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Abstract

Since the 1980s the US has experienced not only a steady increase in income inequality,
but also a contemporaneous rise in residential segregation by income. What is the relation-
ship between inequality and residential segregation? How does it affect intergenerational
mobility? We first document a positive correlation between inequality and segregation, both
over time and across metro areas. We then develop a general equilibrium model where par-
ents choose the neighborhood where they raise their children and invest in their children’s
education. In the model, segregation and inequality amplify each other because of a local
spillover that affects the return to education. We calibrate the model to a representative US
metro in 1980 and use the micro estimates of neighborhood exposure effects in Chetty and
Hendren (2018b) to discipline the strength of the local spillover. We first use the calibrated
version of the model to explore the economy’s response to an unexpected skill premium
shock. We find that segregation dynamics played a significant role in amplifying the increase
in inequality and in dampening intergenerational mobility. We then use the model to explore
the effects of policies designed to move poor people to better neighborhoods, like the Moving
To Opportunity program. We show that scaling up MTO policies induces general equilibrium
effects that limit their efficacy.
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1 Introduction

It is a well documented fact that the US has experienced a steady increase in income inequality

over the last 40 years. At the same time, there has been a substantial increase in residential segre-

gation by income. What is the link between inequality and residential segregation? In particular,

has residential segregation amplified the response of income inequality to underlying shocks,

such as skill-biased technical change? How do these patterns in inequality and segregation af-

fect intergenerational mobility? In this paper, we build a model of educational investment and

residential choice with local spillovers that can be used to address these questions.

Over the last few decades, inequality across neighborhoods within US metro areas has increased

and has been an important driver of the overall income inequality in the US. Figure 1 reports

the evolution of the Theil index of family income at the national level (blue solid line) and its

decomposition into within-city (red dashed line) and across-cities (green dotted line) inequality.1

Figure 1: Inequality Within and Across Metros: Theil Index 1980-2000
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As the figure shows, the within-city component of overall inequality is significantly larger than

the across-cities component, and it has increased more over time. A vast literature has focused

on the increase in inequality across US cities, but has largely abstracted from the evolution of

within-city inequality.2 At the same time, US cities have experienced an increase in residential

1For this figure, we use census tract data on family income described in Section 2.
2See, for example, Moretti (2004), Shapiro (2006), Moretti (2012), Eeckhout et al. (2014), Hsieh and Moretti

(2015), Diamond (2016), Giannone (2018), and Diamond and Gaubert (2022).
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segregation by income. As an example, Figure 2 shows heat maps for the Chicago metro area

in 1980 and 2010 to highlight the drastic increase in the number of neighborhoods with a high

concentration of either rich (red areas) or poor families (dark blue areas).3

Figure 2: Share of Rich Families in Chicago
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Our paper proposes a theory of within-city inequality that focuses on local spillovers as drivers

of residential segregation by income, which, in turn, feeds back into inequality across neighbor-

hoods.

In the 1990s, there was a large theoretical literature focusing on the relation between inequality

and local externalities, starting from the seminal work by Benabou (1996a,b), Durlauf (1996a,b),

and Fernandez and Rogerson (1996, 1997, 1998). However, only recently has the availability

of administrative data allowed for direct estimates of neighborhood spillover effects. In particu-

lar, Chetty et al. (2016) and Chetty and Hendren (2018a,b) have shown that children’s exposure

to different neighborhoods has substantial effects on their future income. We bridge these two

strands of literature, by proposing a general equilibrium model calibrated using the micro esti-

mates from Chetty and Hendren (2018b) to understand the contribution of local externalities to

3The figure shows the concentration of rich and poor families in all census tracts of the Chicago metro area in
1980 and 2010. We define the families in the top 20th percentile of the metro income distribution as “rich”; all other
families as “poor”. The increase in concentration of rich and poor families is even more striking when looking at the
number of census tracts instead of the areas. The number of census tracts with more than 30% rich families went
from 360 to 421, and the number of census tracts with less than 17% rich families went from 894 to 1060.
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segregation, inequality, and intergenerational mobility patterns.

In the first part of the paper, we document the positive correlation between income inequality and

residential segregation by income at the metro level, both across time and across space. We show

that 1) average inequality and residential segregation have increased steadily since 1980; 2) levels

of inequality and residential segregation in 1980 are correlated across metros; and 3) changes in

inequality and residential segregation between 1980 and 2010 are correlated across metros. We

also show that the increase in inequality and segregation is stronger if we restrict the sample

to families with children. This points neighborhood exposure effects’ role as a key mechanism

behind the dynamic relationship between residential segregation and income inequality.

We then build a general equilibrium overlapping generations model with educational and resi-

dential choices that features local externalities. The model generates a feedback effect between

income inequality and residential segregation that amplifies the response of inequality to under-

lying shocks. We first use a simple version of the model to explain the mechanism. Agents live

for two periods: first they are young and go to school, and then they are old and become parents.

