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As a group, children from disadvantaged, low-income families
perform substantially worse in mathematics than their counterparts from
higher-income families. Minority children are disproportionately repre-
sented in low-income populations, resulting in significant racial and
social-class disparities in mathematics learning linked to diminished learn-
ing opportunities. The consequences of poor mathematics achievement
are serious for daily functioning and for career advancement. This article
provides an overview of children’s mathematics difficulties in relation to
socioeconomic status (SES). We review foundations for early mathematics
learning and key characteristics of mathematics learning difficulties. A
particular focus is the delays or deficiencies in number competencies
exhibited by low-income children entering school. Weaknesses in number
competence can be reliably identified in early childhood, and there is good
evidence that most children have the capacity to develop number
competence that lays the foundation for later learning. 2009 Wiley-Liss, Inc.
Dev Disabil Res Rev 2009;15:60-68.
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athematics difficulties are widespread among U.S.
Mschool children. Although developmental and learn-

ing disabilities are significant sources of these diffi-
culties, achievement in mathematics is strongly related to a
child’s socioeconomic status (SES) [Jordan et al., 2007]. SES is
typically defined by family income, level of poverty in the
child’s neighborhood, and educational attainment by parents
[Clements and Sarama, 2008]. On average, children from dis-
advantaged low-income families perform substantially worse in
mathematics than their counterparts from higher income fami-
lies [as reviewed by the National Mathematics Advisory Panel,
2008]. Poor children are 1.5 times more likely to have a learn-
ing disability and two times more likely to repeat a grade and
eventually drop out of high school than are their non-poor
counterparts [Duncan and Brooks-Gunn, 2001]. The poverty
rate in the U.S. is roughly 12.5% of the population, thus
affecting millions of school-age children [U.S. Census Bureau,
2007]. Minority children, such as African American, Hispanic,
and Native American children, are disproportionately repre-
sented in low-income populations, resulting in significant
racial and social-class disparities in mathematics learning
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[Royer and Walles, 2007]. The consequences of poor mathe-
matics achievement are serious for daily functioning and for
career advancement [Commission, 2000]. Strong mathematics
achievement in all children is important for meeting the needs
of our increasingly technological society and for workforce
equity [Council, 2001]. Mathematics competence is associated
with entry into the STEM (science, technology, engineering,
and mathematics) disciplines in higher education, as well as
STEM-related occupations [National Mathematics Advisory
Panel, 2008].

The income gap in mathematics achievement is well
documented in elementary and secondary school [as reviewed
by the Council, 2001]. The roots of this gap are planted well
before children begin school [Baroody, 1987; Klibanoff et al.,
2006; Levine et al, in press]. Learning opportunities and
social experiences along with basic learning and cognitive abil-
ities all contribute to children’s mathematics learning from
early childhood onward. The number competencies that chil-
dren bring to school set the stage for learning complex mathe-
matics [National Mathematics Advisory Panel, 2008]. Number
competence (also referred to as number knowledge or
“number sense”) in the context of this article involves under-
standing of numbers and numerical relationships [Malofeeva
et al., 2004]. A child must represent collections as “sets of
individuals,” simultaneously representing the whole and its
constituent units [Spelke, 2003]. This concept is essential to
true number competence, including the ability to recognize
the numerical value of small quantities without counting (i.e.,
subitization), to discriminate between and among quantities,
to make judgments about the magnitudes of small numbers, to
meaningfully count objects, and to perform simple addition
and subtraction calculations. Number competence involves the
ability to visualize numbers on a number line and to grasp that
each number is one more than the previous number [Resnick
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Table 1.

Early Math Foundations

Primary Preverbal Number Knowledge

Secondary Symbolic Number Knowledge

Object file system for precise representation of small numbers (3 or less)
Analogue magnitude system for approximate representation of larger sets

Verbal subitizing (mapping number words onto small sets)
Counting (reciting the count sequence to 10 and grasping principles of 1-1 correspondence, stable-order and cardinality to enumerate sets of objects)
Numerical magnitude comparisons (e.g., knowing that two is smaller than five or that five is larger than four)

Linear representations of number (understanding that numerical magnitudes increase linearly)
Arithmetic operations (transforming small sets through adding and subtracting in nonverbal and verbal contexts)

and Ford 1981; Siegler and Booth,
2004]. Many, perhaps all, of these com-
petencies can be taught or improved
through a wide variety of educational
activities [Wynroth, 1986; Berch, 2005].

