonverbal
problem. A set of four objects is shown. The set is then
hidden. Next, one of two possible transformations is carried
out, but the outcome cannot be seen; either a set of two
items is added to the hidden array, or a subset of two items
is removed from the hidden array. A child who can indicate
the numerosity of the resultant array by producing an array
with the correct number of items (for this and for compa-
rable problems) is able to carry out numerical transforma-
tions. In the present article, we examine the development of
the ability to solve such nonverbal problems.

A Mental Model for Arithmetic

It would be possible to solve a nonverbal number trans-
formation problem by constructing a mental version of the
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initial (covered) array and then imagining the movement of
items into or out of that array. The changed mental array
resulting from the imagined movement of items in relation
to the initial array would constitute the answer to the prob-
lem. That resultant mental array could then be used to
produce an actual array of the proper numerosity, or, if a
person knows the number words, to report the number of
items in the resultant array. Such a problem-solving process
would be comparable in certain ways to the use of physical
models to "stand for" aspects of situations. For example, a
person might construct a model spaceship and a simulated
outer space to test whether an actual spaceship with certain
features would be adequate for travel in outer space. To
provide an adequate test, the model must preserve the crit-
ical features of the situation—the shape of the ship, its
movement, and certain features of outer space. Other fea-
tures, such as the color of the ship, are irrelevant. Mistakes
may be made as to whether the actual spaceship would work
if the features represented in the model are not the critical
ones, or if the critical features are represented incorrectly or
are not represented in the model (because they are not
recognized as relevant) and so forth.

It is only necessary that the representation for number
transformation, like that for the model spaceship, should
preserve the relevant features of a situation. Like the phys-
ically realized model, the mental representation is not a
replica of a situation; in fact, because the number of ways to
conceptualize a situation is indefinitely large, the notion of
a mental replica of a situation is not well defined. Although
such representations do not involve arbitrary conventional
symbols, they are symbolic in nature. Thus, for nonverbal
calculation there is explicit representation of the number of
countable entities in the initial set, the nature of the trans-
formation (into or out of the set), and the number of entities
involved in that transformation. Other features, such as the
nature of the individual items, their spatial arrangement, and
so forth, are irrelevant.

These representations are sometimes referred to as mental
models, a phrase introduced by Centner and Stevens (1983)
and Johnson-Laird (1983). Barsalou (1992) described men-

284



MENTAL MODEL 285

tal models as follows: Their "attributes and relations are
analogous to the physical parts and relations" in the situa-
tion they represent, and they are used to "produce quasi-
continuous simulations" of changes in these situations. One
sort of evidence for the use of mental models in adult
problem solving comes from reaction time and error data
(e.g., in spatial problems for which people predict the out-
comes of rotating forms in space, of folding pieces of paper,
etc.). When the physical situations to be represented are
more complex, the problem solving process takes longer to
carry out and is less accurate (e.g., Shepard & Metzler,
1971). For example, when asked to describe the mental
processes in solving spatial problems, people frequently
describe an imagined version of the initial situation and
execution of imaginary actions that change that situation (cf.
discussions in Huttenlocher, 1973, 1976).

In certain cases, mental models may provide formal
mechanisms that, when applied correctly, necessarily yield
the correct answer. These include mental rotation and paper-
folding tasks, in which the question is whether an object will
have a particular appearance when it is transformed in a
certain way. These are determinate geometry problems—-
the information provided is sufficient to answer the ques-
tion. Calculation tasks that involve sets of discrete items to
which a number of items is added or subtracted also are
determinate problems. The solution process we have de-
scribed constitutes a formal mechanism for calculation that,
when applied correctly, yields the number of elements re-
sulting when a set has been transformed by movement of
elements into or out of that set. For determinate problems of
this sort, errors that are made when people possess a mental
model (formal competence) are performance errors that are
due to, for example, inattention. In the present article we use
the term mental model to refer to the use of such a formal
mechanism in calculation.

Mental Models in Development

A mental model for arithmetic, in which imagined entities
and transformations are mapped onto actual objects and
movements, is potentially of special interest in the study of
cognitive development. In contrast to conventional sym-
bolic schemes that are acquired from caregivers, such a
model might, in principle, develop without input from care-
givers. That is, a mental model for arithmetic—a formal
competence (applicable to small numbers) that yields an-
swers to calculation problems—might involve only an abil-
ity to abstract numerically relevant information from situa-
tions. Thus, whereas the ability to solve verbal arithmetic
problems involves both conventional skills and an under-
standing of number transformation, the ability to solve
nonverbal calculation problems might involve only an un-
derstanding of number transformation.

In fact, the acquisition of verbal arithmetic skills might
involve the mapping of conventional symbols onto a pre-
existing mental model of number and number transforma-
tion. This model might be used in solving number-fact
problems or simple story problems; that is, when children

are given such a problem, they might imagine an array of
the initial numerosity, transform that array by adding or
subtracting items as described, and report the answer. The
children also might use their fingers (a physical rather than
a mental model) to represent the numbers and the transfor-
mation process (cf. Siegler & Shrager, 1984). A mental
model also may be used in story problems in which the
items are not physical objects and the transformations are
not actual movements (e.g., in a problem in which a child
"gives away" his "turns" in a game).

We have conducted two studies in which we have exam-
ined the relation between the development of children's
ability to perform nonverbal calculation problems, story
problems, and number-fact problems (Levine et al., 1992;
Jordan et al., 1992). We used a nonverbal task like the one
described above to assess calculation abilities without re-
quiring the child to use conventional symbols. The child
was shown a set of disks on a card that was then hidden with
a cover. The hidden set was transformed either by inserting
or removing disks through an opening in the side of the
cover. The transformed set was not shown. The child then
constructed an array with the same number of elements that
was under the cover after the transformation. Rather than
being described verbally, the task was shown, by having the
experimenter do an example problem. Thus, we were able to
determine whether nonverbal problems are solved at an
earlier age than comparable problems involving conven-
tional symbols.

In our initial study (Levine et al., 1992) we compared the
ability of 4-, 5-, and 6-year-old children to do nonverbal
addition and subtraction tasks with their ability to do com-
parable verbal tasks of two kinds: story problems, which
describe actual objects and their movements, and number-
fact problems, such as "How much is 3 and 2?" Children as
young as 4 years could do nonverbal tasks involving small
numerosities with great accuracy. However, it was only
after 5 years of age that they became somewhat proficient
on the corresponding story problems and number-fact prob-
lems. Story problems were easier than were number-fact
problems. These findings are consistent with the view that
children possess a mental model for arithmetic before they
master conventional skills, and that they may use this model
to solve story problems, mapping various aspects of the
story onto elements in the mental model. The number-fact
problems may be more difficult than the story problems
because the possibility of mapping to imagined entities is
not made explicit.