There are two neighborhoods, and parents choose both the neighborhood where they raise their

children and their children’s education level. The key ingredient of the model is a local spillover:

investment in education yields higher returns in neighborhoods with higher expected future in-

come of children - that is, neighborhoods with higher parents’ income and children’s ability. We

model the spillover in a general way to capture a variety of mechanisms: differences in the qual-

ity of public schools, peer effects, social norms, learning from neighbors’ experience, networks,

and so forth.4 We assume that the local spillover is complementary to the children’s innate ability

and to their level of education. The model generates sorting in equilibrium: richer parents and

parents with more talented children choose to pay higher rents to live in the neighborhood with

the higher local spillover. It follows that one neighborhood endogenously becomes the “good”

one and hence the one where housing is more expensive. This means that in the model, residential

choice is a form of investment in children’s education, implying that talented children who grow

up in poor families may be stuck in worse neighborhoods.5

4Among the most recent contributions, Agostinelli (2018) shows that peer effects account for more than half of
the neighborhood effects in Chetty and Hendren (2018a), while Rothstein (2019) argues that job networks and the
structure of local labor and marriage market play a more important role.

5We abstract from the fact that educational costs are also endogenous. Cai and Heathcote (2022) show that
the rise in inequality explains a large fraction of the increase in college tuition, which would further amplify our
mechanism.
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We use this simple version of the model to qualitatively understand the dynamic relationship

between inequality and segregation and to explore how the model responds to an unexpected

permanent skill premium shock. When a skill premium shock hits the economy, inequality in-

creases mechanically, because the wage gap between educated and non-educated workers in-

creases. Moreover, given the complementarity between neighborhood spillover and education,

when the skill premium is higher, more parents would like to live in the neighborhood with the

larger spillover. However, given the inelastic housing supply, this translates into higher rental

rates, and hence into a higher degree of segregation by income. The endogenous change in

neighborhood composition, in turn, drives up the spillover differential between the two neighbor-

hoods and translates into even higher future inequality. In particular, poor families with talented

children may be pushed into worse neighborhoods, where the incentive to invest in education is

lower. This further increases the gap between spillovers and worsens intergenerational mobility

over time.6

In order to bring the model to the data, we generalize the model in a number of directions. First,

we introduce an additional neighborhood to capture richer spatial dynamics. Second, we make

the educational choice continuous, so as to not restrict the investment choice set. Third, we

introduce two types of preference shocks: one that stands for local amenities and captures an

additional force for residential segregation, the other that captures idiosyncratic determinants of

the residential choice. We then calibrate the steady state of the model to the average US metro

area in 1980. To discipline the calibration, we target a number of features of the US economy

in 1980, and to discipline the strength of the local spillover, we use the micro estimates for

neighborhood exposure effects obtained in the quasi-experiment of Chetty and Hendren (2018b).

Assuming that the original increase in inequality comes purely from skill-biased technical change,

we study the effects of an unexpected, one-time shock to the skill premium on inequality, seg-

regation, and intergenerational mobility over time. Despite the parsimony of the model, the

exercise generates patterns for inequality and segregation that resemble the data. We also vali-

date the model with a number of other statistics at the city and neighborhood level, such as house

price dynamics in different neighborhoods, neighborhood size dynamics, and intergenerational

mobility matrices across family income quartiles. We then use our model to ask our first main

6We abstract from redistributive policies. Alesina, Stantcheva and Teso (2018) show that residential segregation
by income affects the perception of intergenerational mobility and, in turn, the political support for redistribution.
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quantitative question: How much does segregation by income contribute to the rise in inequal-

ity? To answer this question, we run two counterfactual exercises where we look at the response

of the economy to the same shock, but mute the sorting. In the first exercise, we assume that,

after the shock, families are randomly re-located across neighborhoods, which implies that all

three neighborhoods have the same distribution of income and ability and there is no residential

segregation. In the second one, we assume that after the shock, families cannot re-optimize their

residential choice. These exercises show that segregation by income contributes significantly to

the total increase in inequality between 1980 and 2010: in the first case, it accounts for 27% of

the increase, and in the second, it accounts for 25%. We also show that the increase in inequality

in response to the skill premium shock is concurrent with a decrease in intergenerational mobility

that is significantly amplified by segregation. We analyze a number of alternative specifications

of the model to understand the relevance of some of our simplifying assumptions.

Our finding that residential segregation plays an important role in explaining inequality natu-

rally raises the question whether housing voucher policies aimed at reducing segregation can be

effective. In the mid-1990s, the US Department of Housing and Urban Development ran the

Moving To Opportunity program (MTO), which offered vouchers to low-income families living

in high-poverty neighborhoods to move to better neighborhoods. Chetty et al. (2016) show that

the MTO program was quite successful in increasing the adulthood income of the children of

families that received vouchers. The MTO experiment offered vouchers to a few hundred fami-

lies. An important question is then whether a scaled up version of this policy would be effective

in reducing overall US inequality and improving economic mobility. The hurdle is that scaling

up the program also means generating general equilibrium effects that could potentially reduce

the effectiveness of the policy. Our calibrated model is well suited to address this issue. In the

paper, we show that once we take into account that housing prices and neighborhood spillovers

are endogenous and evolve over time, as we scale up the policy, the income gain for the children

of voucher receivers first increases but then starts declining. Moreover, while inequality and res-

idential segregation decrease monotonically with the scale of the policy, its welfare gains also

start declining when the scale of the policy is large enough.