EARLY MATHEMATICS
FOUNDATIONS

Most children enter school with
number skills that are relevant to
learning  conventional  mathematics
[Ginsburg, 1989; Bisanz et al., 2005].
Teaching that connects with early num-
ber competencies and that builds on
these competencies is likely to be most
effective [Clements et al., 1999]. Even
in infancy, children appear to be sensi-
tive to numerical and related spatial rep-
resentations [e.g., Antell and Keating,
1983; Cordes and Brannon, in press;
Wynn, 1992]. According to a current
perspective, mathematics foundations
can be in viewed in terms of (a) pri-
mary preverbal number knowledge
[Feigenson et al., 2004] and (b) second-
ary verbal or symbolic number knowl-
edge [Levine et al., 1992; Huttenlocher
et al., 1994; Geary, 1995]. A summary
of these two types of knowledge can be
found in Table 1.

Preverbal Number Knowledge
Preverbal number knowledge,
which allows infants to represent quan-
tity, appears to develop without verbal
input or instruction [Dehaene, 1997;
Feigneson et al., 2004; Berch, 2005].
Developmental theory suggests that
infants have a natural capacity to repre-
sent number in a nonverbal manner
[Mix et al., 2002]. According to one
version of this view [Feigenson et al.,
2004], infants begin with two “core”
systems for representing numbers: (1) an
object file system for the precise repre-
sentation of small numbers of individual
objects and (2) an analogue magnitude
system for capturing approximate repre-
sentations of larger sets [Feigenson and
Carey, 2003; Feigenson et al., 2004].
These core foundations are shared by

humans from differing cultural back-
grounds and cognitive abilities, as well
as with other species [Gordon, 2004;
Pica et al., 2004].

The object file system, which is
limited to small numbers (i.e., three or
less), provides a precise representation
for each object in the set but not of the
set size. For example, a set of one might
be represented as {a} and a set of two
items as {a, b} [Carey, 2004; Mix et al.,
2005]. The analog magnitude system, in
contrast, involves an approximate repre-
sentation of the numerosity of larger
sets, but it does not preserve any repre-
sentation of the items (i.e., it does not
provide a way to distinguish between
successive numbers such as 9 and 10).
Thus, only when children learn the
count list and the cardinal meanings of
the count words, are they are able to
represent numbers larger than four
exactly [Wynn, 1990; Mix et al., 2002;
Le Corre and Carey, 2007]. Further, it
is only at this time that they have a rep-
resentation of the mnatural numbers,
which involves understanding that each
number has a unique successor
[Sarnecka and Carey, 2008]. According
to Feigenson et al. [2004], approximate
representations of large numbers and
precise representations of small numbers
“account for our basic numerical intu-
itions, and serve as the foundation for
the more sophisticated numerical con-
cepts that are uniquely human” (p. 307).

Symbolic Number Knowledge
Although  the aforementioned
universal preverbal number systems
appear to lay the foundation for later
mathematical skills [but see Rips et al.,
2008 for an argument that this is not
the case], subsequent development is
symbolic in nature and highly depend-
ent on the input the child receives.
These secondary symbolic systems are a

key concern for educators in early
childhood.
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Verbal subitizing

Verbal subitizing, or the ability to
recognize and name small collections
without counting, provides a transition
from the preverbal to symbolic number
knowledge. Children first map number
words onto set size (cardinality) for
small numbers using subitizing [Wynn,
1990, 1992; Le Corre and Carey, 2006].
They then learn to use counting to
determine the cardinality of sets, and
use this mechanism for sets larger than
three entities [e.g., Le Corre and Carey,
2006]. Researchers argue that children
reconcile the two representational sys-
tems when they learn the number
words, whose meaning is not fully rep-
resented by either core system [Mix
et al., 2002; Feigenson et al., 2004].
Moreover, they suggest that children
learn the “cardinal principle,” the prin-
ciple that the last number in a count
represents the set size after they map
the first four numbers, one by one,
onto set size [Wynn, 1990, 1992].

Counting

Counting is a critical component
in learning mathematics in that it is a
key basis for extending number under-
standing beyond the small numbers
[Baroody, 1987;  Ginsburg, 1989;
Baroody et al., 2006]. Children begin
to say the count words soon after they
learn to talk [Fuson, 1988]. Initially,
children might use the count words to
label small quantities (e.g., “two trucks”)
or to recite the count list (e.g., “one,
two, three, four, and five”), rather than
for enumerating objects in a set. Most
children develop knowledge of three
important “how to count” principles
before they enter kindergarten [Gelman
and Gallistel, 1978], including the prin-
ciples of one-to-one correspondence
(each item can be counted only once),
stable order (the count words must be
used in a consistent order), and cardin-
ality (the final number in the count
indicates how many items are in the
set). Children gradually internalize that
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they can count any set of objects (e.g.,
homogeneous or heterogeneous, con-
crete or abstract) in any order (e.g., left
to right or right to left). Typically, chil-
dren learn to recite the count sequence
by rote (in a manner similar to which
they recite the alphabet) and then
extract counting principles through
their everyday experiences with num-
bers [Briars and Siegler, 1984], although
counting skills and counting principles
also are mutually supportive [e.g.,
Baroody and Ginsburg, 1986; Baroody,
1992; Rittle-Johnson and  Siegler,
1998].

