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Early Fraction Calculation Ability
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Three- to 7-year-olds' ability to calculate with whole-number, fraction, and mixed-number amounts was
tested using a nonverbal task in which an amount was displayed and then hidden (J. Huttenlocher, N. C.
Jordan, & S. C. Levine, 1994). Next, an amount was added to or subtracted from the hidden amount. The
child's task was to determine the hidden amount that resulted from the transformation. Although fraction
problems were more difficult than whole-number problems, competence on all problem types emerged
in the early childhood period. Furthermore, there were striking parallels between the development of
whole-number and fraction calculation. This is inconsistent with the hypothesis that early representations
of quantity promote learning about whole numbers but interfere with learning about fractions (e.g., R.
Gelman, 1991; K. Wynn, 1995, 1997).

Conventional fraction algorithms have been notoriously difficult
for children to master (e.g., Behr, Wachsmuth, Post, & Lesh,
1984). Not only do school-age children make many more errors on
written fraction calculation problems than they do on whole-
number problems, but these errors often reflect a failure to grasp
basic properties of fractions, such as the relation between the
number of fractional parts and the size of these parts. Thus,
children frequently add numerators and denominators together
with apparent disregard for the part-whole relation these symbols
are intended to represent (e.g., 3/4 + Vi = Ve, see Resnick & Ford,
1981). Even when children solve fraction calculation problems
accurately, they often do so without appearing to understand the
reasoning behind the symbol manipulations (Kerslake, 1986). For
example, 12- to 14-year-olds who correctly solved problems like
% + V2 by finding a common denominator still could not explain
why they did so. Instead, they seemed to apply by rote the
procedure they had been taught in school without understanding
the motivation for doing it.

To understand the source of these difficulties, researchers have
begun to consider what children know about fractions before they
receive formal instruction. This is an important line of inquiry
because it addresses the difference between symbols and meaning.
That is, one reason that children might err on conventional fraction
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problems is that they do not grasp the relations between fractional
amounts. In this case, fraction symbols would be difficult to
interpret because the conceptual referents would not be clear. In
line with this explanation, several investigators have proposed that
children's difficulty with learning fractions is rooted in the struc-
ture of their innate numerical representations (Gelman, 1991;
Wynn, 1995, 1997). For example, Gelman argued, based on Gal-
listel and Gelman's (1992) preverbal counting model, that children
represent numerosity as discrete blurs on a mental number line.
This structure, Gelman contended, is isomorphic to that of count-
ing (or natural) numbers and therefore helps children learn the
verbal count words. However, because this structure is inherently
discontinuous, Gelman predicted that children would have great
difficulty understanding fractions and learning the verbal labels for
them.

In support of this prediction, Gelman (1991) cited several ex-
periments in which children's responses to fractions revealed
misinterpretations based on whole numbers. For example, Gelman,
Cohen, and Hartnett (1989, cited in Gelman, 1991) asked kinder-
garten, first-grade, and second-grade students to read and order
written fractions, such as Vi and lA. They found that children
tended to read the written fractions in terms of whole numbers
(e.g., reading "W as "one and two," "one plus two," or "twelve"
rather than "one-half). Furthermore, most children incorrectly
judged lA to be larger than V2, apparently because they treated
these fractions like natural numbers. That is, children based their
judgments on the fact that 4 is larger than 2. Gelman interpreted
these errors as evidence that children's innate counting principles
interfere with their ability to comprehend quantities beyond whole
numbers. Indeed, her data suggest that it is not until third grade
that children begin to overcome these difficulties.

However, there is at least one alternative explanation for chil-
dren's poor performance on such tasks that does not invoke a
preexisting representation that is limited to whole numbers. In-
stead, children may have trouble interpreting the conventional
symbols for fractions because of interference from years of expe-
rience using these same symbols to stand for whole numbers. This
alone could lead to the error pattern Gelman et al. (1989, cited in
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Gelman, 1991) observed, independent of whether children are
capable of understanding and representing fractional amounts.
Because the earlier tasks required children to read and interpret
conventional symbols, they do not provide a clear test of the
early-constraints hypothesis.

The same is true for another Gelman et al. (1989) experiment
cited by Gelman (1991), although it may not be as immediately
apparent. In this experiment, children were shown a special num-
ber line that was marked with sets of circles rather than written
numerals. Thus, one circle, two circles, and three circles were
placed at points corresponding to the whole numbers instead of the
numerals 1, 2, and 3. Children were then given cards with various
fractional amounts of a circle (e.g., l'/2, IV3, V2, Vi, etc.) and were
asked to place the cards "where [they] belonged" on the number
line. The initial placements made by children just finishing kin-
dergarten and first grade were rarely correct (approximately 10%
and 20% correct responses, respectively). It is interesting to note
that children most often erred by placing the cards on top of the
whole-number landmarks. For example, children would place the
card with 1 Vi circles on top of the two circle landmark because
both amounts had two parts. Thus, children appear to err because
of a bias to interpret fractions in terms of whole numbers.

However, as before, the source of this bias is unclear because
prior experience with conventional number lines may have led to
the observed whole-number errors. After all, kindergarten and
first-grade children have probably encountered number lines in
school—they are likely to know one when they see it. This prior
experience might call to mind the written numerals that would
normally be present even though these were not printed on the
Gelman et al. (1989, cited in Gelman, 1991) version. In fact, this
was virtually ensured by a series of pretest activities that high-
lighted the conventional whole-number characteristics of the num-
ber line. These included having the child place the two circle
landmark on the number line between the one and three circle
landmark, asking the child to name the landmarks "one, two, and
three," and asking how many circles would appear to the left of
"one" and the right of "three." Thus, it is unclear whether chil-
dren's errors were due to confusion with conventional whole-
number symbols or misinterpretations based on preexisting mental
representations of quantity as Gelman (1991) and Wynn (1995,
1997) have argued.