Related Literature

Our model builds on a large class of models with multiple communities, local spillovers, and

endogenous residential choice that study the effects of stratification (“residential segregation” in
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our language) on income distribution, going back to the fundamental work by Becker and Tomes

(1979) and Loury (1981). Among the seminal papers in this literature, Benabou (1993) explores

a steady state model where local complementarities in human capital investment, or peer effects,

generate occupational segregation; the paper studies its efficiency properties.7 Durlauf (1996b)

proposes a related dynamic model with multiple communities, where segregation is driven by

both locally financed public schools and local social spillovers. The paper shows that economic

stratification and strong neighborhood feedback effects generate persistent inequality.8 Benabou

(1996a) embeds growth with complementary skills in production in a similar model, where local

spillovers are due both to social externalities (like peer effects) and to locally financed public

schools. Fernandez and Rogerson (1996) also study the impact of a number of reforms on pub-

lic education financing using a related model, with no growth, where residential stratification is

purely driven by locally financed public education.9 Fernandez and Rogerson (1998) calibrate

to US data a dynamic version of a similar model to analyze the static and dynamic effects of

public school financing reforms. Benabou (1996b) also studies the effects of public-school fi-

nancing reforms, but he allows for non-fiscal channels of local spillovers, like peers, role models,

norms, networks, and so forth. He shows that disentangling financial and social local spillovers

is important for evaluating different types of policies.

Relative to this literature, our paper makes several contributions. First, we bridge this theoretical

literature and the more recent empirical literature that exploits the advent of large administrative

datasets, by using the micro estimates of neighborhood exposure effects in Chetty and Hendren

(2018b) to discipline the strength of local spillovers. Second, we use this class of models to

analyze the response of an economy with local spillovers to a skill premium shock, one of the

main drivers of the rise in income inequality in the mid-1980s.10 Our model allows us to explore

the effects of such a shock on segregation and on the dynamics of the local spillovers, which, in

turn, further amplify future inequality and dampen intergenerational mobility. Third, given the

7de Bartolome (1990) also studies the efficiency properties of a similar type of model where communities’ strat-
ification is driven by peer effects in education. In related papers, the local social externalities take the form of role
models (Streufert (2000)), or referrals by neighborhoods (see Montgomery (1991a,b)).

8Durlauf (1996a) uses a related model to study how residential stratification can generate permanent relative
income inequality (as opposed to absolute low-income or poverty traps) in an economy where everybody’s income
is growing.

9In a similar framework, Fernandez and Rogerson (1997) study the effect of community zoning regulation on
allocations and welfare.

10See, for example, Katz and Murphy (1992), Autor et al. (1998), Goldin and Katz (2001), Card and Lemieux
(2001), Acemoglu (2002), and Autor et al. (2008).
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quantitative nature of our analysis, we enrich the theoretical framework in several dimensions

to improve its mapping to the data. In particular, the heterogeneity in children’s innate ability

and its complementarity with the spillover make parents’ residential decision a function of the

child’s ability as well as of parental income, allowing us to obtain a continuous measure of income

segregation that can be mapped to the data.11 Finally, we use the model to run policy experiments.

In particular, an important contribution of the paper is to analyze the effects of scaling up the

Moving to Opportunity experiment in an environment in which housing prices are endogenous

and neighborhood spillovers evolve in response to the policy.

The paper most related to ours is the contemporaneous work of Durlauf and Seshadri (2017).

They also build on this class of models to explore the idea that larger income inequality is as-

sociated with lower intergenerational mobility, a relationship known as the “Gatsby curve.” The

model in the paper is close to our model in several dimensions, although the calibration strategy

and the main exercise are different and complement each other well.12 In another contemporane-

ous paper, Eckert and Kleineberg (2021) estimate a related model of residential and educational

choice where local spillovers generate residential sorting, but use it to study the effects of school

financing policies. Zheng and Graham (2022) calibrate a similar model also to study the effects of

different public school allocation mechanisms. More recently, there has been a growing body of

literature focusing on related models with neighborhood effects. Among others, Fogli, Guerrieri,

Ponder and Prato (2022) and Chyn and Daruich (2022) analyze the dynamic effects of scaling

up Moving to Opportunity and placed-based policies. Agostinelli et al. (n.d.) use a static spatial

model to study the effects of vouchers and other policies on residential and school choice.

Another literature that is related to our work focuses on the role of parenting style decisions on

children’s outcomes.13 In particular, Doepke and Zilibotti (2017) propose a model where there

is a feedback effect between parenting style and socioeconomic conditions. In related work,

Agostinelli, Doepke, Sorrenti and Zilibotti (2020) focus on how parenting affects the choice of

peer groups. Their parenting style decision is close in spirit to our residential choice decision

and is affected by the return to education. They use this model to explore the effects of policy

11Previous literature has focused mostly on the extreme cases of complete or zero segregation by income. Our
assumption is related in spirit to Hassler and Mora (2000), which proposes a model where innate ability affects
technological choices and generates a tight link between growth and intergenerational mobility.

12See Durlauf et al. (2022) for a survey on the Gatsby curve.
13See Doepke et al. (2019) for a survey.
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interventions to move children to better neighborhoods. Using a related framework, Agostinelli,

Doepke, Sorrenti and Zilibotti (2022) study the effect on inequality of switching to e-learning

during the pandemic.