In kindergarten and first grade,
children acquire more complex count-
ing abilities. They learn to count back-
ward, to count by twos, and to enu-
merate object sets greater than 10. They
also learn the words for decades and the
rules for combining number words
[e.g., combining 30 with 3 to make the
larger number 33; Ginsburg, 1989].
Counting skills are fundamental to
learning to calculate with larger num-
bers and for acquiring base-10 concepts.

Numerical magnitude comparisons

Children as young as 4 years of
age can discriminate between quantities
[Case and Griffin, 1990; Griffin, 2002;
Griffin, 2004]. For example, they can
tell which of two stacks of chips has
more or less. As noted earlier, infants
may rely on approximate analog magni-
tudes rather than on counting to make
this judgment [Xu and Spelke, 2000].
By 6 years of age, however, most chil-
dren integrate their global preverbal
quantitative sensitivities and their count-
ing schemes to develop a mental num-
ber line [Siegler and Booth, 2004]. As a
result, children can reason better about
their “quantitative worlds”  [Griffin,
2002; Griffin, 2007]. They come to
understand that numbers later in the
count list have larger quantities than
earlier quantities [N, n + 1, (n + 1) +
1, and so forth; Le Corre and Carey,
2006; Sarnecka and Carey, 2008;
Schaefter et al., 1974] and that numbers
themselves have magnitudes, such that
eight is bigger than five and that six is
smaller than nine. Children use these
skills in a wide range of contexts and
eventually coordinate quantities to con-
struct a linear representation of numeri-
cal magnitudes, to learn place value,
and to perform mental calculations.

Estimation

Increasing reliance on linear rep-
resentations of numbers is a key feature
of number competence [as reviewed by
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the National Mathematics Advisory
Panel 2008] and related to the number
knowledge described previously [Siegler
and Booth, 2004]. Siegler and col-
leagues [Siegler and Opfer, 2003; Booth
and Siegler, 2006] developed a number
line estimation task that presents lines
with a number at each end (e.g., 0 and
100) with no other numbers in
between. Children were asked to esti-
mate the location of a number (e.g.,
“Where would 40 go?”). The task was
designed to reflect the ratio characteris-
tics of the number system (e.g., 40 is
twice as large as 20 so the estimated
location of 40 should be twice as far
from 0O as the estimated location of 20).
Young childrens estimates tend to
increase logarithmically, rather than lin-
early, with numerical magnitude. By
second grade, however, children pro-
duce estimates consistent with a linear
ruler representation [Siegler and Booth,
2004]. Linear magnitude representations
are associated with a range of mathe-
matics skills and efforts to teach children
how to move along a number line show
promise for increasing mathematics
achievement more generally [Booth and
Siegler, 2008; Ramani and Siegler,
2008; Siegler and Ramani, 2008].

Arithmetic operations

Counting and number compari-
sons, described previously, are relevant
to learning arithmetic operations. How-
ever, children have limited success in
solving verbally presented story prob-
lems (“Mike had two pennies. Jen gave
him three more pennies. How many
pennies does he have now?”) and num-
ber combinations (“How much is two
and three?”) [e.g., Ginsburg and Russell,
1981; Levine et al, 1992]. Although
this might indicate a lack of skill with
addition and subtraction, several other
factors seem to compromise the young
child’s ability to solve story problems
and number combinations. For exam-
ple, some children do not adequately
understand the words and syntactic
structure of a problem and/or have
trouble accessing mental representations
of quantities when explicit physical
referents are not provided. Levine et al.
[1992] developed a “nonverbal” calcula-
tion task that eliminated these sources
of difficulty. The task involves calcula-
tion in that it requires a child to reach
an exact solution to a problem, rather
than to simply make a judgment about
the effects of an addition or subtraction
transformation. Young children’s success
in solving nonverbal calculations (with
small sets) depends on their ability to

hold and manipulate quantitative repre-
sentations in working memory [Klein
and Bisanz, 2000]. Children must form
a mental model of the number repre-
sentations and the act of adding or sub-
tracting objects [Huttenlocher et al.,
1994; Canobi and Bethune, 2008].
(This assumes, however, they are not
simply modeling what they saw, e.g.,
for 3 + 1: put out 3, then put out 1
without determining the total is 4.)
The ability to solve nonverbal calcula-
tion problems develops earlier than the
ability to solve comparable story prob-
lems and number combinations in most
children [Levine et al., 1992]. For
example a three-year-old might be able
to solve the calculation 2 + 1 in a non-
verbal format but would not be able to
solve the comparable verbal arithmetic
problem until 4 years of age or later.
Nonverbal calculation ability varies less
across social classes than does the ability
to solve verbal calculations [which
clearly favors middle- over low-income
children; Jordan et al., 1992, 1994].
Early performance on nonverbal calcu-
lations is significantly associated with
later performance on verbal arithmetic
problems, suggesting that nonverbal rep-
resentations are related to calculating
with number words [Levine et al,
1992].