To disentangle these possible explanations, one would need to
measure children's understanding of fraction concepts while
avoiding use of conventional symbols. In fact, when such tasks
have been used, the beginnings of fraction knowledge have been
revealed in relatively young children. For example, Goswami
(1989) gave 4-, 6-, and 7-year-olds a series of a:b::c:d analogy
problems based on shapes shaded in equivalent proportions (e.g.,
¥2 of a circle:'/2 of a rectangle::!/4 circle:?). Children chose the "d"
term from among five choices that showed different shapes shaded
in different proportions. Goswami found that all three age groups
performed significantly above chance on these problems, although
the scores for 4-year-olds were much lower than those for 6- and
7-year-olds (4-year-olds, 31% correct; 6-year-olds, 74% correct;
and 7-year-olds, 86% correct). A simple proportion matching task
also was given in which the a, b, and c terms showed the same
proportion (e.g., ¥2 of a diamond:1/; of a circle::!/2 of a square:?).
The task was to complete the analogy by indicating which of four
choice pictures showed the same proportion. Four-year-olds per-

formed significantly above chance on this task (56% correct), and
6- and 7-year-olds performed near ceiling (86% and 91% correct,
respectively). Thus, although the ability to recognize equivalence
between proportions undergoes some development in early child-
hood, it clearly emerges before school age.

Spinillo and Bryant (1991) also reported relatively early emer-
gence of fraction reasoning. They used a forced-choice matching
task in which 4- to 7-year-olds were shown a picture of a box that
was divided horizontally into white and blue sections. Then the
children were asked to indicate which of two choices (larger boxes
that each contained different proportions of white and blue)
showed the equivalent proportion. This was not an easy task, and
most of the 4- and 5-year-olds performed randomly. However, 6-
and 7-year-olds performed significantly above chance, thus dem-
onstrating proportional reasoning in relatively young children.

Studies of the ability to divide sets and amounts among several
recipients have also revealed the beginnings of fraction knowledge
in young children (e.g., Frydman & Bryant, 1988; Hunting &
Sharpley, 1988). For example, Hunting and Sharpley asked 4- to
7-year-olds to distribute amounts of both continuous and discrete
material among several dolls. They compared children's perform-
ance on this distribution task with their ability to divide materials
into specific fractions in response to a verbal request (e.g., "Cut
this in half). Although children were unable to interpret the verbal
commands and perform specific divisions, most of them could
systematically divide the amounts into equal shares by age 5 years.
These results, taken together with the results of equivalence match-
ing experiments (Goswami, 1989; Spinillo & Bryant, 1991), pro-
vide evidence of fraction reasoning emerging around the time
children enter school—earlier than they can interpret conventional
symbols and verbal labels for fractions and long before they have
received formal instruction in fraction concepts.

The extant studies on early fraction reasoning have focused
primarily on equivalence relations—dividing equally or recogniz-
ing equal proportions. However, there are many other skills that
could be tested. In fact, the literature on whole-number concepts
has investigated a rich array of quantitative concepts in preschool
children, including equivalence relations (Gelman, 1972; Gelman
& Tucker, 1975; Huttenlocher, Jordan, & Levine, 1994; Mix, in
press; Mix, Huttenlocher, & Levine, 1996), ordinal relations (Bul-
lock & Gelman, 1977; Estes, 1976), and calculation (Huttenlocher
et al., 1994; Jordan, Huttenlocher, & Levine, 1994; Levine, Jordan,
& Huttenlocher, 1992). In these studies, methods have been de-
vised for studying quantitative concepts that do not require knowl-
edge of conventional symbols or verbal labels. Use of such meth-
ods would allow a more direct investigation of children's ability to
reason about fractions and extend what is known about the earliest
emergence of these skills.

One such method was developed for testing whole-number
calculation in very young children (Huttenlocher et al., 1994;
Jordan et al., 1994; Levine et al., 1992). In this procedure, a set of
objects is displayed for a few seconds and then hidden. Next,
objects are shown being added to or removed from the hidden set,
but the outcome cannot be seen (thus the initial set and the
transformation must be mentally represented). The child's task is
to indicate the numerosity of the resultant set, either by producing
an equivalent array (Levine et al., 1992) or by pointing to a picture
of an equivalent array (Jordan et al., 1994). Levine et al. compared
children's performance on nonverbal calculation problems to per-
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formance on verbal story problems and number fact problems.
They found that children successfully solved the nonverbal prob-
lems by 4 years of age, whereas children did not achieve compa-
rable levels of success on either of the verbal problems until 5lA to
6'/2 years of age. A subsequent study with younger children
revealed that the ability to solve nonverbal calculation problems
first emerges around 3 years of age (Huttenlocher et al., 1994).
Furthermore, the response mode does not affect children's perform-
ance: Children respond just as accurately when they produce an
equivalent set as when they choose an equivalent set from among
four pictures (Jordan et al., 1994).

In the present study, we used a modified version of the Levine
et al. (1992) task to evaluate children's ability to calculate with
fractions and mixed numbers. In our version, fractional amounts
were substituted for objects. Thus, for each problem the amount
comprising the first term was placed in a shallow hole using
circular pieces of sponge (e.g., half was filled in). Then the hole
was hidden. Next, semicircles of sponge were either added to or
subtracted from the hidden amount (e.g., one quarter was added),
but the outcome could not be seen. Children chose the resultant
amount (e.g., three quarters) from among four pictures.