Our paper is also related to a broad literature on urban development economics.14 In particular,

Ferreira, Monge-Naranjo and Torres de Mello Pereira (2017) is a recent paper that uses a model

close to ours to think about the emergence and persistence of urban slums and calibrates it to

Brazilian data. A related strand of the literature focuses on spatial sorting generated by local

amenities.15 Among others, Guerrieri, Hartley and Hurst (2013) have focused on the endogenous

nature of amenities. In contemporaneous work, Couture, Gaubert, Handbury and Hurst (2019)

use a spatial model with endogenous amenities and non-homothetic preferences to study spatial

re-sorting within urban areas after the ’90s. Another related paper is Bilal and Rossi-Hansberg

(2021), which emphasizes that the location choice of individuals is a form of asset investment.

The paper is organized as follows. In Section 2, we document the positive correlation between

inequality and segregation across space and time. Section 3 describes the baseline model and

shows how the model responds to a skill premium shock. In Section 4 we extend the model,

describe our calibration strategy, and show the response of the economy to a skill premium change

like the one observed in the data. Section 5 shows our main counterfactual exercises to quantify

how much segregation has contributed to the increase in inequality. Section 6 examines the

scaling up of MTO policies. Section 7 concludes.

2 Empirical Evidence

Over the last 40 years US cities have experienced a profound transformation in their socio-

economic structure: poor and rich families have become increasingly spatially separated over

time. As noted by Massey et al. (2009), this is a new phenomenon in US cities, which histori-

cally were segregated predominantly on the basis of race.16 During the last third of the twentieth

century, the United States moved toward a new regime of residential segregation characterized

14See Bryan, Glaeser and Tsivanidis (2020) for a survey.
15Early work by Brueckner, Thisse and Zenou (1999) and Glaeser, Kolko and Saiz (2001) emphasizes the role of

urban amenities and spurred a vibrant literature on gentrification.
16Massey et al. (2009) documents that from 1900 to the 1970s, what changed over time was the level at which

racial segregation occurred, with the locus of racial separation shifting from the macro level (states and counties) to
the micro level (municipalities and neighborhoods).
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by decreasing racial-ethnic segregation and rising income segregation. Such a shift took place at

the same time as a steady increase in income inequality.

In this section, we document the magnitude of these phenomena and explore the correlation

between segregation and inequality across time and space.

2.1 Segregation and Inequality over Time

To measure residential segregation by income, we use the dissimilarity index, which is the most

common measure of evenness. In our main analysis, we define rich families as those with income

above the 80th percentile, within a given metro and all other families as poor. The dissimilarity

index for metro j is calculated as follows:

D( j) =
1
2 ∑

i

∣∣∣∣xi( j)
X( j)

− yi( j)
Y ( j)

∣∣∣∣ ,
where X( j) and Y ( j) respectively denote the total number of poor and rich families in metro j,

while xi( j) and yi( j) respectively denote the number of poor and rich families in census tract i in

metro j.

We use tract-level family income data from decennial censuses (1980 to 2000) and from the

American Community Survey (2008-2012). Our sample includes 380 metropolitan areas using

the 2003 OMB definition.17 We calculate the dissimilarity index for all metro areas in each

decade and average at the national level using metro level population weights. Figure 3 plots

the resulting measure of segregation (red dashed line) at the national level. The graph shows

that the distribution of income has become progressively more uneven across census tracts over

time. While in 1980, roughly 32% of families in the average US metro would have had to change

residence to achieve an even distribution across census tracts, in 2010, the population that needed

to change residence increased to roughly 38%. The increase was especially large between 1980

and 1990 and again between 2000 and 2010.18

17For summary statistics of our sample, see Appendix A.1.
18The increase in residential income segregation over time is a robust finding. Several sociologists have docu-

mented this fact using different measures of segregation. In particular, Jargowsky (1996) documents an increase in
economic segregation for US metros between 1970 and 1990 using the Neighborhood Sorting Index, Watson (2009)
finds an increase in residential segregation by income between 1970 and 2000 using the Centile Gap Index, and most
recently, Reardon and Bischoff (2011) and Reardon et al. (2018) document this fact using the information theory
index.
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Figure 3: Inequality and Segregation over Time
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Using the same data on family income at the tract level, we also compute the Gini coefficient

at the metro level and similarly average at the national level using metro population weights.

Income data at the census tract level are reported in bins and are top coded. Top-coded income

data are a significant concern when calculating inequality measures. We follow a recent method-

ology proposed by von Hippel et al. (2017), who estimate the CDF of the income distribution

non-parametrically and then use the empirical mean to fit the top-coded distribution.19 We plot

the resulting measure of the Gini coefficient in Figure 3 (blue solid line), together with the dis-

similarity index. Both measures show a significant increase over time, with the Gini coefficient

rising from roughly .38 to roughly .44 over the entire period. The figure shows that the increase

in spatial segregation by income across neighborhoods happened at the same time as the increase

in income inequality. Appendix A.2 documents the robustness of these patterns of increasing

segregation and inequality across a host of different measures. 20

It is interesting to note that if we restrict the sample to families with children, patterns in both

19Some papers dealing with individual-level income data, such as Armour et al. (2016), have addressed the issue
of top-coded data by estimating a Pareto distribution for the top income bracket. However, this methodology is
not feasible when dealing with binned, rather than continuous, income data. The methodology most often used for
binned data has been the one proposed by Nielsen and Alderson (1997), who use the Pareto coefficient from the last
full income bracket to estimate the conditional mean of the top-coded bracket, as in Reardon and Bischoff (2011), for
example. However, such a procedure does not exploit the fact that the census reports the precise empirical average
income by census tract. Our method uses this information to improve the estimation of the top-coded distribution.
For details, see Appendix A.1.