In our second study we examined the performance of
5-year-old children in different social classes on verbal and
nonverbal calculation tasks (Jordan et al., 1992). We be-
lieved that we would find social class differences in the
ability to solve verbal calculation problems because the
extent of verbal input differs among social-class groups
(e.g., Bee, Van Egeren, Streissguth, Nyman, & Leckie,
1969; Kirk, Hunt, & Volkmar, 1975). However, if con-
ventional symbols are not required for nonverbal calcu-
lation, then this ability might not vary across social class.
The results of the study were striking and clear. Children
from low-income families did considerably worse than chil-
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dren from middle-income families on both story problems
and number-fact problems. However, low- and middle-
income-family children did equally well on the nonverbal
problems, even though their performances were far from
ceiling.

In summary, the results of these two studies support the
view that conventional calculation skills are not required for
nonverbal calculation. First, children solved nonverbal
problems at an earlier age than they solved verbal problems.
Second, children from low-income groups did as well as
children from middle-income groups on nonverbal prob-
lems but did less well on verbal problems, possibly because
they had received less verbal input. We discuss below two
further issues not previously addressed in our studies. One
issue is when exact representations of number and the
ability to calculate emerge. In considering this issue, we
must discuss the infant literature, because some investiga-
tors believe that these abilities are innately available in
infants. The other issue is whether the ability to represent
information in the number domain reflects the same under-
lying processes as the ability to represent information in
other domains, hence showing a substantial relation to mea-
sured general intelligence.

Emergence of a Mental Model for Arithmetic

It is not clear when the ability to reliably obtain answers
on nonverbal calculation problems emerges. We have sug-
gested that this ability involves symbolic processes—the
mapping of imagined entities and their movements onto
actual objects and their movements—although it does not
involve conventional symbols. Indeed, the ability to solve
the nonverbal calculation problems constitutes a formal
mechanism for obtaining answers to problems involving
small numbers. A possible prediction from this view is that
children's ability to calculate should emerge at about 2
years of age and become increasingly well developed over
the next year or so. It is in this age range that children
exhibit a variety of symbolic abilities that do not involve
conventional symbols. Their play comes to involve the use
of substitute objects and activities to stand for real objects
and activities (e.g., McCune-Nicolich, 1981). Also, the 2- to
3-year age range is when children become able to use
physical models to provide information about actual situa-
tions. DeLoache (1987, 1991) found that children's ability
to infer the location of an actual toy in a room from
watching a model toy being hidden in a model room ap-
peared between 2Vz and 3 years (ability to use a picture as
a representation of an actual spatial layout appeared some-
what earlier, by 2l/z years).

In contrast to the possibility just discussed, some inves-
tigators have claimed that nonverbal numerical abilities
such as those we have described are innately available in
infants. Indeed, there is a set of studies that have shown that
infants are remarkably sensitive to numerosity and to
changes in numerosity. General questions have been raised
in the literature as to the nature of the competencies exhib-
ited by infants and their relation to the competencies of

older children (cf. Fischer & Biddell, 1991; Kellman, 1988;
Siegler, 1992). However, our present concern (i.e., infants'
numerical competence) has not been specifically addressed
in these discussions. Here we consider whether or not ex-
isting studies provide convincing evidence that infants'
behaviors are based on representations sufficient to reliably
produce exact answers.

Infant Studies

It has been found, through the use of a habituation para-
digm, that over a sequence of trials infants become less
attentive to a small set of a particular numerosity, but
display looking time increases when they are shown a set of
a different numerosity (e.g., Starkey & Cooper, 1980). In-
deed, this is even true of neonates (Antell & Keating, 1983).
The findings often have been interpreted as showing that
infants represent small numbers exactly. Thus, Starkey
(1992) said that the observed data show that "even infants
can enumerate sets that are small in numerosity" (p. 93). In
discussing a possible mechanism, Starkey suggested two
possible alternatives, both involving exact representations
of number—use of a tagging process (that does not involve
conventional symbols), or use of one-to-one correspon-
dence to directly compare the numerosities of sets. The
results of infant studies have not provided support for such
a strong conclusion. What has been found is a tendency,
across infants and trials, to attend less to a particular nu-
merosity and more to a different numerosity. Although this
is a very important discovery, it does not necessarily indi-
cate use of exact representations.

Even if one grants, as we do here, that infants represent
arrays as sets of discrete entities that can vary in quantity,
these representations might be inexact for small set sizes, as
are adults' representations for large set sizes (if they do not
count). That is, when an infant is presented an array of a
particular size (even a very small one), number might be
represented only approximately—as a generalization gradi-
ent centered at the true numerosity. The habituation arising
over a series of trials would occur not only to the true
numerosity but also—to a lesser extent—to surrounding
numerosities. When the new number is presented on the
dishabituation trial, it also might be represented as a gen-
eralization gradient centered at the true numerosity. Longer
looking times would occur on dishabituation trials in which
the representation of the new number differs sufficiently
from the representation formed on the habituation trials.
(Various process models might be developed to produce the
observed behavior, as noted in the Discussion section. Our
intention here is simply to point out that the data on infants'
looking behaviors could be based on approximate rather
than exact representations of the numbers shown.)

More recently, evidence has been presented that infants
are sensitive to changes in numerosity. Wynn (1992), using
a "surprise" paradigm, found that if infants are shown an
array that is then hidden and are then shown an item being
added to or taken away from that hidden array, they look
longer if the wrong rather than the right size array is
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revealed. This result, like the results of habituation studies,
is shown only in data that is averaged over trials and over
infants. Wynn argues from her data that infants possess
"true number concepts" and that they do "numerical rea-
soning." In short, she believes that exact representations of
number and number transformation underlie their behavior.
Possibly, Wynn is correct and infants calculate correctly
from exact number representations. Alternatively, however,
it is possible that infants tend to notice the direction of the
transformation but form only approximate representations
of the number of items in the initial set and the number of
items in the transformation. That is, the existing data are
consistent with the possibility that longer looking times to
incorrect answers occur on only some percentage of trials,
based on an approximating mechanism.

Looking paradigms may not be sufficiently sensitive to
permit assessment of the hypothesis that infants can repre-
sent small numbers and number transformations exactly.
That is, it may not be possible to determine from differential
looking times that infants use exact representations of num-
ber even if they do so. Tasks that can be given to toddlers
in which they indicate the exact answer by choosing be-
tween two arrays that differ by one or by constructing a set
with the proper number of objects make it possible, at least
in principle, to determine how accurately children calculate,
whereas a looking time measure may not.