CHARACTERISTICS OF
MATHEMATICS LEARNING
DIFFICULTIES IN ELEMENTARY
SCHOOL

As noted previously, core compo-
nents of number (e.g., exact representa-
tions of small numerosities and approxi-
mate representation of larger numerosi-
ties) develop without formal instruction
[Dehaene, 1997; Feigenson et al., 2004;
Berch, 2005]. These preverbal founda-
tions are thought to provide a basis for
learning more complex number skills
involving number words, number com-
parisons, and counting. However, these
preverbal foundations are not sufficient.
Most children with mathematics diffi-
culties in first grade and later seem to
have particular problems with the verbal
or symbolic systems of number, which
are heavily influenced by early experi-
ences and instruction.

Weaknesses with Counting
Procedures

Children use a variety of counting
strategies to solve number combinations
in first through third grades [Siegler and
Robinson, 1982; Svenson and Sjoberg,
1983; Geary and Burlinghman-Dubree,
1989; Siegler and Shipley, 1995]. Early

Dev DisaBIL RES REV ¢ SOCIOECONOMIC VARIATION ® JORDAN AND LEVINE



on, they might represent the first part
of the problem with their fingers, then
physically add on the second part, and
then count the total number of objects
(l.e., count all). They eventually
become proficient in counting on or up
from addends, a more efficient and
accurate approach for combinations
with larger set sizes [Baroody, 1999],
and eventually solve these problems
without counting.

Young children who develop
mathematics learning difficulties rely on
the more basic “count all” finger strat-
egies for extended periods, do not use
more effective counting procedures
(e.g., counting on from the larger
addend), and thus make frequent count-
ing errors while adding and subtracting
[Geary, 1990]. Children with mathe-
matics learning difficulties also are less
accurate than their normally achieving
counterparts in estimating the place-
ment of numbers on a number line
[Geary et al., 2007].

Poor Calculation Fluency

Poor calculation fluency is a key
characteristic of children with mathe-
matics learning difficulties throughout
elementary school [e.g., Russell and
Ginsburg, 1984; Hasselbring, et al.,
1988; Jordan and Montani, 1997,
Ostad, 1998; Jordan et al., 2003a,b;
Geary, 2004]. Calculation fluency refers
to fast, accurate, and effortless computa-
tion with basic operations as well as
appropriate and flexible application
[Council, 2001]. Poor “fact mastery”
interferes with problem solving for
learning advanced mathematics [Goldman
and Pellegrino, 1987]. For example, a
child might be spending so much effort
computing that few cognitive resources
are left for understanding a multi-step
arithmetic problem. Algebra and even
geometry also depend on basic compu-
tational facility. Calculation fluency def-
icits can be diagnosed reliably in pri-
mary school and, if not addressed, may
continue to have negative impacts on
mathematics achievement throughout
elementary [Jordan et al.,, 2003b] and
middle school [Ostad, 1999].

Associated Reading and Language
Difficulties

More than half of the children
who experience mathematics difficulties
also experience reading and language
difficulties [Barbaresi et al., 2005]. The
percentage of co-morbid mathematics

and reading difficulties is even higher
among children from low-income back-
grounds [Jordan et al., 2002]. Jordan
and colleagues [Hanich et al., 2001;
Jordan et al, 2002; Jordan et al,
2003a], as well as other researchers
[e.g., Geary et al., 2000; Landerl et al.,
2004], suggest that most of the charac-
teristics of mathematics deficits are simi-
lar to those children who only have
mathematical difficulties and for those
who have mathematical and accompa-
nying reading difficulties. However,
children with both reading and mathe-
matics difficulties show particular weak-
nesses on mathematics word problems,
which depend on language comprehen-
sion and procedural facility (e.g., “Jill
has four marbles. Then Mike gives her
some more marbles. Now she has seven
marbles. How many marbles did Mike
give her?”) [Jordan et al., 2003a]. More-
over, children with both mathematics
and reading difficulties achieve at a
slower rate than those with circum-
scribed mathematics problems who are
good readers. The latter group can
compensate to a certain extent for their
mathematics weaknesses with language,
that is, they can “talk their way
through” complex mathematics prob-
lems. Thus, children from low SES
backgrounds, who tend to have both
mathematics and reading difficulties, are
at particular risk for experiencing per-
sistent mathematics difficulties.