This procedure has several advantages. First, it measures frac-
tion reasoning without using verbal labels. Specifically, it involves
representing fractional parts and reasoning about transformations
of these parts without requiring knowledge of conventional frac-
tion notation. To be correct, children must attend to the size of the
pieces involved, not just the number of pieces. However, under-
standing fractions not only involves attention to pieces and amount
but also the ability to interpret these amounts in relation to some
unit. The term three quarters only has meaning in relation to a
particular whole, such as three quarters of a pizza, a cup, or an
hour. This unit need not be a standard unit of measurement—it
could be defined as any whole thing or bounded mass (e.g., three
quarters of a rock or three quarters of a blob of whipped cream).
Similarly, the unit could be defined beyond the level of a single
object (e.g., three quarters of a dozen, a gross, or the United States
population). The important thing is that fractions derive their
meaning in relation to a whole unit. Gelman (1991) contended that
fractions are difficult for young children to understand because
they cannot represent amounts between whole units. The present
procedure tests whether this is so by requiring children to reason
about quantities that fall between whole circles. Success on this
task would argue against the idea that early quantitative represen-
tations are restricted to whole numbers.

Another advantage of the nonverbal calculation task is that it allows
a direct comparison between development of whole-number concepts
and fraction concepts. If whole-number concepts are privileged, then
development of fraction calculation should be dramatically different
from development of whole-number calculation. That is, either chil-
dren should not be able to solve fraction calculation problems like
those described earlier, or development of this ability should be
idiosyncratic for fractions versus whole numbers. However, if devel-
opment of fraction calculation parallels development of whole-
number calculation, it would add to the evidence that early quantita-
tive reasoning ability is not limited to whole numbers. Instead, it
would show that children can attend to either whole numbers or
fractional amounts when reasoning about quantity.

We present two experiments in which we evaluate children's
ability to calculate with fractional amounts in a nonverbal task. In

Experiment 1, we focus on simple fraction calculation problems
with solutions that are less than or equal to one (e.g., xh + XA =
%). Because these problems are relatively low in complexity, they
are likely to reveal early fraction calculation ability if it exists.
Furthermore, these problems are analogous to the range of whole-
number problems young children are known to solve (Hutten-
locher et al., 1994). Thus, they provide the most direct possible
comparison between development in fraction and whole-number
calculation in this task. In Experiment 2, we focus on mixed
number problems with solutions that are less than or equal to three
(e.g., ll/2 + 3A = 2lA). Because these problems involve larger and
more variable quantities than the simple fraction problems, they
provide a stronger test of early fraction reasoning. In particular,
because these problems involve up to three whole units, they allow
us to test directly whether children can represent amounts between
whole numbers.

Experiment 1

Method

Participants

Seventy-two children participated in the experiment. They were divided
evenly into three age groups: 3-year-olds (mean age = 3 years 7 months;
range 3 years 1 month to 3 years 11 months), 4-year-olds (mean age = 4
years 6 months; range 4 years to 4 years 11 months), and 5-year-olds (mean
age = 5 years 3 months; range 5 years to 5 years 10 months). Each age
group included 12 boys and 12 girls. The children were drawn from
preschools that served a predominantly White, middle-class population. All
came from homes in which English was the primary language.

Materials

Each child completed two tasks: fraction calculation and whole-number
calculation. These were counterbalanced for order of presentation across
children. Materials for the fraction calculation task included a set of four
white circular sponges (6 cm in diameter; 0.5 cm thick), a black tray (10 X
30 cm) with a shallow circular hole in the center (6 cm diameter; 0.5 cm
deep), a paper bag (15 cm high), and a three-paneled cardboard screen
(28 X 21 cm per panel). Each sponge was cut into one-quarter pieces.
Strips of Velcro® were attached to the edges so that the pieces could be
rejoined to form all or part of a circle. Materials for the whole-number
calculation task included a set of 15 black disks (1.9 cm in diameter), a box,
a cover, and a white cardboard mat (25 x 25 cm). The cover had an
opening on one side so that the experimenter could easily add or remove
disks.

A response book was used in both calculation tasks. Each page of the
response book showed four amounts that were arranged on an imaginary
2 x 2 grid. One of the amounts was the correct solution to the calculation
problem, and the other three were foils. For fraction calculation items, the
four choices were 'A, V2, 3/i, and 1. Each amount was presented as a white
circle (3 cm in diameter) or semicircle centered in a black rectangle. The
rectangles were separated from one another by 4 cm of white space. Note
that the size difference between the sponge stimulus circles and the printed
response circles prevented children from responding correctly by matching
the total amounts. Also, unlike the sponge pieces that were divided and
rejoined in quarters, the response amounts were presented as seamless
white shapes (see Figure 1). This helped to ensure that children were not
responding on the basis of the number of quarter pieces in each solution.
For the whole-number calculation items, the four amounts were arrays of
one, two, three, and four black dots. Each array was presented in a
horizontal line running across the center of a white rectangle that was
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Figure 1. Sample response page used for the fraction and mixed-number calculation tasks.

surrounded by a narrow black border. The rectangles were separated from
one another by 4 cm of white space. The spatial positions of the response
amounts were counterbalanced across items so that the correct response
appeared in each quadrant equally often. This was true both within and
across tasks. Similarly, the magnitude of the correct response in relation to
the foils was counterbalanced across items so that the correct response was
equally often the smallest, next to smallest, largest, and next to largest
amount, both within and across tasks.

Procedure

Fraction calculation task. Twelve fraction calculation problems were
presented in one of two fixed random orders. The number of addition and
subtraction problems was equal. Fraction calculation problems began when
the first term was placed in the shallow hole of the black test tray using
pieces of sponge (e.g., three quarters were filled in). This was left in full
view of the child for a few seconds, and then a screen was raised so that
the tray was hidden. Next, a piece of sponge was shown either entering or
emerging from behind the screen—that is, being added to or subtracted
from the hidden amount (e.g., half was subtracted)—but the outcome could
not be seen. Children chose the resultant amount (e.g., one quarter) from
among the four pictures shown in the response book. Note that portions
were added or subtracted altogether. So, for example, Vi would be sub-
tracted as two Vi pieces attached to form a single piece, not as two separate
pieces. During the fraction calculation problems, the pool of sponge pieces
was kept together in a short paper bag that was placed in front of the screen
and off to one side. This was intended to keep the pool of pieces hidden,
yet allow children to see every time the experimenter moved pieces to or
from the pool.