Toddler Studies

If infants do possess a mental model for arithmetic, then
some time before 2 years of age, when they become able to
do choice or construction tasks, they should be able to
reliably produce correct answers. That is, if children have
possessed exact numerical skills since infancy, they should
be able to demonstrate those skills in choice or construction
tasks. Two studies have examined the ability of children
under 2 years to represent numerosity and to transform
arrays (Sophian & Adams, 1987; Starkey, 1992). Neither of
these studies provided convincing evidence of 2-year-olds'
ability to calculate.

Sophian and Adams (1987) studied children from 14 to
24 months of age, using a technique similar to one intro-
duced by Brush (1978) with older children. They pre-
sented subjects with two sets of objects and then covered
the sets. It was assumed that children would choose the
larger set if they knew the number of objects. On the
baseline task, children chose between untransformed sets
with one versus two objects. Children did not reliably
choose the set with more (two) items at 24 months, al-
though they did so at 28 months. On the other task, one
of the sets was transformed by adding an object or by
taking away an object. For some of the transformation
problems the initial sets were equal (i.e., both contained
one item), and for others they were unequal (i.e., two vs.
none). The authors claimed that children in every age
group tested could calculate, but the data do not support
the claim that the children reliably answer correctly. Chil-
dren up to 24 months tended to choose the set the experi-

menter manipulated, regardless of whether items were
added or taken away and regardless of whether the result-
ant set was larger or smaller. The critical problem was
one in which an object was added to a set, but in which
the set remained the smaller of the two sets. Even the
oldest subjects (28-month-olds) performed only slightly
above chance on this problem (.60). Cooper (1984), using
a similar method, concluded that 2-year-olds do not un-
derstand that the initial numerosity of a set is important
for predicting the effect of the addition or subtraction of
terms to that set.

Starkey (1992) gave young children nonverbal calculation
problems. In his task, a child placed a set of objects one at
a time into an opaque box and then watched items being
added to or removed from that set. The child's task was to
remove all the objects from the box. The test of whether a
child could calculate was whether the number of reaches
equaled the number of objects in the set. On each trial, the
set of items was secretly removed from the box and a single
item was replaced before the child reached each time. Pre-
sumably this procedure was initiated so the child could
remove only one object at a time and would not discover,
during a reach, that more objects were present in the box.
However, this procedure gives rise to a potential problem.
That is, children could determine by touch, during a reach,
that there were no other objects in the box to be removed
(which would lead them not to reach again if they used
touch as a cue).

The data from Starkey's calculation task provide consid-
erable grounds to worry that touch cues (i.e., discovering
that no other objects are present during a reach) led to score
inflation. The calculation task was given to children from 18
months to 4 years of age. Across age, problems were easier
when the answer was smaller, even when this would not be
expected, because the numerosities involved were the same
(e.g., for 4 - 3, the percent correct was 64%, whereas for
4 — 1, it was only 14%). Such a result would be puzzling if
children were calculating but would be expected if children
were using touch cues, at least in part, to determine the
number of reaches. Starkey's results showed that by 24
months of age subjects did very well on the easiest calcu-
lation problems, 1 + 1 and 2-1. Given the problems with
his procedure, the question arises of whether children's high
scores could reflect use of touch as a cue together with
approximate number abilities. Suppose children note that
the initial array has some items, but not the exact number,
and that they further note the direction but not the exact
number of items involved in the transformation. For 1 + 1,
they should expect more than one item in the final array and
therefore might not use the cue from touch on the first reach.
Having no further expectations, they might rely on touch on
the second reach, leading to the correct answer. For 2 — 1 ,
they should not expect more than one item in the final array,
and hence might use the cue from touch on the first reach,
leading to the correct answer. This hypothetical scenario
may or may not explain children's success on these prob-
lems, but the fact that it might do so suggests the need for
further work with less ambiguous tasks.
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Mental Models and Intelligence

We have suggested that nonverbal calculation is based on
a domain-general symbolic ability that makes it possible to
abstract information from situations. In this case, nonverbal
calculation ability should be substantially related to general
intelligence level. In contrast, if nonverbal calculation is a
modular domain-specific competence that is innately avail-
able to the species, there would be no reason to expect a
strong relation to general intelligence level. This argument
has been made for syntactic development. Lenneberg
(1967) first noted that, insofar as language acquisition is
based on a distinct and species-wide "device" or capacity, it
should be exhibited in a similar fashion across people who
vary in ability. In support of this argument, he presented
data showing syntactic competence even in children with
severe mental disabilities. This argument continues to mo-
tivate research on syntactic development in populations of
varying intelligence (e.g., Curtiss, 1988). There is not much
empirical evidence concerning the relation between general
intelligence and the sort of symbolic process we posit to
underlie nonverbal calculation (a mental model). There is
some evidence that children with general cognitive delays
(in particular, children with Down's syndrome) are im-
paired in the development of symbolic play (Hill &
McCune-Nicolich, 1981).

The Studies

We present below three studies in which we assessed
young children's ability to calculate nonverbal tasks. We
also assessed their ability to represent numerosity in the
absence of a transformation. In the first two studies we
assessed the development of nonverbal numerical abilities
in children across the age period from 2 to 4 years. In the
third study we compared the performance of 3-year-olds in
regular preschool classes with that of 3-year-olds in special
education classes for children with mild intellectual delays.

Study 1

As indicated above, existing findings do not provide clear
evidence as to when children can reliably represent numer-
osity and calculate (with small numbers). Two issues must
be addressed to deal adequately with the question. The first
issue concerns the task. It is important to use a task that does
not bias responding toward correct answers in the absence
of calculation. The task we used in our earlier studies is
adequate in this regard; children can put out any number of
items on any trial, and no irrelevant cues are provided. In
addition, it is important to use a task that does not introduce
unnecessary complexities that might lead to failures in
children who can calculate. Our task captures just the es-
sential features of calculation: (a) the ability to represent the
numerosity of an initial set and retain that representation at
least briefly when the set is hidden (allowing an unseen
transformation to be performed), (b) the ability to modify
the initial representation to correspond to the addition or

subtraction of a particular number of elements, and (c) the
ability to demonstrate behaviorally their representation of
the outcome. (In our task this involves constructing an
array. It also is possible to have the child choose from a set
of arrays that vary in number or to report the number
verbally. Verbal reports, however, require knowledge of the
conventional symbols of arithmetic as well as calculation,
which is problematic for children from low socioeconomic
groups; see Jordan, Huttenlocher, & Levine, in press).