Roots of Mathematics Learning
Difficulties

Mathematics learning difficulties
are related to fundamental weaknesses
in number, number relationships, and
number operations, or in other words,
number sense or number competence
[e.g., Gersten et al., 2005; Geary et al.,
2007]. Poorly developed counting pro-
cedures, slow fact retrieval, and inaccu-
rate computation all reflect weak num-
ber competence [Geary et al, 2000;
Jordan et al., 2003b]. It is difficult to
master mathematics facts, without
understanding linear representations of
number and number relations (Booth
and Siegler, 2008). Mathematics diffi-
culties are explained more by domain
specific impairments in number process-
ing than by general deficits related to
memory, spatial processing, or language
[Butterworth and Reigosa, 2007].

SES AND MATHEMATICS
ACHIEVEMENT

As noted earlier, virtually all chil-
dren bring foundational knowledge of
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mathematics to school. However, the
child’s income status and associated early
home and preschool experiences, in
addition to their general cognitive
capacity, heavily influence the level of
this knowledge. Even in preschool,
there is a large gap between low- and
middle-income children in mathemat-
ics-related skills [Sarama and Clements,
2009; Klibanoft et al., 2006]. On tests
of mathematics readiness, low-income
preschoolers who attend Head Start
Programs perform worse than their
counterparts who attend preschools
serving middle-income children [Kli-
banoff et al., 2006]. Parental social class
and educational level predicts mathe-
matics achievement throughout elemen-
tary and secondary school. However,
research findings are inconsistent with
respect to the strength of these associa-
tions, whether only select aspects of
mathematics are affected [e.g., Russell
and Ginsburg, 1984], and the mecha-
nisms that underlie the associations,
such as a lack of opportunity for out-
of-school learning and parenting char-
acteristics, [Clements and Sarama, 2008;
Blevins-Knabe and Musun Miller,
1996].

Delays in Number Competence
Jordan and colleagues [Jordan
et al.,, 2006; Jordan et al., 2007; Jordan
et al,, 2008] investigated performance
and growth in kindergarten number
competence in relation to mathematics
achievement through third grade. They
found that low-income children (i.e.,
children who live in urban, low-income
communities and qualify for their
school’s reduced-lunch program) enter
kindergarten well behind their middle-
income peers on tasks assessing number
competence, which include knowledge
of counting, numerical relationships
(e.g., recognizing which of two num-
bers is smaller), and numerical opera-
tions (e.g., adding and subtracting with
small numbers). Longitudinal assessment
over six time points, from the begin-
ning of kindergarten to the middle of
first grade, revealed three empirically
distinct growth trajectories in number
competence: (1) children who started
kindergarten with low number compe-
tence and showed little growth; (2) chil-
dren who started kindergarten with rel-
atively low number competence but
showed good growth; and (3) children
who started kindergarten with high
number competence and remained at a
high level. Discouragingly, low-income
children were over-represented in the
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low performance, flat growth group and
under-represented in the other two
groups. In fact, an analysis by sub-tasks
revealed that low-income children were
four times more likely than middle-
income children to fall in the low-flat
group on arithmetic story problems, an
area that is particularly sensitive to var-
iations in SES. For example, many chil-
dren in the low-income group could
not solve simple problems, such as “Paul
had five oranges. Maria takes away two
of his oranges. How many oranges does
Paul have now?”

Jordan et al. [2007] also found
that level of performance in number
competence in kindergarten and rate of
growth between kindergarten and first
grade accounted for 66% of the var-
iance in mathematics learning at the
end of first grade. Income status (as well
as gender, age, and reading ability) did
not add explanatory variance over and
above performance and growth in num-
ber competence. The predictability of
number competence remained strong
through at least third grade (Jordan
et al., in press). Kindergarten number
competence predicted rate of growth in
mathematics achievement between first
and third grade as well as achievement
level in third grade, while controlling
for income status. Number competence
also has been shown to be uniquely
predictive of mathematics outcomes
when IQ was considered in the analyses
[Locuniak and Jordan, 2008]. These
data suggest that number competence,
which can be taught and learned, could
be a key factor in bridging the income
gap in mathematics achievement.