20See, for example, Katz and Murphy (1992), Autor et al. (1998), Goldin and Katz (2001), Card and Lemieux
(2001), Acemoglu (2002), and Autor et al. (2008).
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segregation and inequality are more pronounced. In particular, panel (a) in Figure 4 shows that

not only is the level of segregation higher, but the increase over time is larger.21 The figure shows

that in 1980, the dissimilarity index for families with children is 0.35, compared with 0.31 for

families without children. By 2010, the dissimilarity index for families with children increases

to 0.46, while the dissimilarity index for the other families reaches only 0.35.

Figure 4: Segregation and Inequality: Different Samples
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The increase in inequality is also stronger if we restrict the sample to families with children.

Panel (b) in Figure 4 shows that, the level of inequality in 1980 is similar if we look at families

with children and families without children; in both cases it is equal roughly to 0.38. However,

inequality for families with children rises to 0.47 in 2010, while inequality for families without

children reaches only 0.42 in the same year.

These findings point to the presence of children as an important driver of both residential segrega-

tion and income inequality. This is one of the reasons why we focus on the role of local spillovers

on children’s future income as a key mechanism behind the correlation between segregation and

inequality.

2.2 Segregation and Inequality across US Metros

Next, we document that residential segregation and inequality are also correlated across space.

Panel (a) in Figure 5 shows the relationship between the Gini coefficient and the dissimilarity

21See Appendix A.1 for details on how we construct the sample of families with kids not readily available for
1980 at the census tract level.
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index across metro areas in 1980, where the bubbles are proportional to the population of the

metro area. The figure shows a positive correlation between segregation and inequality in 1980.

The significance of this relationship is robust to the inclusion of controls for demographic and

industry composition. It also holds for the other decades in the sample and using the dissimilarity

index constructed with other cut-offs to define rich and poor families. If we restrict the sample to

families with children, the relationship becomes stronger.22

Figure 5: Inequality and Segregation across US Metros
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(b) Changes

The significance of the relationship between inequality and segregation is robust not just in levels

but also in differences. Panel (b) in Figure 5 plots the change at the metro level in the Gini

coefficient between 1980 and 2010 against the change at the metro level in the dissimilarity index

over the same time period. Again, the size of the bubble is proportional to the population of

the metro area. The figure shows that between 1980 and 2010, the metro areas that experienced

a larger increase in inequality also experienced a larger increase in residential segregation. In

Appendix A.3, we show that these results are robust to the inclusion of controls for changes in

racial and industrial composition.23

Our analysis suggests a positive correlation between inequality and segregation, especially for

22The results of the regression of inequality on segregation across US metros in 1980 with and without controls
are reported in Table 11, Appendix A.3. The regression coefficient using the full sample is 0.25, with a standard error
of 0.015. When we restrict the sample to families with children, it becomes 0.33, with a standard error of 0.017.

23The results of the regression of changes in inequality on changes in segregation across US metros between
1980 and 2010 with and without controls are reported in Table 12, Appendix A.3. The regression coefficient for the
baseline regression is 0.18, with a standard error of 0.017. If we restrict the sample to families with children, the
coefficient becomes 0.24, with a standard error of 0.022.
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families with children, both across time and across space. US cities have become increasingly

segregated over time, reflecting an increased tendency of families to sort in different neighbor-

hoods according to income.24

Prompted by this empirical evidence, we develop a model with local externalities and endogenous

residential choice that is able to endogenously generate a feedback effect between inequality and

residential segregation. We will use a calibrated version of the model to quantitatively assess the

role of residential segregation in the increase in inequality and to explore the effects of scaling up

the MTO experiment.

3 Simple Model

We first propose a simple version of a general equilibrium model where parents make residential

and educational choices in the presence of endogenous local spillovers that affect children’s return

to education. We make a number of stark assumptions, as the purpose of the simple model is to

explain the mechanism behind the feedback effect between inequality and residential segregation.

In section 4, we generalize the model in a number of directions to make it more realistic and useful

for the quantitative exercises.

3.1 Setup

The economy is populated by overlapping generations of agents who live for two periods. In the

first period, the agent is a child, and in the second period, she is a parent. A parent at time t earns

a wage wt ∈ [w,w] and has one child with ability at ∈ [a,a]. The ability of a child is correlated

with the ability of the parent. In particular, log(at) follows an AR1 process:

log(at) = x+ρlog(at−1)+νt ,

where νt is normally distributed with mean zero and variance σν , ρ ∈ [0,1] is the autocorrelation

coefficient, and x is a constant normalized so that the mean of at is equal to 1. The joint distribu-

24In Appendix A.4, we also analyze the evolution of segregation using school districts instead of census tracts as
the geographic subunit of analysis. We find a similar pattern of increase over time that is slightly mitigated in the
last part of the period by the rise of private schools. We think that the census tract is a preferable unit of analysis in
our context, since it better reflects our flexible notion of neighborhood spillover, is less affected by potential small
sample bias, and can be more directly linked to metros.
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tion of parents’ wages and children’s abilities evolves endogenously and is denoted by Ft(wt ,at),

with F0(w0,a0) taken as given.