The second issue is to distinguish between the pattern of
responses that would be expected if children have an exact
numerical competence to that which would be expected if
their competence is one that does not, in principle, reliably
yield correct answers. In characterizing an exact mecha-
nism, consider the case in which there are no performance
errors. An exact mechanism should reliably yield correct
answers across some range of numerosities. At the least, it
should apply to problems that involve numerosities up to 2,
because changes from 0 to 1 or vice versa involve just
presence versus absence. Thus, a child with an exact mech-
anism should get the problems 1 + 1 and 2 — 1 correct. If
the exact mechanism applies across a greater range of
numerosity, say, if it encompasses numerosities of 3, then in
addition to getting 1 + 1 and 2 — 1 right, children should
get the following problems right as well: 1 + 2, 2 + 1, 3 -
1, and 3 — 2, and so on for larger numerosities. If most
children in an age group show the strict correspondence just
described between the numerosity of a problem and whether
they get problems correct, and if few of them get scores of
0, that would constitute evidence for a mental model in
which number and number transformation are represented
exactly.

When representation is only approximate, as in animals,
the probability of error also increases with numerosity (cf.
Gallistel & Gelman, 1992). However, there would be many
errors on all problems, and because of the inexactness
across the entire range, the relation of problem difficulty to
numerosity would be imperfect. In fact, given fairly wide
generalization gradients for both the number in the original
set and the number in the transformation, many children will
get scores of 0. Hence if few children in a particular age
group get all problems correct up to a particular numerosity
and many of them receive scores of 0, there would be no
reason to claim more than an approximate mechanism in
that age group.

Finally, in order to calculate, children must be able to
represent number exactly in the absence of transformation.
Thus, children who can calculate up to some numerosity
should be able to match up to at least that numerosity on a
nontransformation task in which they are shown an array
that is then hidden (e.g., if they calculate up to numerosity
3, they should also match sets of at least three items). As for
calculation problems, they should show a strict ordering of
matching problem difficulty by numerosity. In contrast,
children in an age group that represents number only ap-
proximately should not show such a strict ordering, and
there is no reason to expect that matching and calculation
scores should be tightly linked, as should be the case with an
exact mechanism.
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Method

Subjects. Subjects were 180 children, 30 in each of six age
groups (years; months): 2;6-2;8, 2;9-2;ll, 3;0-3;2, 3;3-3;5, 3;6-
3;8, and 3;9-3;ll. The children in each age group were drawn
from a broad range of social classes and ethnicities.1 They were
from urban and suburban areas within four geographical regions:
East, South, Midwest, and West. Many were recruited at day care
centers and preschools. There was an equal number of girls and
boys in each age group. The nonverbal matching and calculation
tasks were included in a larger set of tasks for a study of the
development of a range of cognitive abilities in young children.

Materials and procedure. Children were tested individually.
First they were given a nonverbal matching task and then a
nonverbal calculation task. Materials for the matching and calcu-
lation tasks included two 25 cm X 25 cm white cardboard mats, a
set of 20 black disks (1.9 cm in diameter), a box, and a cover. The
cover had an opening on one side so that the experimenter could
easily add or remove disks during the calculation task. The exper-
imenter and the child sat on opposite sides of a table, each with a
mat in front of her- or himself.

Matching task. Two matching demonstration items were pro-
vided before the matching test items. On the first demonstration
item, the experimenter took 1 disk from the box and placed it on
her mat in full view of the child. The disk was then hidden with the
cover. The experimenter then put 1 disk on the child's mat and
lifted the cover from her own mat so the child could see that the 2
mats had the same number of disks. The experimenter stated "See,
yours is just like mine," pointing to the disks on both mats. The
demonstration item was presented again, following the same pro-
cedure, except this time the child was asked to place the appro-
priate number of disks on his or her mat after the disk was hidden.
If the child did not respond or placed the wrong number of disks
on the mat, he or she was corrected and the item was repeated one
more time. The same demonstration procedure was used with
2 disks.

After the demonstration items, the child matched the quantities
of five test items, ranging in numerosity from 1 to 5. The matching
test items were presented in a fixed random order. For each test
item, the experimenter took a set of disks from the box and placed
it on her mat in full view of the child. The disk set was then hidden
with the cover. The child's task was to indicate how many disks
were under the cover by placing the appropriate number of disks
on his or her mat. Each set was presented in a horizontal linear
array. The total possible score on the matching task ranged from 0
to 5.

Calculation task. There was one demonstration item for addi-
tion and one for subtraction. For the addition demonstration item
(1 + 1), the experimenter placed 1 disk on her mat in full view of
the child. This disk was then hidden with the cover. The experi-
menter then slid another disk under the cover, in full view of the
child. Next, the experimenter placed 2 disks in a horizontal line on
the child's mat and lifted the cover to show the 2 disks on her mat,
saying "See, yours is just like mine." The addition demonstration
item was presented again, following the same procedure, except
this time the child was asked to place the appropriate number of
disks on his or her mat after the experimenter made the transfor-
mation. If the child did not respond or placed the wrong number of
disks on the mat, he or she was corrected and the item was repeated
one more time. A parallel demonstration procedure was completed
with a subtraction problem (2 - 1), but in this case the disk was
removed from under the cover. (We initially believed that dem-
onstrations were necessary to explain the task. We realized that
this might elevate scores on the test items 1 + 1 and 2 — 1 that also

had been demonstrated. Study 2, however, in which no demon-
strations were used, shows that this was not a substantial variable.)

The calculation test items were presented after the demonstra-
tion items. For the addition test items, the experimenter first placed
the set of disks comprising the augend in full view on the mat of
the child and then covered it. She then put the set of disks
comprising the addend in a horizontal line next to the cover and
then slid them under the cover, all at once. The augend and the
addend were never in view at the same time. The child indicated
how many disks were under the cover by placing the appropriate
number of disks on his or her mat. A comparable procedure was
used for subtraction, but in this case the disks comprising the
subtrahend were removed from under the cover all at once. There
were 7 addition problems and 5 subtraction problems. For addition
problems, the numerosities of the sums were no greater than 5. For
subtraction problems, the numerosities of the minuends were no
greater than 4. The order of presentation proceeded from problems
of lower numerosity to problems of higher numerosity. The addi-
tion and subtraction problems were intermixed. The total possible
score on the calculation task ranged from 0 to 12.

Results

Matching task. Table 1 shows the rank order of diffi-
culty of matching items, indicating the percentage of chil-
dren who answered correctly for each item within each age
group. For all age groups, the proportion of matching items
that were answered correctly was greater for items with
smaller numerosities (1 and 2) than with larger numerosities
(3, 4, and 5). Table 2 (second column) shows the mean
matching scores for each age group. An analysis of variance
(ANOVA) on children's matching scores with age group
and sex as between-subjects variables revealed a significant
main effect of age group, F(5, 168) = 4.51, p < .001.
Contrasts revealed a significant linear trend, (p < .0001),
and no higher order trends. There was no main effect or
interaction involving sex.