Difficulties with Verbal Versus
Nonverbal Aspects of Mathematics
Although young children from
low-income backgrounds perform at a
lower level than their higher income
counterparts on mathematics-related
tasks, findings are not consistent
[Ginsburg and Pappas, 2004]. The na-
ture of the tasks and the skills they are
tapping are key factors. Most important,
early influences of SES appear to be
greatest on verbal aspects of mathemat-
ics [Jordan et al., 1994; Dowker, 2005].
Knowledge of number words can
facilitate performance on numerosity
matching tasks, even those that are non-
verbal. On tasks that involve matching
sets that are of equivalent numerosity,
either from memory or with both target
and choices simultaneously present, 3-
year-olds who have strong knowledge
of the meaning of the number words
perform  better than those whose
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knowledge of number word meaning is
weak [Mix, Huttenlocher, & Levine,
1999; Mix, 2008]. Thus, low income
preschool  children, whose number
word knowledge is weak compared to
their middle-income peers, are likely to
perform worse on a wide variety of nu-
merical tasks, even those that are non-
verbal in format such as matching sets
on the basis of numerical equivalence.
Consistent with this conclusion,
by kindergarten entry, middle-income
children have a strong advantage over
low-income children on verbally-pre-
sented number combinations (“How
much is four and three) and story prob-
lems (Jack had four marbles. Beth gave
him three more marbles. How many
marbles does Jack have now?”) [Jordan
et al., 1992, 1994; Jordan et al., 2006],

Low-income children are
four times more likely
than their middle-income
counterparts to start
school at a low level and
to show flat growth
between kindergarten and
first grade in key areas of
number competence.

skills that are highly predictive of later
mathematics outcomes [Jordan et al., in
press; Mazzocco and  Thomson,
2005]. Middle-income kindergartners
also achieve at a much faster rate on
number combinations and story prob-
lems in kindergarten [Jordan et al,
2006, 2007]. In contrast, income differ-
ences are attenuated if the same calcula-
tions are presented in a nonverbal for-
mat (e.g., the child is shown four disks
that are then hidden with a cover. The
tester slides three more disks under the
cover. The child must indicate how
many disks are now hidden.) Low-
income children’s relatively strong abil-
ity to calculate on tasks that provide
representation without number words
could serve as a starting point for math-
ematics instruction in preschool and
kindergarten.

One
children

reason why low-income
lag  behind middle-income

children on accuracy with number
combinations in kindergarten seems to
be that they do not use their fingers
adaptively to represent and manipulate
the quantities that are represented with
number words [Jordan et al., 2008].
Fingers can facilitate the transition
between early nonverbal representations
and conventional representations with
number words. Jordan et al. [2008]
found that low-income children show
developmental trajectories in finger use
(between kindergarten and second
grade) that are different from middle-
income children. Middle-income chil-
dren frequently used their fingers in
kindergarten, but they  gradually
decreased their finger use between first
and second grades. Low-income chil-
dren started using their fingers about a
year later (i.e., in first grade) and used
them more often than middle-income
children by the end of second grade.
Notably, in kindergarten there is a
strong positive association between fin-
ger use and accuracy on number com-
binations, but this correlation dimin-
ishes over time and even becomes nega-
tive by the end of second grade (i.e.,
children who use their fingers are less
accurate). Although Jordan et al. [2008]
did not analyze the types of finger strat-
egies children used at the various grade
levels, they suggested that using fingers
to count on or up from a number helps
them form an association between a par-
ticular combination and the correct an-
swer, which in turn leads to mental cal-
culation and fact mastery. Low-income
children, like children with mathematics
difficulties more generally, use fingers
later and seem to stick with less mature
“counting all” finger strategies for longer
periods, reflecting delayed development
in number competence.

At least some of the variation in
children’s knowledge of number words
and symbols seems to be tied to differ-
ential exposure to the language and
symbol system of mathematics. This sys-
tem extends the universal starting points
of childrens quantitative knowledge,
allowing them to represent number
exactly for sets beyond the subisitizing
range. In both home and preschool
school settings, exposure to the lan-
guage of mathematics varies widely. For
example, in a longitudinal project in
which investigators visited families every
4 months from 14 months to 30 months
for five 90-min sessions (total of 7.5
hr), caregiver use of number words
ranged from a low of three instances to
a high of 175 instances [Levine et al., in
press]. Similarly, in preschools, the
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amount of teacher number talk teachers
engaged in during a one-hour period
that encompassed a single observation
of 45 min, including “circle time”
ranged widely, from 1 to 104 coded
instances  [Klibanoff et al., 2006].
Importantly, these variations in amount
of number input, both at home and at
preschool, have a significant impact
on preschool children’s mathematics
knowledge. The characteristics of the
speakers’ language also seem to influ-
ence young children’s knowledge of
number words; [Miura, 1987]. Interest-
ingly, adults in cultural groups with few
number words perform worse than
adults from cultural groups with more
elaborated number systems in matching
set sizes, performing arithmetic opera-
tions, and on other cognitive tasks
requiring knowledge of exact number
[Gordon, 2004; Pica et al., 2004].