To introduce the fraction calculation block, the experimenter showed the
first problem while prompting the child to look closely at both the initial
amount and the amount used in the transformation. Then, the corresponding
page in the response book was revealed. The experimenter said, "Now, which
one of these [gesturing to the response page] looks just like mine [pointing
behind the screen]?" The child's response was recorded, but no feedback was
given on this or subsequent trials. Pilot testing revealed that this procedure
sufficiently conveyed the task without the need for practice trials.

Whole-number calculation task. A block of eight problems was pre-
sented in one of two fixed random orders. (Order 1 was presented along
with Order 1 of the fraction problems and Order 2 was presented along
with Order 2 of the fraction problems.) The block included an equal
number of addition and subtraction problems chosen from the pool of 12
problems with sums or minuends of 4 or fewer items (e.g., 1 + 3, 2 + 1,
1 + 1, 4 - 3, 3 - 2). These problems are among the first to be solved by
young children as they enter their 3rd year (Huttenlocher et al., 1994). Only
eight problems were included in the present study to provide an adequate
sample of this ability without causing undue fatigue, particularly in the
youngest participants.

The whole-number calculation procedure was parallel to the fraction
calculation procedure, except that sets of individual disks were used instead
of continuous sponge semicircles. Whole-number calculation problems
began when the first term was placed on the mat as a horizontal line of
black disks (e.g., three disks were placed on the mat). These disks were left
in full view of the child for a few seconds, and then they were hidden
underneath a cover. Next, disks were shown either entering or emerging
from the cover as a group, that is, being added to or subtracted from the
hidden amount (e.g., two disks were subtracted), but the outcome could not
be seen. Children chose the resultant amount (e.g., one disk) from among
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Figure 2. Proportion of correct responses for each age group on the whole-number and fraction calculation
tasks, Experiment 1. Note that these are discontinuous categories. Vertical lines depict standard errors.

the four pictures in the response book. During the whole-number calcula-
tion problems, the pool of disks was kept together in a box that was placed
off to one side of the mat. This was intended to keep the pool of disks
hidden, yet allow children to see every time the experimenter added or
removed disks from the pool.

The whole-number calculation block was introduced the same way as
the fraction calculation block. The experimenter showed the first problem
while prompting the child to look closely at both the initial amount and the
amount used in the transformation. Then, the corresponding page in the
response book was revealed. The experimenter said, "Now, which one of
these [gesturing to the response page] looks just like mine [pointing behind
the screen]?" The child's response was recorded, but no feedback was
given on this or subsequent trials. Pilot testing revealed that this procedure
sufficiently conveyed the task without the need for practice trials.

Results and Discussion

Every child completed all the problems in each block. Figure 2
shows the mean proportion correct for each age group on both
calculation tasks. We used two-tailed t tests to compare the pro-
portions correct for each age group to chance (i.e., 0.25 in a
four-choice task). As expected based on previous work (e.g.,
Huttenlocher et al., 1994), children in all three age groups per-
formed significantly above chance on the whole-number calcula-
tion problems: 3-year-olds, /(23) = 2.60, p < .05; 4-year-olds,
f(23) = 7.50, p < .0005; and 5-year-olds, f(23) = 9.34, p < .0005.
On the fraction calculation problems, 4- and 5-year-olds, but not
3-year-olds, performed significantly above chance: 3-year-olds,
f(23) = 1.15, ns; 4-year-olds, t(23) = 4.45, p < .0005; and
5-year-olds, r(23) = 6.56, p < .0005. Thus, whole-number calcu-
lation emerges about a year earlier than fraction calculation, but at
least some competence on both tasks is present by 4 years of age.

An inspection of Figure 2 indicates that fraction calculation
problems were more difficult than whole-number problems, but
clearly the patterns of development for the two tasks were quite
similar. That is, performance improved in parallel over the 3- to
5-year age range. An analysis of variance (ANOVA) confirmed
that this was the case. A preliminary ANOVA showed no effects
of gender or task order on children's calculation scores (all ps >
.15), so these variables were eliminated from subsequent analyses.
A second ANOVA with age group as a between-subjects variable
and task (fractions vs. whole numbers) as a within-subject variable
revealed a significant main effect of task, F(l, 69) = 29.62, p <
.0001, that reflected better performance on the whole-number
problems (.57 correct vs. .42 correct). There also was a significant
main effect of age group, F(2, 69) = 15.70, p < .0001. Pairwise
comparisons (Scheffe's S, p < .05) revealed that this was due to
significantly better performance by 4- and 5-year-olds when com-
pared with 3-year-olds (3-year-olds, M = .33; 4-year-olds, M =
.53; and 5-year-olds, M = .62). The difference in performance
between 4-year-olds and 5-year-olds was not significant. Importantly,
the interaction between age and task was not significant (p > .25).
Thus, although significant age and task differences were obtained,
developmental changes on these tasks occurred in parallel.1

This parallel pattern of development was reflected in two addi-
tional respects. First, performance on the fraction problems was

1 Because the data in this experiment were proportional, parallel analy-
ses were carried out on arcsine transformations of the calculation scores to
ensure that skew was not affecting the results. These analyses yielded the
same pattern of findings as the analyses using raw data, thus confirming the
robustness of the results reported here.
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significantly correlated with performance on the whole-number
problems, Hl\) = .59, p < .0001. This indicates that a common
underlying ability was tapped by both tasks. Second, neither task
appeared to be extremely easy or extremely difficult—scores for
both were in the middle range of performance. Thus, both problem
types could be solved in the preschool age range, but there was still
room for growth in both abilities. Such parallels are not predicted
by the early-constraints hypothesis.