Table 2 also shows the number of children in each age
group who received a score of 0 and the extent to which
children in each age group could match numbers up to some
numerosity (i.e., the child made no errors on problems
involving that numerosity as well as no errors on problems
involving any lower numerosities). The columns on the
right side of the table show the number of children whose
correct answers encompass numerosities of at least 1, 2, 3,
4, and 5. In all age groups, most children could match up to
a numerosity of at least 2. The number encompassed in-
creased with age. More than half of the 3-year-olds and
about one third of the 2-year-olds could match up to a
numerosity of at least 3. The data clearly indicate that the
majority of children in these age groups can represent small
number sets exactly when transformations are not involved.

Calculation task. Table 3 shows the rank order of dif-
ficulty of the calculation problems, indicating the percent-

1 Susan Cohen Levine, Janellen Huttenlocher, and Peter R.
Huttenlocher used this set of tasks to construct an instrument to
assess early cognitive development. Detailed information concern-
ing this instrument and participant recruitment is presented in the
final report of a National Institutes of Health Phase 1 Small
Business Grant, No. 1R43HD30034-01.
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Table 1
Rank Order of Matching Items (Easiest to Most Difficult) and Percentage of Items
That Were Solved Correctly in Study 1

Numerosity of
matching item

2
1
3
4
5

Age group

2;6-2;8

90
77
37
27
20

2-9-2-11

77
77
40
30
7

3;0-3;2

87
90
50
37
23

3;3-3;5

93
90
60
40
13

3;6-3;8

97
97
60
30
27

3;9-3;ll

97
93
84
57
30

Total group

90
87
55
37
20

age of trials that were solved correctly for each item in each
age group. The numerosities the children could deal with
successfully increased with age. The data show that problem
difficulty for the group as a whole is ordered by numerosity.
That is, across age groups, all problems of numerosity 2 are
easier than all problems of numerosity 3, and these are in
turn easier than all problems of numerosity 4.

Table 4 shows the mean calculation scores for each age
group in the second column. An ANOVA on children's
calculation scores, with age and sex as between-subjects
variables, revealed a significant main effect of age group,
F(5, 168) = 15.44, p < .0001. Contrasts revealed a signif-
icant linear trend, (p < .0001), and no higher order trends.
There was no main effect or interaction involving sex. We
examined whether children's errors consisted of reproduc-
tions of the initial array (e.g., 3 + 1 = 3 ) . Thirty-three
percent of children's errors consisted of laying out the
number of disks in the initial array, and this did not vary
significantly with age.

To examine the effects of addition versus subtraction on
children's scores, we performed an ANOVA with age as a
between-subjects variable and operation as a within-
subjects variable. In this analysis, we compared subtraction
problems (2 - 1, 3 - 1, 3 - 2, 4 - 1, and 4 - 3) to
addition problems of corresponding numerosities (1 + 1,
2 + 1, 1 + 2, 3 + 1, and 1 + 3), excluding the two addition
problems that involved higher numerosities. There was no
effect of operation for any age group (overall M = 1.7 for
addition vs. 1.5 for subtraction), indicating that whether the

Table 2
Exact Representations on Matching Problems by Age
Group in Study 1

Age

2;6-2;8
2;9-2;ll
3;0-3;2
3;3-3;5
3;6-3;8
3;9-3;ll

No.
correct

M SD

2.5
2.3
2.9
3.0
3.1
3.6

.2

.3

.3

.0

.2

.1

^0. zerc
scores

2
5
1
1
0
0

No. children whose
correct answers

encompass a
numerosity of at least:

1

23
24
26
25
29
28

2

23
23
23
24
28
28

3

10
12
14
15
17
25

4

03
03
07
07
07
16

5

02
01
04
01
05
06

Note. N = 30 in each age group.

transformation involves movement into versus out of an
array was not critical to problem difficulty for these tasks.

Table 4 also shows the number of children who received
a score of 0 for each age group and also the number of
children in each age group who calculated correctly up to
some numerosity (i.e., the child made no errors on problems
involving that numerosity as well as no errors on any
problems involving any lower numerosities). For the 3;9-
3; 11 group, no children received scores of 0, and 21 of the
30 children met the criterion for an exact mechanism that
encompassed a numerosity of at least 2. Of these, 6 children
also could do problems up to a numerosity of 3, of whom,
in turn, 2 could also do problems to a numerosity of 4 and
1 could also do problems to a numerosity of 5 (perfect
score). For the 3;6-3;8 group and the 3;3-3;5 age group,
only 3 children got a score of 0 and at least half could do
problems through numerosity 2. Even in the 3;0-3;2 group,
only 4 children received a score of 0, and 13 children could
do problems through numerosity 2, two of whom could also
do problems through numerosity 3. Some children in an age
group with only approximate representations might get 1 +
1 and 2 - 1 right. However, almost half the children got
these two problems correct, so it would seem that an exact
mechanism is emerging. A major drop-off in performance
occurred in children under 3 years. For children aged 2;9-
2;11, fourteen children got a score of 0, and only 3 children
could do problems through numerosity 2. For the 2;6-2;8
group, 15 children received a score of 0, and only 4 children
could do problems through numerosity 2. It is possible that
these few children possess an exact mechanism. However,
because only about 10% of children in these age groups
showed evidence of exact representation up to numerosity 2,
it is not clear whether we should attribute a mental model to
any children in this study who were under 3 years of age.

The ability to calculate depends on the ability to represent
the number of items in the initial array. Thus, a child who
can calculate up to numerosity 2 (solving 1 + 1 and 2 - 1
correctly) should be able to match at least up to that nu-
merosity. In Table 5 we examine the relation of children's
calculation and matching scores. The clustering of data in
the upper right triangle of Table 5 shows that the vast
majority of children (97%) were able to match at least up to
the numerosity through which they could calculate. Of the
72 children who could calculate up to at least numerosity 2,
only 5 received matching scores that were less than their
calculation scores. Children's better matching than calcula-
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Table 3
Rank Order of Calculation Items (Easiest to Most Difficult) and Percentage of Items
That Were Solved Correctly in Study 1

Calculation
item

1 + 1
2 - 1
3-2
2 + 1
1 + 2
3 - 1
1 + 3
3 + 1
2 + 2
4 - 1
4-3
4 + 1

Age group

2;6-2;8

23
30
13
13
7
10
17
3
7
7
3
0

2;9-2;ll

33
20
17
10
7
13
13
3
13
10
7
3

3;0-3;2

60
60
30
27
37
20
37
23
23
13
13
17

3;3-3;5

77
63
50
37
40
37
10
33
17
30
17
7

3;6-3;8

67
57
47
43
47
37
20
30
30
27
23
17

3;9-3;ll

97
70
67
70
53
50
43
40
27
30
40
30

Total

60
50
37
33
32
28
23
22
20
20
17
12

tion performance also can be seen by comparing the most
frequent calculation score (0) with the most frequent match-
ing scores (2 and 3). It should be noted that all 7 children
under 3 years of age who could calculate up to numerosity
2 could match at least up to that numerosity. These findings
provide further support for the view that children who met
our criterion for calculation possess an exact mechanism.
That is, one would not expect such a tight linkage between
matching and calculation if childrens' representations of
numerosity were only approximate. (However, the results
should be interpreted cautiously, because the matching data
involve only one trial per numerosity, whereas the calcula-
tion data usually involve several trials. Thus, the probability
of meeting the criteria for a particular numerosity is not
equal for matching and calculation.)