There are two neighborhoods, denoted by n ∈ {A,B}. All houses are of the same dimension

and quality, and the rent in neighborhood n at time t is denoted by Rnt . For simplicity, in the

simple model we make the extreme assumption that the housing supply is fixed and equal to

M in neighborhood A and fully elastic in neighborhood B. We normalize the marginal cost of

construction in neighborhood B to 0, so that RBt = 0 for all t. The rental price in neighborhood

A, RAt , is a key endogenous equilibrium object.25

In the simple model, we also assume that there are only two educational levels, e ∈ {eL,eH}.
There is no cost to obtaining the low level of education, while τ > 0 is the cost of investing in the

high level of education. We can interpret e = eH as college education and e = eL as no college

education.

Parents care both about their own consumption and about their children’s future wage.26 In

particular, their preferences are given by u(ct)+g(wt+1), where u is a concave and continuously

differentiable utility function, and g is increasing and continuously differentiable. A parent with

wage wt and with a child of ability at chooses 1) how much to consume, ct(wt ,at) ∈ R+; 2)

where to live, nt(wt ,at) ∈ {A,B}; and 3) how much to invest in the child’s education, et(wt ,at) ∈
{eL,eH}. These choices affect the child’s future wage, as explained below.

A key ingredient of the model is the presence of local spillovers that affect the children’s return

to education, and hence their future income. We denote the size of the local spillover in neigh-

borhood n at time t by Snt . Children’s wages are affected by their ability, by their education, by

the neighborhood where they grow up, because of the local spillover effect, and also directly by

their parents’ wage. Formally, the child of an agent (wt ,at) who grows up in neighborhood n and

gets education level e is going to earn a wage

wt+1 = Ω(wt ,at ,e,Snt ,εt), (1)

25The necessary assumption for our mechanism is that there is at least one neighborhood where housing supply is
not fully elastic.

26This assumption is common in this class of models. The assumption that agents cannot save (if not by invest-
ing in housing or kids’education) is for simplicity. The assumption that agents cannot borrow is for realism, given
that typically people cannot borrow against children’s future income. An alternative specification could have par-
ents getting utility directly from their children’s consumption, with the introduction of a more general borrowing
constraint.
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where εt is an iid noise with cdf Ψ, and Ω is non-decreasing in all its arguments. We assume

that Ψ is a normal distribution with mean one and standard deviation σε . Children with higher

ability and higher education, who grow up in neighborhoods with larger spillover and have richer

parents will have higher future income. Since residential and educational choices are functions

of parents’ wage and children’s ability (wt ,at), with a slight abuse of notation, we can write

wt+1 = wt+1(wt ,at ,εt). We will show that in equilibrium, for a given child’s ability, parents

with a higher wage are more likely to choose higher education and the neighborhood with higher

spillover. This implies that children’s wages will be increasing in parents’ wages, both because of

the direct effect in (1) and because of indirect effects operating through education and residential

choices.

Let us now turn to the spillover. We assume that the size of the spillover effect in neighborhood n

at time t is equal to the expected future income of the children growing up in that neighborhood:

Snt =

∫ ∫ ∫
nt(wt ,at)=n wt+1(wt ,at ,εt)Ft(wt ,at)Ψt(εt)dwtdatdεt∫ ∫

nt(wt ,at)=n Ft(wt ,at)dwtdat
. (2)

Given that wages are increasing in ability and in parents’ wage, neighborhoods with a higher

spillover are neighborhoods with both richer parents and children with higher ability. The pres-

ence of this externality implies that the rental rate in neighborhood A, RAt , also depends on the

relative size of the spillovers in the two neighborhoods, which is endogenous.

We chose this broad specification for Snt because it can capture different sources of pecuniary

and social externalities. On the one hand, the fact that neighborhoods with higher spillovers have

richer parents allows us to interpret the spillover as linked to better public schools, which are

typically locally financed and hence tend to improve with the average taxpayers’ income. On

the other hand, the fact that neighborhoods with higher spillovers are neighborhoods with more

talented children allows us to interpret the spillover as peer effects. Both richer parents and more

talented kids may also be the source of stronger networks on the labor market, social norms more

conducive to educational investment, and so forth. An alternative specification be to have the

spillover equal to the average wage of the parents or to the average level of education of the chil-

dren in the neighborhood. However, the first would miss the role of innate ability, and the second

would underplay the role of parental income. We use the more general specification in equation

(2) because it maps better to the empirical estimates from Chetty and Hendren (2018b) that we

use in our calibration, which capture the total effect of growing up in a given neighborhood on
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future income.

In our analysis, we make two assumptions. First, for simplicity, we assume that ability and

spillover size affect children’s future wages only if they attain the high level of education.

Assumption 1 The function Ω(w,a,e,S,ε) is constant in S and a if e = eL and is increasing in

S and a if e = eH .