The present results indicate that there are important similarities
between early whole-number and fraction calculation. But does
that mean that children were using the same strategy to solve both
problem types? Because all fraction problems were presented
using one-quarter pieces, it might be argued that children used a
whole-number strategy to solve them. Even though the pieces were
joined to form semicircles, the divisions between pieces were still
perceptible. Thus, it is possible that children solved fraction cal-
culation problems by representing the number of individual quarter
pieces as in the whole-number problems rather than representing
the continuous amount of the semicircles.

Although this possibility cannot be ruled out entirely, several
factors argue against it. First, the format of the response book
impedes the use of this strategy because the response choices for
fraction problems are presented as continuous semicircles. There-
fore, to use a whole-number strategy, children would have to
mentally translate the attached pieces into separate pieces, find the
solution to the whole-number problem, and then translate this
solution back into continuous unitized amounts through division.
This approach does not seem to be the most direct way to solve the
fraction problems. If children have an alternative strategy they
could use, it seems likely that they would.

Second, fraction problems did not order for difficulty according
to maximum number of pieces as whole-number problems do
(Huttenlocher et al., 1994; Levine et al., 1992). For example, the
problem 3 + 1 encompasses a higher numerosity than 1 + 1
because to calculate 3 + 1 nonverbally one must represent up to
four things, whereas to calculate 1 + 1 one must represent a
maximum of only two things. Similarly, the problem 4 — 2
encompasses a higher numerosity than 3 — 2 because to calculate
4 - 2 nonverbally one must represent a maximum of up to four
things, whereas to calculate 3 - 2 one must represent a maximum
of only three things. In previous studies using the nonverbal
calculation procedure, whole-number problems consistently or-
dered for difficulty on the basis of the highest numerosity encom-

passed by the problem. Thus, 3 + 1 was more difficult to solve
than 1 + 1 and 4 - 2 was more difficult than 3 - 2 . Whole-
number problems in the present study also ordered for difficulty
according to numerosity, although not quite as consistently as in
past research (see Table 1).

In contrast, fraction calculation problems did not order for
difficulty according to the maximum number of one-quarter
pieces. The analogous contrast to the above addition example
would be 3A (three quarter pieces) + lA (one quarter piece) versus
lA (one quarter piece) + 'A (one quarter piece). If children used a
whole-number strategy to solve the fraction problems, then 3A + lA
should be more difficult than 'A + lA. However, it was not (see
Table 2). In fact, maximum numerosity generally bore little rela-
tion to difficulty on the fraction problems. Numerosity four prob-
lems tended to be less difficult than lower numerosity problems,
which is the opposite of the pattern found for whole-number
problems (Huttenlocher et al., 1994; Levine et al., 1992). Further-
more, the most difficult fraction calculation problem also involved
the fewest pieces. On the basis of this pattern, it does not seem
likely that children solved fraction problems through a whole-
number strategy.

It should be noted, however, that even if some children attended
to the individual quarter pieces on the fraction calculation prob-
lems, they would still be reasoning about the amounts as fractions
because the answers were expressed in terms of a unit. If children
saw the problems in terms of continuous quantity, the answers
were expressed in relation to a whole circle. If they saw them in
terms of individual pieces, the answers were expressed in relation
to sets of four—as in reasoning about fractions of a dozen, a gross,
or some other discrete set. It may not be possible to determine with
certainty which approach children used from the present data, but
the important point is that in either case they clearly responded in
terms of a fractional quantity.

In summary, the results of Experiment 1 indicate that fraction
calculation, like whole-number calculation, is an emerging ability
in the preschool age range. Although it is true that children in the
present study performed better on the whole-number task than the
fraction task, the difference is much smaller than the early-
constraints hypothesis would predict. In fact, the patterns of de-
velopment for both tasks are remarkably similar. Thus, the devel-
opment of fraction concepts does not appear to be idiosyncratic.
Furthermore, competence on the fraction calculation task appears
long before these concepts are taught in school and also earlier

Table 1
Rank Order (Easiest to Most Difficult) of Whole-Number Problems in Experiment 1
Based on Overall Proportion Correct

Problem

2 - 1
1 + 1
2+ 1
1 +3
3 + 1
3 - 2
4 - 1
3 - 1

Numerosity

2
2
3
4
4
3
4
3

Overall

.68

.68

.64

.63

.61

.51

.40

.39

3-year-olds

.46

.50

.46

.38

.38

.34

.21

.34

Age

4-year-olds

.71

.79

.75

.67

.71

.63

.50

.25

5-year-olds

.88

.75

.71

.83

.75

.58

.50

.58
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Table 2
Rank Order (Easiest to Most Difficult) of Fraction Problems in Experiment 1

Based on Overall Proportion Correct

Problem

1/2 - 1/4
•A + 1/2
!/2 + 1/2
•A + 3A
1 - Vi

3A + %
1 - 3 / 4

3/4 - v*
3/4 - 1 /2
1/2 + 1/4
1 - 1 / 2

V* + 1/4

Numerosity

2
3
4
4
4
4
4
3
3
3
4
2

Overall

.57

.54

.51

.50

.50

.46

.43

.39

.36

.32

.28

.19

3-year-olds

.54

.29

.38

.29

.13

.38

.33

.42

.25

.13

.21

.04

Age

4-year-olds

.58

.58

.46

.54

.67

.46

.46

.38

.33

.29

.25

.25

5-year-olds

.58

.75

.71

.67

.71

.54

.50

.38

.50

.54

.38

.29

than children succeed on the symbolic and quasisymbolic tasks
used in previous research (e.g., Gelman et al., 1989; cited in
Gelman, 1991).