Study 2

In this study, we examined nonverbal calculation in chil-
dren under 3 years of age, using somewhat different condi-
tions than in our first study. That study differed from a
typical experimental study in that children were given a

Table 4
Exact Representations on Calculation Problems by Age
Group in Study 1

Age

2;6-2;8
2;9-2;ll
3;0-3;2
3;3-3;5
3;6-3;8
3;9-3;ll

No.
correct

M SD

1.3 1.7
1.5 1.7
3.6 2.9
4.2 2.7
4.4 3.4
6.2 2.9

No. zero
scores

15
14
4
3
3
0

No. children
whose correct

answers
encompass a

numerosity of
at least:

2 3 4 5

4 0 0 0
3 0 0 0

13 2 0 0
17 4 0 0
15 6 1 1
21 6 2 1

Note. N = 30 in each age group.

whole set of cognitive tasks. It is possible that children were
less attentive to the matching and calculation tasks because
of this. Furthermore, the study differed from many experi-
mental studies in the literature in that children were drawn
from a national sample that included children of a wide
range of social class and ability levels. We wanted to
examine whether attentive children under 3 years of age
could calculate when they were tested only on the nonverbal
task and not on other cognitive tasks.

Method

Subjects. The subjects were 96 middle-class children, ranging
in age from 2 years, 0 months to 2 years, 11 months. There were
24 children in each of the four age groups (years;months): 2;0-2;2,
2;3-2;5, 2;6-2;8, and 2;9-2;ll. In each age group, half of the
children were boys and half were girls. The subjects were drawn
from a single academic community (Hyde Park in Chicago) rather
than from a heterogeneous national population of children. They
were recruited from playgrounds and were eager to participate in
our "game."

Materials and procedure. Children were given six calculation
problems. Only small numerosity items were used (sums or min-
uends of 3 or less). The calculation procedure was identical in
format to the one described in Study 1. However, in Study 2 no
demonstration items were repeated as test items. We used match-
ing items (with numerosities of 1 and 3, respectively) to demon-
strate the general procedure for the nonverbal task. Our previous
work indicates that demonstration of matching is sufficient for
children to learn the procedure for calculation (Jordan et al., 1992).

Results

Let us consider whether children under 3 years of age can
calculate. Table 6 shows the rank order of calculation prob-
lems over the entire 2;0-2;11 age range and the percentage
of correct answers for each calculation item by age group.
Note that the order of problem difficulty for the group as a
whole corresponds to numerosity (i.e., problems involving
sums or minuends of 2 were easier than problems involving
sums or minuends of 3). When we consider the age groups
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Table 5
Number of Children Across All Age Groups Showing an
Exact Representation on Matching and Calculation
Problems Up to a Particular Numerosity

Matching

Calculation Total

0
2
3
4
5

Total

20
2
1
0
0
23

6
0
0
0
0
6

45
10
1
0
0
56

24
23
5
0
0
52

7
12
4
0
1

24

6
9
2
1
1

19

108
56
13
1
2

180
Note. N = 180.

separately, however, this finding is consistent only for the
2;9-2;ll children, suggesting the use of an approximate
rather than an exact mechanism by many children before
this age.

Table 7 displays data for Study 2 in a manner parallel to
that for Study 1. The mean calculation scores are shown in
the second column. An ANOVA on children's calculation
scores with age and sex as between-subjects variables re-
vealed a significant effect of age, F(3, 88) = 11.3, p <
.0001. Contrasts revealed a significant linear trend (p <
.0001) and no higher order trends.

Consider now the evidence relevant to whether any of
these children exhibit a mental model. The number of 2>/2-
to 3-year-old children in Study 2 who received a score of 0
was substantially less than in Study 1. In the 2;9-2;ll
group, 3 (out of 24) children got scores of 0, and in the
2;6-2;8 group, 4 (out of 24) children got scores of 0.
Furthermore, the percentage of 2'/2- to 3-year-old children
in Study 2 who met the criterion for a mental model was
greater than in Study 1. Table 7 shows that for the 2;9-2;l 1
group, over half of the children got 1 + 1 and 2 - 1 right,
and 1 of these children met the criterion for a mental model
up to a numerosity of 3. In the 2;6-2;8 group, close to one
third of the children got 1 + 1 and 2 - 1 correct. Hence, the
data provide evidence that some children between 2Vi and 3
years of age possess a mental model.

In contrast to children over 2'/2 years of age, the data do
not provide evidence that children under 2'/2 years possess
a mental model. Table 7 shows that for the 2;3-2;5 group,
8 (out of 24) children received a score of 0, and only 1 child
got 1 + 1 and 2 - 1 correct. For the 2;0-2;2 group, well
over half (16 out of 24) had a score of 0, and none got both
1 + 1 and 2 - 1 correct.

Finally, let us consider further the data for children aged
2;0-2;5 where evidence of an exact mechanism was absent.
Because even infants exhibit approximate representations,
we wanted to determine if our subjects showed use of such
an approximate mechanism rather than simply responding at
chance. First, if children used an approximate mechanism
rather than choosing at random, their success should be
greater on lower than on higher numerosity problems.
Therefore, we divided the problems into those involving
sums and minuends of 2 and those involving sums and

minuends of 3. A repeated measures ANOVA on percent
correct with numerosity (2 vs. 3) as a variable showed that
children performed significantly better on problems involv-
ing a numerosity of 2 than those involving a numerosity of
3, F(l, 47) = 4.21, p < .05. Second, if children used an
approximate mechanism rather than responding at chance,
the number of disks laid out on individual problems should
vary systematically with the correct answer. Thus, we sorted
the items according to their answers (i.e., 1, 2, and 3) and
conducted a repeated measures ANOVA to determine if the
mean number of disks children put out for answers in-
creased with the numerosity of the answer. There was a
significant effect of numerosity, F(2, 90) = 9.62, p < .002.
Contrasts showed no significant difference in the number of
disks put out when the answer was 1 versus 2. However, the
mean number of disks put out was greater when the answer
was 3 than when the answer was 1, p < .003, or 2, p < .002.
The two analyses above indicate that children between
2;0 and 2;5 were not simply responding randomly on
these tasks.