The assumption that the wage of children with low education does not depend on ability stands

for the fact that abilities that are relevant in high-skill jobs (which typically require college) may

be different from and more heterogenous than abilities that are relevant for low-skill jobs. The

assumption that the spillover’s size does not affect the wage of children with low education is

extreme, but can be interpreted as stating that the quality of K-12 schooling is more important in

determining future wages of college graduates than those of non-college-graduates. This second

assumption simplifies the analysis because all parents living in the rich neighborhood also pay for

their children’s college, given that there would be no other reason to pay a higher rent in the first

place. We will relax Assumption 1 in the extended model in Section 4, which has a continuous

educational choice.

Second, we make the following assumption.

Assumption 2 The composite function g(Ω(w,a,e,S,ε)) has increasing differences in a and S,

in a and e, in w and S, and in w and e.

These complementarities assumptions play a crucial role for our mechanism, as we will describe

in the next subsections. Two key assumptions are the complementarity between innate ability and

education and between innate ability and neighborhood spillover. Although it is hard to get direct

estimates of innate ability, these assumptions reflect some of the findings of the recent empirical

literature. 27

27Our assumptions of complementarity between innate ability and education and between innate ability and neigh-
borhood spillover are consistent with the latest research on technology of skill formation. Cunha et al. (2010) show
that the higher the initial conditions for cognitive and non-cognitive skills of children, the higher the return to parental
investment in children at later stages in life. As they highlight, “Family environments and genetic factors may in-
fluence these initial conditions.” In our model, parental investment in children’s future outcomes takes place both
through educational investment and through residential choice. Moreover, the recent human capital literature, re-
viewed in Sacerdote (2011), also highlights the presence of non-linearity in peer effects, which are one of the forces
behind our spillover effects. In particular, Sacerdote (2001), Imberman et al. (2012), and Lavy et al. (2012) find
that high ability students are the ones who benefit the most from peer effects of other high ability students. Another
paper that speaks more specifically to the complementarity between ability and spillover effects is Card and Giuliano

16



To sum up, a parent with wage wt who has a child with ability at at time t solves the following

problem:

U(wt ,at) = max
ct ,et ,nt

u(ct)+E[g(wt+1)] (P1)

s.t. ct +Rnt t + τet ≤ wt

wt+1 = Ω(wt ,at ,et ,Snt t ,εt),

taking as given spillovers and rental rates in the two neighborhoods, Snt t and Rnt t for nt = A,B.

3.2 Equilibrium

We are now ready to define an equilibrium.

Definition 1 For a given initial wage distribution F0(w0,a0), an equilibrium is characterized by

a sequence of educational and residential choices, {et(wt ,at)}t and {nt(wt ,at)}t , a sequence

of rents and spillover sizes in neighborhoods A and B, {Rnt}t and {Snt}t for n = A,B, and a

sequence of distributions {Ft(wt ,at)}t that satisfy the following conditions:

1. agents’ optimization: for each t, the policy functions et and nt solve problem (P1), for given

Rnt and Snt for n = A,B;

2. spillovers’ consistency: for each t, equation (2) is satisfied for both n = A,B;

3. market clearing: for each t, RBt = 0, and RAt ensures housing market clearing in neigh-

borhood A:

M =
∫ ∫

nt(wt ,at)=A
Ft(wt ,at)dwtdat ; (3)

4. wage dynamics: for each t,

wt+1 = Ω(wt ,at ,et(wt ,at),Snt(wt ,at)t ,εt). (4)

From now on, we focus on equilibria where the housing market in neighborhood A clears with

positive rental rate - that is, RAt > 0 for all t - which requires also SAt > SBt for all t.28

(2016), which shows that high achievers from minority and disadvantaged groups show high returns when included
in school tracking programs.

28If SAt ≤ SBt , nobody want to live in A, and the rental rate in A would be zero.
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Assumptions 1 and 2 allow us to characterize the equilibrium in a fairly simple way, as shown in

the following proposition.

Proposition 1 Under assumptions 1 and 2, for each time t, there are two non-increasing cut-off

functions ŵt(at) and ˆ̂wt(at), with ŵt(at) ≤ ˆ̂wt(at), such that

et(wt ,at) =

{
eL if wt < ŵt(at)
eH if wt ≥ ŵt(at)

, (5)

and

nt(wt ,at) =

{
B if wt < ˆ̂wt(at)
A if wt ≥ ˆ̂wt(at)

. (6)

This proposition shows that in equilibrium, the residential and the educational choices can be

simply characterized by two monotonic, non-increasing cut-off functions.

Figure 6: Equilibrium Characterization
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Figure 6 shows a graphical characterization of the equilibrium, for given spillovers and rental

rates, with RAt > 0. The horizontal axis shows the children’s ability level at and the vertical axis

the parents’ wage wt . For any given level of children’s ability at , there are two thresholds for the

parents’ wage, ŵt(at) and ˆ̂wt(at), with ŵt(at)≤ ˆ̂wt(at), such that parents with wage wt < ŵt(at)

choose to live in B and not to invest in high-level education, parents with wage ŵt(at) ≤ wt <

ˆ̂wt(at) choose to live in B and to invest in high-level education, and parents with wage wt ≥ ŵt(at)

choose to live in A and to invest in high-level education. The figure shows that children with

richer parents and higher ability tend to be more educated and to live in neighborhood A. On the

one hand, for given children’s ability, richer parents are more willing to pay the cost of high-level
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education (τ) and the cost of a higher local externality (higher rental rate). On the other hand, for

a given wage, the higher the ability of a child, the more willing the parent is to pay for high-level

education and for a higher local externality because of the complementarity between ability and

education and between ability and local spillovers, respectively, implied by Assumption 2. For

a given ability, a child who grows up in B rather than A has lower probability of getting a high-

level education, both because parents living in B are poorer on average and because the size of

the local spillover is smaller, reducing the incentive to pay for education even further.