Experiment 2

In Experiment 1, 4- and 5-year-olds demonstrated an emerging
ability to solve simple fraction calculation problems (i.e., problems
with solutions less than or equal to one whole). In Experiment 2,
we investigated whether this ability extends to more complex
mixed-number problems, such as 3 — 1V4 = 1% or % + PA =
2!/2. Such problems provide a stronger test of the ability to reason
about fractional amounts in that they involve larger and more
variable quantities than the simple fraction problems. These prob-
lems also involve up to three whole units rather than one. Thus, to
respond accurately, children must be able to represent amounts
between whole numbers. For example, to solve 3 — 1 Vi, the child
would have to recognize that this leaves enough stuff to make one
whole with some amount left over.

Method

Participants

One hundred eighty-six children participated in the experiment. They
were divided into four age groups: 4-year-olds (mean age = 4 years 5
months; range 4 years to 4 years 11 months); 5-year-olds (mean age = 5
years 4 months; range 5 years to 5 years 11 months); 6-year-olds (mean
age = 6 years 4 months; range 5 years 8 months to 7 years); and
7-year-olds (mean age = 7 years 5 months; range 6 years 10 months to 8
years). Children were tested between the spring and fall of 1996. The 4-
and 5-year-olds all attended preschool or day-care programs. All of the
6-year-olds were between kindergarten and first grade in school, and all of
the 7-year-olds were between first and second grade. Testing was stopped
in mid-October to minimize the difference in educational experience be-
tween children tested in the fall and children tested in the spring and
summer. At that time, the age and gender groups were nearly but not
exactly equal. The children were drawn from preschools and elementary
schools that served a predominantly White, middle-class population. All
came from homes in which English was the primary language. A teacher
questionnaire confirmed that none of the children in this study had been
exposed to instruction on fraction calculation or mixed numbers in school.

Materials

The materials and procedure for mixed-number problems were identical
to those used for fraction calculation problems in Experiment 1, except that
a three-hole tray was used to present the problems (10 X 30 cm overall
with holes 6 cm diameter; 0.5 cm deep; spaced 4 cm apart).

Procedure

As in the fraction problems of Experiment 1, children were shown an
amount of sponge circle that was the first term of each problem, and then
this amount was hidden with a screen. Next, the experimenter added or
subtracted a portion of sponge circle in full view of the child, but the
outcome could not be seen. The child's task was to point to the amount in
the response book that showed the resulting amount.

The 12 test problems were chosen from the pool of possible problems
with sums and minuends of 3 (i.e., •%) or less that result from various
combinations of fractions and mixed numbers in one-quarter increments
(i.e., 1/4, 1/2, 3A, 1, PA, I1/2, PA, 2, 21/4, 21/2, 23A, 3). As before, four choices
were presented on each trial: the correct answer and three foils. The foils
were other fractions, whole numbers, or mixed numbers that differed from
the correct response in one-quarter increments. For example, if the correct
response was Wi, the foils might include IVi, VA, and 2. The magnitude
of the correct response in relation to the foils was randomly determined and
counterbalanced across items so that the correct response was equally often
the smallest, next to smallest, largest, and next to largest magnitude. Thus,
the relative magnitude of the correct response and the restriction to one-
quarter increments determined what the foils would be on any given trial.
For example, if the correct response was \lh and the relative magnitude
was largest, the foils would necessarily be 1[A, 1, and 3A.

Children were introduced to the mixed-number task in one of two
conditions. One condition used the same instructions as in Experiment 1
and was included to parallel the procedure used in previous nonverbal
calculation studies. Children were shown the first problem and then asked,
"Which one of these [gesturing toward the pictures on the first response
page] looks just like mine?" If a child did not point immediately, they were
given the prompt, "Point to the one that looks just like mine." For children
in this condition, this trial was followed immediately by the next problem
without further explanation or feedback.

In the other condition, we tested children on the same set of mixed-
number problems but introduced the task with a block of demonstration
and practice trials. These trials illustrated how pieces could be recombined
with respect to the whole units to match one of the pictures in the response
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Figure 3. Proportion of correct responses for each age group in each condition of the mixed-number calculation
task, Experiment 2. Note that these are discontinuous categories. Vertical lines depict standard errors.

book. During this block, the experimenter first took out a few sponge
pieces and showed them to the child. She explained that these were
"sticky" so she could stick them together or pull them apart. Next, she
presented the addition problem 3A + Vt without screening the result from
view. On this trial, the experimenter said, "Let's say I start with this much
(pointing to the % piece) and then I get this much more (adding another 3A
piece but placing it in a separate hole). Now, I have all this (gesturing
toward the two amounts). If I wanted to, I could put them all together
(recombining the amounts into 1 Vi) and then they would look like this."
The same problem was demonstrated again, but this time the result was
screened and the experimenter pointed to the correct response in the
response book. Finally, the problem was presented a third time, screened,
and the child was prompted to point to a picture in the response book. The
experimenter provided feedback and demonstrated why the child's re-
sponse was right or wrong by lowering the screen, combining the pieces,
and comparing them to the response choices. A parallel set of demonstra-
tion and practice trials was then presented on the subtraction problem
1 V* - Vi and this was followed immediately by the block of test problems.

Results and Discussion

All children completed the entire block of problems. Figure 3
shows the mean proportion correct for each age group in each
condition. We used two-tailed t tests to compare these proportions
to chance (i.e., 0.25 in a four-choice task) and found that regardless
of how the task was introduced, 6- and 7-year-olds solved mixed-
number calculation problems significantly above chance, lowest
f(21) = 3.37, p < .005; however, 4- and 5-year-olds did not,
highest r(23) = 2.00, p < .10. Thus, the early fraction calculation
ability observed in Experiment 1 does extend to more complex
mixed-number problems, but not until somewhat later in develop-
ment. Still, even at age 6 and 7 years, children are solving mixed-

number problems far earlier than they are taught formal algorithms
for these problems in school and also earlier than children succeed
on symbolic and quasisymbolic fraction tasks (e.g., Gelman et al.,
1989; cited in Gelman, 1991).