Study 3

We have proposed that nonverbal calculation involves
abstraction of the numerically relevant aspects of situa-
tions—namely, the number of entities in the initial array, the
number in the transformation, and the direction of move-
ment with respect to the initial array. The ability to calculate
on the nonverbal task provides an index of young children's
intelligence in the number domain. In fact, as we noted in
the introduction, nonverbal calculation might provide a bet-
ter index of intelligence than does verbal calculation, be-
cause the latter requires the acquisition of conventional
symbols as well as the ability to calculate. In our previous
work, social class did not affect performance on nonverbal
calculation problems (Jordan et al., 1992). Ginsburg and
Russell (1981) have reported similar findings. Although the
literature on measured intelligence shows a relation to social
class, that relation is far from perfect and may reflect, at
least in part, differences in the environments of children in
different social classes. If nonverbal calculation constitutes
an innately available modular competence rather than a
general symbolic capacity, then the ability might be similar
across a wide range of intelligence, as Lenneberg (1967)

Table 6
Rank Order of Calculation Items (Easiest to Most
Difficult) and Percentage of Items That Were
Solved Correctly in Study 2

Calculation
item

1 + 1
2 - 1
3 - 1
2 + 1
3 - 2
1 + 2

2;0-2;2

13
13
8

21
4
8

Percentage correct

2;3-2;5 2;6-2;8

25
33
25
13
21
17

67
38
58
29
21
17

2;9-2;ll

63
63
42
42
46
29

Total
group

42
37
33
26
23
18
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Table 7
Exact Representation on Calculation Problems by Age
Group in Study 2

Age

2;0-2;2
2;3-2;5
2;6-2;8
2;9-2;ll

No.

M

0.7
1.3
2.3
2.8

correct

SD

0.9
1.2
1.5
1.8

No. zero
scores

16
8
4
3

No. children
whose correct

answers
encompass a
numerosity of

at least:

2 3

0 0
1 0
7 0

13 1
Note. N = 24 in each age group.

argued for syntactic development. According to this view,
there would be no reason to expect a strong relation to
general intelligence. To address this issue, we next com-
pared performance of 3-year-olds in regular preschool
classes with that of 3-year-olds in special education classes
for children with mild general intellectual delays.

Method

Subjects. Subjects were 100 children between 3 and 4 years of
age. All children were from a single middle-class suburban com-
munity. Half of the children (the special group) were in a special
program designed for preschool children identified as having mild
developmental delays on the basis of informal criteria (e.g., teacher
recommendation, scores on screening measures); children with
moderate to severe intellectual delays were served separately. The
other half of the children (the control group) were in regular
preschool programs. All of the children were tested as a part of a
larger study the purpose of which was to determine those aspects
of cognitive function that differentiate preschool children sus-
pected as having mild intellectual delays from normally function-
ing preschool children. We tested all children in the special pro-
gram for 3-year-olds during a single academic year. The mean age
of the group was 3 years, 9 months (SD = 4.6 months). There were
more boys than girls in the special program (34 boys and 16 girls).
The control children were matched with the children in the special
program for age and sex and came from regular preschools in the
same community.

Materials and procedure. Children were given the nonverbal
matching and calculation tasks. The test procedure was the same as
the one described in Study 1. Children also were given other
cognitive tasks, such as tests of language and neuromotor ability.
For the matching task, test items included sets of 3, 4, and 5 disks.
For the calculation task, the problems involved sums of 5 or less
and minuends of 4 or less.

Results

The rank order of the matching items is shown in Table 8.
Although almost all children in regular classes could match
3 items (the easiest problem), only 66% of children in
special classes could do so. The mean matching scores were
1.8 (SD = 0.9) for the control children and 1.1 (SD = 1.0)
for the children in the special program. The difference

between these means was significant, f(98) = 3.73, p <
.0001, two-tailed.

The rank order of the calculation items is shown in Table
9. The calculation item involving the smallest numerosity
(3-1) was easiest for the control children but not for the
special children. The mean nonverbal calculation scores
(out of 5) were 2.3 for the control children and 1.1 (SDs =
1.4 and 1.0, respectively) for the special children. The
difference between these means was significant, f(98) =
4.95, p < .0001, two-tailed.

In interpreting the relation of nonverbal calculation and
matching tasks to intellectual level in 3-year-old children,
one should note that the decision to place children in special
preschool classes did not include observations of their cal-
culation ability. The placement was based instead on chil-
dren's language, motor, social abilities, or some combina-
tion of these. Interestingly, the language task (including
vocabulary and sentence comprehension) and the neuro-
motor task, each of which contained many more items than
the calculation or matching tasks, showed somewhat less
striking (although significant) differences between these
two groups of children.

General Discussion

In the present studies, we examined young children's
ability to do a nonverbal calculation task in which they were
shown items being added to or subtracted from a hidden
array. To reliably get the answers, children must preserve
the exact number of items in the original array and deter-
mine the effects on set size of moving particular numbers of
items into or out of that array. In our previous work we
showed that the ability to do these tasks does not require
mastery of the conventional symbols of arithmetic. Children
could do such nonverbal calculation tasks at a younger age
than they could do verbal calculation tasks (story problems
and number-fact problems; Levine et al., 1992). Further-
more, although verbal calculation ability varied with social
class, nonverbal calculation ability did not (Jordan et al.,
1992). In a more recent study, Jordan et al. (in press) found
that there are young low-income children who could do low
numerosity nonverbal calculation problems even though
they could not count or answer with a number word.

We have suggested that the ability to solve these prob-
lems reliably involves a representation (a mental model) in
which imagined entities and transformations are mapped
onto actual objects and their movements. Such a model

Table 8
Rank Order of Matching Problems and Percentage
of Items That Were Solved for Each Ability Group
in Study 3

Numerosity

3
4
5

Ability group

Control

94
52
34

Special

66
22
24
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Table 9
Rank Order of Calculation Items and Percentage of
Items That Were Solved Correctly for Each Ability
Group in Study 3

Calculation
item

3 - 1
3 + 1
4 - 2
4 - 1
3 + 2

Ability group

Control

66
54
40
34
34

Special

30
32
14
18
14

provides a formal mechanism, which, when correctly ap-
plied, necessarily yields the answer. We argued that non-
verbal calculation is similar in certain ways to a variety of
other skills requiring symbolic processes (but not conven-
tional symbols) that arise in the 2- to 3-year age period and
would not emerge until that time. Furthermore, we expected
that nonverbal calculation ability would be related to gen-
eral intelligence level.

In contrast to such predictions, it has been claimed that
the ability to represent number and even change in number,
is an innately available modular ability. In this view, non-
verbal calculation ability should be present in infancy and in
children across a broad range of intelligence levels. Al-
though the existing literature on infants shows that they are
sensitive to number, the results are consistent with either of
two possibilities—that infants represent number exactly but
are inattentive subjects, or that they represent number only
approximately. Furthermore, the existing literature does not
even provide evidence that toddlers can calculate.