Cultural Differences

Understanding cultural differences
between social classes provides some
clues to why there are persistent mathe-
matics  achievement disparities and
why low-income children may be
less responsive to reforms in mathe-
matics education recommended by the
National Council for Teachers of Math-
ematics [2001] (e.g., exploration and
discussion of mathematical ideas). Chil-
dren from lower-income families may
have different cultural beliefs about
mathematics than their higher-income
counterparts. Lubienski [2000] found
that low-income middle schoolers, even
those who were relatively high achiev-
ing, preferred direct teacher instruction
to more open-ended discussion, focused
on finding the correct answer, and rea-
soned in more idiosyncratic ways based
on their own experience and specific
contexts (as opposed to thinking about
connections to other problems and
generalizable mathematical principles).
Lubienski argues that characteristics of
“discussion-intensive” mathematics class-
rooms may be more supportive of chil-
dren from middle-class cultures and that
educators, beginning in early childhood,
need to “find ways to help lower-SES
students gain the knowledge, skills, and
beliefs necessary to become critical
thinkers and actors in society” (p. 400).

REDUCING THE
MATHEMATICS GAP

Young children from low-income
families receive less support for mathe-
matics in their home environment than

do their middle-income peers [Saxe
et al,, 1987; Holloway et al., 1995;
Blevins-Knabe and Musun-Miller, 1996;
Starkey et al.,, 1999; Levine et al., in
press; Jordan et al., 2006]. The input
they receive may also differ qualitatively.
For example, Saxe et al. [1987] report
that working class mothers set less com-
plex goals than middle-class mothers
when interacting with their children
about number. Further, Levine et al. [in
press] find that middle-income mothers
refer to number with objects present
and talk about the cardinality of sets
more often than lower income mothers
when interacting with their 14-month-
olds. Making matters worse, public pre-
school programs serving children from
low-income families provide fewer
learning opportunities and supports for
mathematical development than ones
serving middle-income families [Clem-
ents and Sarama, 2008]. However, qual-
ity childcare programs can help level
the playing field for all children enter-
ing school.

Helping Children in Preschool and
Kindergarten

Recent research on early mathe-
matical development has shown that
instructional programs can prepare dis-
advantaged, low SES children for school
mathematics and reduce the SES-related
mathematics gap [Starkey and Klein,
2008]. More generally, it has been
shown that Montessori education has
significant positive effects on urban,
low-income children’s ability to solve
applied mathematics problems during
the preschool and kindergarten vyears
[Lillard and Else-Quest, 2006]. Princi-
ples of Montessori education include
multi-age classrooms, individual and
small group instruction in academic as
well as social skills, collaboration, and
student-chosen activities. More specifi-
cally, the PreK Mathematics curriculum
[Klein and Starkey, 2004] was developed
for use in preschools serving low-
income families. PreK Mathematics is a
supplemental program to develop num-
ber concepts and skills in small groups.
The program also provides home activ-
ities to help parents provide support
outside of school. Studies using
randomized controlled trials have shown
positive effects on children’s early math-
ematics learning [What Works Clear-
inghouse, 2007].

Although these curricula show
positive effects, they do not provide in-
formation about what elements of
instruction are particularly effective.
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Recently, researchers have identified
specific number activities that can
improve numerical understanding in
young children from low-income fami-
lies. Based on work demonstrating the
importance of children’s understanding
of estimation and numerical magni-
tudes, Siegler and colleagues [Siegler, in
press] have found positive effects of
playing board games that involve linear
number representations (i.e., board
games with consecutively numbered,
equal-size spaces). Such games also
involve the counting, one-to-one corre-
spondence, and number identification.
Using random assignment, Siegler and
Ramani [2008] taught children from
Head Start centers to play either a num-
ber-board game or a color board game
that served as a control. Children played
the games on four occasions, each last-
ing about 20 min, over a two-week pe-
riod. Posttesting revealed that children
in the number board game condition
made moderate and significant gains in
their number line estimates, whereas
children in the color board control con-
dition did not. The gains from learning
to play the board game also improved
children’s ability to compare which of
two numbers is bigger, to identify writ-
ten numbers by name, and to count
from 1 to 10. Strikingly, these gains
held at least 9 weeks after the final
game playing session suggesting that the
benefits of the intervention were rela-
tively long lasting. Why do number
board games produce sustainable gains
in mathematical knowledge? Siegler (in
press) suggests it 1s likely that the chil-
dren had few direct mathematics expe-
riences to begin with and that the
intervention provided an effective envi-
ronment to trigger development in
number skills.