A preliminary ANOVA ruled out the effect of gender on chil-
dren's mixed-number calculation scores (p > .15), so this variable
was eliminated from subsequent analyses. A second ANOVA
conducted on the children's calculation scores, with age group and
condition (instruction vs. demonstration) as between-subjects vari-
ables, revealed a significant main effect of age, F(3, 177) = 17.48,
p < .0001. Pairwise comparisons (Scheffe's S, p < .05) revealed
that this was due to reliably higher scores for 7-year-olds than for
the other age groups, as well as significantly higher scores for
6-year-olds than for 4-year-olds. None of the other age compari-
sons were significant. There also was a significant effect of con-
dition that reflected higher scores for the children who received
demonstration trials, F(l, 177) = 9.37, p < .005. Although the
amount of improvement was greatest for 7-year-olds (.14), the
interaction between age and condition did not reach significance
(p > .20). These results suggest that the demonstration and prac-
tice trials improved scores for some age groups but did not change
the basic pattern of findings (i.e., emerging ability by age 6 with
improvement by age 7).2

2 As in Experiment 1, because the data in this experiment are propor-
tional, we conducted parallel analyses using arcsine transformations of
children's calculation scores. These tests revealed the same pattern of
results, confirming the robustness of the results reported here.
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Table 3
Rank Order (Easiest to Most Difficult) of Mixed-Number Problems in Experiment 2
Based on Overall Proportion Correct

Problem

1/4

3
3

23/4
I1/2
I1/2

3/4

11/2
11/4
2V4
23/4

3/4

+ 2
- 21/2

- VA
- 3 / 4

+ 11/2
- 3/4

+1/2
+ 11/4
+ 3/4
- 11/2
- 11/2
+ l3/4

Numerosity

9
12
12
11
12
6
5

11
8
9

11
10

Overall

.51

.50

.48

.47

.46

.36

.34

.28

.25

.23

.20

.12

4-year-olds

.19

.29

.38

.29

.44

.42

.23

.29

.19

.21

.13

.17

5-year-olds

.50

.40

.35

.48

.38

.40

.23

.25

.13

.19

.13

.10

Age

6-year-olds

.58

.58

.54
,51
.40
.30
.42
.26
.26
.30
.21
.12

7-year-olds

.79

.75

.68

.62

.62

.30

.49

.32

.43

.23

.36

.09

As noted previously, one might argue that children solve the
fraction calculation problems by means of whole-number strategy
rather than by representing continuous amount. That is, children
might count up the number of one-quarter pieces and calculate the
total of these pieces. However, an examination of the order of
difficulty for mixed number problems provides strong evidence
against this hypothesis (see Table 3). Unlike whole-number cal-
culation problems in this and previous studies, mixed-number
problems did not order for difficulty according to the number of
individual quarter pieces. Several of the easiest problems involved
the greatest number of quarter pieces (i.e., 12 pieces). The rest of
the distribution seemed to order randomly with respect to numer-
osity, with items involving 11 quarter pieces ordering between
items with 5 and 8 quarter pieces, and so forth.

General Discussion

To explain why children have difficulty mastering fractions in
school, some researchers have hypothesized that the structure of
early quantitative representations is isomorphic to that of counting
numbers and therefore does not readily apply to fractions (Gelman,
1991; Wynn, 1995, 1997). This implies that the course of devel-
opment for fraction concepts should be dramatically different from
the course of development for whole-number concepts. That is,
children should have a firm grasp of the whole-number system
before acquisition of conventional algorithms but extremely lim-
ited, if any, understanding of fractions during this same period.
However, the present results did not reveal this to be the case.

We assessed children's understanding of fractions using a non-
verbal procedure that has previously revealed whole-number cal-
culation ability in preschool children (Huttenlocher et al., 1994;
Levine et al., 1992). Our results demonstrate that there are striking
parallels between development of whole-number and fraction cal-
culation. First, there was the same gradual rise in performance over
time on both tasks rather than an abrupt shift at any particular age.
Second, although whole-number calculation scores were higher,
scores for both tasks were in the middle range of performance.
Thus, neither task was particularly easy or difficult. These findings
reveal nothing idiosyncratic about the development of fraction
concepts in comparison with whole-number concepts. Further-

more, fraction calculation ability was clearly emerging in the early
childhood age range. Children as young as 4 years old could
calculate with fractional amounts less than or equal to one. Some-
what older children (6- and 7-year-olds) could accurately solve
more complex mixed-number problems. This was true even though
none of these children had been exposed to written fraction algo-
rithms in school. In fact, many of them had not even been taught
the verbal labels for common fractions. Thus, understanding of
fractions develops before acquisition of conventional fraction
skills.

The present results do not provide support for the early-
constraints hypothesis as an explanation for children's difficulty
learning conventional fraction symbols and algorithms. This leaves
open the question of why children continue to fail conventional
fraction tasks so late in development—indeed, these problems
persist for many years after children have mastered conventional
whole-number algorithms. As noted in the introduction, one pos-
sibility is that children are confused by the symbols themselves
rather than by the conceptual referents. For example, children may
have difficulty using the same written symbols to stand for both
whole numbers and fractional amounts. The whole-number inter-
pretation might be privileged because children typically have years
of experience with whole-number symbols before they are intro-
duced to fraction symbols. The present results do not provide
direct evidence for this explanation, but they suggest that this may
be a fruitful direction for future research.