In the first two experiments in the present article we
assessed nonverbal calculation ability in children from 2 to
4 years of age, using the task from our earlier studies.
Evidence for a reliable ability to calculate only became
clear-cut after 2'/2 years. Before 2*/2 years, there was evi-
dence that children possess an approximate mechanism. In
the third experiment, we assessed nonverbal calculation
ability in young children who varied in general intellectual
competence. We found substantial differences in per-
formance on nonverbal calculation tasks among 3-year-olds
whose intelligence levels differed. If nonverbal calculation
ability indeed emerges from approximate representations in
infancy, it is important to understand what those approxi-
mations consist of and what is involved in the development
of an "exact" mechanism (mental model). Let us discuss
these issues briefly.

Approximate Representation

In a recent article, Gallistel and Gelman (1992) suggested
that the innately available number ability in infants might be
comparable to that in animals. Let us consider what the
number abilities of animals consist of and what mechanisms
have been proposed to explain these abilities. One should
note at the start that there are striking differences between
the procedures in infant studies, which generally involve

small spatial arrays, and those in animal studies. In the
animal experiments discussed by Gallistel and Gelman,
number ability was assessed for temporal arrays with fairly
large numbers (animals must respond to a certain number of
bursts of sound or must execute a certain number of bar
presses). The findings of these animal studies indicate a
sensitivity to number across a broad range of numerosities,
up to at least 24. As Gallistel and Gelman reported, Mech-
ner (1958) showed that rats can approximate a target num-
ber (of bar presses) across values ranging from 4 through
16, and Platt and Johnson (1971) showed that rats can
approximate a target number across a range from 4 through
24. Although the animals' modal responses lie at the true
number, there is a gradient of responses around the true
number, and the variability of the responses increases with
the numerosity of a set.

Gallistel and Gelman (1992) suggested that a model of the
number ability of animals proposed by Meek and Church
(1983) might be applicable to infants. In this model, numer-
osity is represented by an accumulator of mental magni-
tudes. This mechanism, which is hypothesized to underlie
the discrimination of quantity, does not distinguish between
discrete and continuous quantities. The mechanism accu-
mulates quantity by "jumping ahead" a step after particular
numbers of items or durations. Inexactness in the represen-
tation of discrete quantities might arise either in the process
of extracting number (i.e., the accumulator might some-
times fail to register an item or might jump ahead by two)
or in the translation process (i.e., there might be failures in
establishing a correct durable mental representation from
the output of the accumulator; cf. Broadbent, Rakitin,
Church, and Meek, 1992).

Emergence of a Mental Model

The claims of the accumulator model are of interest in
considering the relation between approximate and exact
representations of quantity that may distinguish infants'
numerical abilities from those of early childhood. First, the
notion of a mechanism that does not distinguish between
continuous and discrete quantities provides a context for
thinking about approximate representation. For continuous
quantity, it is, in principle, only possible to approximate
amount to some degree of precision. The notion of an exact
representation of quantity applies only to discrete entities; it
rests on a one-to-one mapping between those entities and
mental representatives of those entities. Hence, it is plausi-
ble to argue that continuous and discontinuous quantity
become differentiated only when such a mapping process
emerges. Second, the notion of a translation process that
forms a durable representation from the output of the accu-
mulator provides a context for thinking about the emergence
of exact representation. That is, the direct output of the
accumulator may be approximate unless a symbolic trans-
lation process is available to map that output onto a set of
distinct mental elements. Thus, continuous and discontinu-
ous quantities may become differentiated only when such a
symbolic process emerges.
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Despite the plausibility of the notion that it is symbolic
processes that underlie the differentiation between continu-
ous and discontinuous quantity, this may not be quite right.
Although it seems possible that discrete versus continuous
sound bursts might not be differentiated, it seems unlikely
that small sets of discrete items are not differentiated from
amounts of a continuous quantity. Infants appear to be
sensitive to objects as discrete entities. Thus, infant repre-
sentations may well involve discrete objects, even if, as for
adults' representations of large sets when they do not count,
the number of discrete objects is not exactly represented.
Our claim is that it is the appearance of the ability to do
nonverbal calculation reliably in this age range that is driven
by newly emerging symbolic processes. The notion in the
accumulator model of a translation process requiring sym-
bols is clearly consistent with this view.

Finally, one should note that, although our findings
strongly support the claim that a mental model underlies the
acquisition of exact nonverbal calculation ability, one could
argue that this ability does not necessarily depend on the
emergence of a new set of symbolic processes. One alter-
native, as we have noted, is that a one-to-one mechanism
operates even in infancy, but that infants make many errors
because they are inattentive subjects. Another alternative is
that number ability remains approximate in the age range
when children's calculation becomes accurate for small
numbers, but that the generalization gradient around the true
numerosity becomes increasingly narrow, so that the distri-
butions for those small numbers become nonoverlapping
(distinct). In any case, as Gallistel and Gelman (1992)
argued, the approximate numerical competence of infancy
provides "the framework—the underlying conceptual
scheme—that makes it possible for the young child to
understand and assimilate verbal numerical reasoning" (pp.
65-66). The present studies show that there is an interme-
diate ability between approximate competencies in infancy
and the acquisition of conventional symbols, namely, an
ability to do nonverbal calculation with small numbers.

Conclusions

In conclusion, the results of the present study, together
with earlier findings, suggest the following view of the
development of number ability. From the start, human be-
ings can form approximate representations of very small
numbers. These representations might involve either an
accumulation of quantity that is not yet differentiated into
discrete objects or an accumulation of discrete objects that
is not yet enumerated. In either case, these representations
may be thought of as the output of something like Meek and
Church's (1993) accumulator. As children acquire symbolic
processes, the reading off of the output of the accumulator
becomes exact for very small numbers. These processes
make it possible to form an explicit representation of the
number of items in an array as well as of the exact effects
on number of the movement of items into or out of an array.
The emergence of this symbolic ability (a mental model)
does not depend on the acquisition of conventional symbols;

it emerges after the approximate skills of infancy and before
the conventional skills of school-age children. We have
found that the development of this intermediate ability is
related to the underlying intellectual competence of the
child but not to conventional training as reflected by such
variables as social class. Development of the ability to deal
with large numbers surely requires the conventional sym-
bols of arithmetic, such as mastery of counting to establish
how many items are present, the ability to "carry" numbers
by adding or subtracting, and so on. Thus, even though a
basic understanding of number and the operations that trans-
form number seem to originate without conventional input,
further development is no doubt closely linked to the child's
exposure to relevant conventional input.
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In 1995, APA will begin publishing a new journal, the Journal of Experimental Psychology: Applied.
Raymond S. Nickerson, PhD, has been appointed as editor. Starting immediately, manuscripts should
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considered for publication if they contribute significantly to important topics within applied experi-
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