Based on the work of her research
team, which points to the importance
of early facility with comparing and
manipulating numbers, Jordan [2007]
recommends that at-risk kindergartners
be given explicit help in comparing,
combining, and separating sets, starting
with totals of five or fewer. Children
should manipulate quantities by adding
and taking away with their fingers or
other concrete objects. After working
on nonverbal calculation tasks, they also
might be encouraged to visualize set
transformations in their heads (e.g., the
caregiver might say “Imagine three dots
in your head. Now take away two of
the dots. How many dots are left?”).
These activities could then be con-
nected to learning simple number com-
binations without explicit referents
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(e.g., “How much is three take away
two.”). For problems involving larger
numbers, children should be encour-
aged to count on from the larger
addend for an addition problem or to
count on from the number that is being
taken away for a subtraction problem
[Fuson, 1982]. Counting-on can be
promoted by helping children devise
the number-after rule for adding one
(e.g., the sum of 5 + 1 is the number
after “five” when we count). This seems
to serve as a scaffold for constructing
counting-on [e.g., if sum of 5 + 1 is
the number after “five,” then 5 + 2
must be two numbers after “five,” and 5
-+ 3 must be three numbers after “five”
[Baroody, 1995]. This method also
appears to apply with children with a
range of learning difficulties, incl-
uding those diagnosed with learning
disabilities.

Helping Children at Home

Children’s number competence is
supported by their daily experiences in
the world [Saxe et al., 1987]. Parents of
young children report they spend more
time with their children on reading-
related activities than on number-related
activities, and low-income caregivers
spend less time teaching number skills
to their children than middle-income
caregivers [Jordan et al,, 2006]. It has
been observed that parents of low-
income children think that math learn-
ing in early childhood is the responsi-
bility of the school whereas middle-
income parents see more value in home
input [Clements and Sarama, 2008].
Although the educational level attained
by parents and income status clearly
have direct effects on the child, these
effects can be moderated by supportive
parent/child interactions [e.g., support
for problem solving; Blevins-Knabe and
Musun Miller, 1996; Clements and
Sarama, 2008]. As noted earlier, activ-
ities as simple as playing board games
can improve children’s understanding of
foundational ~ mathematical  abilities
[Siegler and Ramani, 2008]. For exam-
ple, Chutes and Ladders, which requires
children to move up and down a num-
ber list from 1 to 100, may help chil-
dren focus on numbers and learn the
count sequence, one-to-one corre-
spondences, and number magnitudes.
Games that use dice or number cubes
and play money may help children rec-
ognize and combine quantities. Board
games may also develop more general
problem-solving skills related to taking
turns, delaying gratification, and plan-
ning ahead.
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Early interventions have potential
to help all children develop the founda-
tions they need to learn school mathe-
matics. Without such help, many disad-
vantaged learners are almost certain to
experience a “cascade of mathematics
failure” in elementary school and may
have great difficulty catching up to their
peers who have had more mathematical
input in early childhood (Jordan et al.,
in press). Circumscribed problems early
on can trigger wider problems as chil-
dren later in development [Karmiloft-
Smith, 1998]. A child’s likelihood for
developing mathematics difficulties is
greatest if the child has more than one
risk factor (e.g., coming from a low-

Early interventions have
potential to help all
children develop the

foundations they need to

learn school mathematics.

Without such help, many

disadvantaged learners are

almost certain to

experience a “cascade of
mathematics failure” and
may have great difficulty
catching up to their peers

who have had more

mathematical input
during early childhood.

income background in addition to a
learning or developmental disability).

CONCLUSIONS

Foundational number competen-
cies develop early in life. These compe-
tences include preverbal number knowl-
edge, which is present in infancy and
shared by humans of differing cultural
backgrounds, and symbolic or verbal
knowledge, which depends on the
input the child receives. Children with
learning difficulties in mathematics seem
to have particular problems with sym-
bolic number knowledge, which is
influenced heavily by early experiences
and instruction. Number competence

in kindergarten, related to counting,
number comparisons, and addition and
subtraction, is highly predictive of later
mathematics achievement, over and
above income status and general cogni-
tive deficits. Weaknesses in number
competence can be reliably identified in
early childhood, and there is good evi-
dence that most children have the
capacity to develop foundational num-
ber competence in preschool and kin-
dergarten as well as through home
experiences.

Further research is needed to
examine the long-term effectiveness of
evidence-based early mathematics inter-
ventions, to determine the kinds of
interventions that are most sustainable,
and to develop meaningful supports at
critical junctures during development.
It is also important to develop principles
that differentiate more and less eftective
ways of increasing young children’s
number competence. Early educational
programs for families need to be
designed and evaluated. Research in
early mathematics interventions is im-
portant not only for addressing funda-
mental theoretical questions about the
development of mathematical founda-
tions but also for addressing issues of
job equity and societal needs. H
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