The results of the present study also have implications for the
way early quantitative representations should be characterized. It is
unlikely that children solved the nonverbal fraction and mixed-
number problems using conventional symbols or algorithms given
that these had not yet been taught in school. Indeed, an inspection
of popular mathematics texts reveals that children are not even
introduced to conventional fraction calculation algorithms until the
end of second grade (e.g., Addison-Wesley Mathematics, 1992;
Exploring Mathematics, 1991; Heath Mathematics: Connections,
1992). If children were not using conventional symbols to solve
the fraction and mixed-number calculation problems in the present
study, then what process were they using? In other words, when
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they were successful, how did they represent the hidden amounts
and the transformations?

One proposal is that infants and young children use preverbal
counting—counting without linguistic tags—as described briefly
in the introduction (Gallistel & Gelman, 1992). Preverbal counting
is thought to operate using the same mechanism as Meek and
Church's (1983) model of timing and counting. In this model,
there is an endogenous pacemaker that emits pulses at a constant
rate. To begin timing or counting, a switch is closed that gates
pulses into an accumulator. The resulting fullness of the accumu-
lator represents the total duration or quantity, depending on which
mode has been operated. Gallistel and Gelman argued that this
process conforms to the principles that define counting (as outlined
in Gelman & Gallistel, 1978) and therefore constitutes a legitimate
counting system. They further proposed that the magnitudes pro-
duced by the accumulator are represented on a mental number line
that preserves the ordinal relations among them.

If preschool children use preverbal counting to represent quan-
tity, as Gallistel and Gelman (1992) have proposed, then it is not
at all clear how they could solve the fraction and mixed-number
calculation problems. That is precisely why Gelman (1991) pre-
dicted that learning fractions would be difficult given this type of
representation. First, correct responses on these problems would
require the ability to recognize solutions that fall between whole
circles. As Gelman (1991) pointed out, the preverbal counting
process and resulting number line representation does not lend
itself to computing or remembering such amounts because it does
not allow for amounts between the whole-number units. Second, it
is unclear how preverbal counting could be used to represent the
hidden amounts in the initial arrays. Although it is theoretically
possible for children to count up the number of individual quarter
pieces, the order of difficulty analyses reported previously provide
no evidence that this is what children were actually doing. If
instead, children represented the continuous amounts, preverbal
counting per se would not work. It is conceivable that the timing
mode of the accumulator could be used to "measure" the amounts;
however, the accumulator has not been discussed or tested in this
way to our knowledge.

Huttenlocher et al. (1994) proposed an alternative view of early
quantitative competence that may provide a better account of the
present results. In this view, children solve quantitative tasks by
constructing a mental model that preserves critical information
about the situation involved while eliminating irrelevant details,
such as the color or texture of the objects involved. For example,
to solve the whole-number calculation problems, children would
construct a mental version of number of items in the initial (hid-
den) array and then imagine items moving into and out of it. The
changed mental array would constitute the answer to the problem.
Children might use a similar process to solve the fraction and
mixed-number problems. That is, children could construct a men-
tal version of the initial (hidden) amount and then imagine
amounts being removed or combined with it. One possibility is that
children imagine the spatial transformations that occur as the
amounts are combined in relation to the whole unit. Another
possibility is that they use the shapes of the pieces to imagine the
recombinations without explicit reference to the whole. This may
be how children come to understand fractions through everyday
experience. For example, a child might see an apple cut into
quarters. The child could gain insight into the nature of fractions

by either (a) imagining the whole apple being reformed as the
quarter pieces came back together or (b) using the shapes of the
pieces to suggest how they would recombine and noticing that they
make a whole apple.

Although early fraction and whole-number calculation abilities
develop in parallel, they do not emerge simultaneously—fraction
calculation appears somewhat later. One potential explanation for
this lag, particularly if children use a mental model, is that fraction
and mixed-number problems calculation may depend on the de-
velopment of more complex spatial skills than whole-number
problems require. As noted earlier, solving whole-number prob-
lems through a mental model requires only the mental movement
of items into or out of a space. In contrast, the fraction problems
would require not only these movements, but also rotation, sepa-
ration, and recombination of various amounts. These added de-
mands on spatial ability may make the task too difficult for
children under 4 years old to perform accurately. Even after
children are able to perform the task, they may need further
development in spatial skills before they can accurately solve the
more complex mixed-number problems.

However, it should be noted that the transformation was not the
only potential source of error in the present task. For each problem,
children also needed to remember the initial amount and the added
or subtracted amount. It is possible that improved memory for
these amounts led to the observed changes in calculation ability.
Indeed, previous research on nonverbal calculation has shown that
children's memory for the initial amount in whole-number prob-
lems improves significantly with age (Huttenlocher et al., 1994).
Further research is needed to determine whether improvement in
either memory for precise quantities, ability to perform spatial
transformations, or both led to the developmental progression
reported here.

Finally, let us consider what the present study implies about the
origins of quantitative representation. The findings reported here
might be seen as evidence that the early-constraints hypothesis is
incorrect because innate numerical representations can apply to
quantities other than whole numbers. In this view, humans would
be born with representations that support reasoning about both
whole or fractional amounts. However, there is no reason to
conclude that innate representations underlie children's perform-
ance on the present task. First, fraction calculation ability, like
whole-number calculation ability, is not evident until preschool
age. Then, it continues to improve and expand during early child-
hood. Second, whole-number and fractional amounts are ubiqui-
tous in children's environments. Therefore, reasoning about both
types of quantity could develop gradually on the basis of accrued
experiences (Huttenlocher, 1994). Unless children are prevented
from assimilating fraction experiences by an innate constraint, as
some have proposed, then these concepts should develop in par-
allel with whole-number concepts. The present results add to a
growing body of evidence that suggests this is the case.
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