The classic papers in this literature, building on Benabou (1996b) and Durlauf (1996b), typically

focus on two extreme cases of segregation by income: either the two neighborhoods are equal to

each other and have a representative distribution of income, or they are perfectly segregated, with

all the rich agents residing in one neighborhood and the poor in the other. Our model is richer

in this dimension, as it allows us to obtain an intensive measure of segregation, which we can

match to the data. This is due to the presence of heterogeneity in ability: if all agents had the

same ability level, the cut-off function ˆ̂wt(at) would be horizontal, and the two neighborhoods

would feature full segregation by income. However, thanks to the heterogeneity in ability, the

two cut-off functions are monotonically non-increasing in ability, and some poorer parents with

high ability children choose to live in A to exploit the complementarity with the higher spillover.

Our model also allows us to think about segregation by education. In our simple model, given

the binary choice of education, neighborhood A will always be fully segregated, in the sense that

all children will get high-level education. However, neighborhood B will generically feature a

mix of children with high and low levels of education. In particular, the degree of segregation

by education is driven by the distance between the two cut-off functions ŵt(at) and ˆ̂wt(at). For

some parameter configurations, these two functions can coincide, in which case there is perfect

segregation by education, as all children living in A will get high-level education and all children

in B will not.

3.3 Skill Premium Shock

In this section, we show the model’s response to a skill premium shock, which is going to be at

the core of the main quantitative exercise in the next section.

To simplify the analysis, we set eL = 0 and eH = 1, and make the following functional form
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assumptions: u(c) = g(c) = log(c), and

Ω(w,a,e,Sn,ε) = (b+ aeη(β0 +β1Sn)
ξ )wα

ε . (7)

This implies that the wage of a child with a low level of education (et = 0) is simply equal

to bwαεt and depends on neither the child’s ability nor the size of the neighborhood spillover,

satisfying Assumption 1. Moreover, the wage of a child with high education (et = 1) is a function

of the child’s ability as well as of the spillover’s size. Notice that β1 and ξ are the key parameters

affecting the strength of the spillover’s effect. The specific functional form in (7) also satisfies

Assumption 2. In particular, ability is complementary both to education and to the size of the

local spillover.

With these assumptions, the cut-off functions that characterize the optimal education and resi-

dential choices can be characterized in closed form. Assume that for each ability level a, there

is a positive measure of children with high education in neighborhood B.29 In this case, the two

cut-offs are:

ŵt(a) = τ

[
1+

b
aη(β0 +β1SBt)ξ

]
, (8)

and

ˆ̂wt(a) = τ +RAt

{
b+ aη(β0 +β1SAt)

ξ

aη [(β0 +β1SAt)ξ − (β0 +β1SBt)ξ ]

}
. (9)

Equation (8) shows that the education cut-off ŵt(a) is decreasing in ability, as established in

Proposition 1, given that the return to education is higher the higher is the ability level. Moreover,

for a given ability, the cut-off is decreasing in the local spillover effect in neighborhood B; that is,

the higher is the spillover effect in B, the higher are the return to education in that neighborhood

and the willingness of parents living there to pay for their children’s education. It also shows

that, as expected, for a given ability, the willingness of parents living in B to pay for education is

higher when the parameters affecting the strength of the return to education and to the spillover,

η , β0, and β1, are higher and when the cost of education τ and/or the fixed component of the

income of children with low levels of education b is lower. Equation (9) shows also that the

residential cut-off ˆ̂wt(a) is decreasing in a, again in line with Proposition 1, as the return to the

29This case arises when the RHS of equation (8) is weakly smaller than the RHS of equation (9) for all ability
levels. When this is not the case for some ability a, there is perfect segregation by education - that is, all children with
that ability level who grow up in B get the low education level - and the residential and educational cutoff functions
coincide and are equal to ŵt(a) = ˆ̂wt(a) = (τ +RAt)[1+ b/aη(β0 +β1SAt)].
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larger spillover in neighborhood A is higher the higher is the level of ability. The equation shows

that the location decision also depends on the trade-off between the spillover advantage and the

cost of living in neighborhood A.

We are now ready to study the response of the economy to an unexpected permanent increase

in the skill premium. Through the lens of the model, we can think of an increase in the skill

premium as an increase in the parameter η in equation (7), where we interpret high education as

college and low education as no college. How is the economy going to respond to such a shock?

First, there is a direct effect of the increase in the skill premium. Keeping the spillovers’ size, the

house rental price, and the educational and residential choices as given, we note that inequality

mechanically increases for two reasons. First, the income gap between college-educated and non-

college-educated workers mechanically increases - that is, ∂ 2Ω/∂e∂η > 0 - which is why we

interpret a shock to η as a skill premium shock. Second, the return to the local spillover effect,

which is complementary to education, is also higher; that is, ∂ 2Ω/∂Sn∂η > 0. This direct effect

generates per se an increase in inequality because richer kids have a higher probability both to be

college-educated and to live in neighborhood A, where the spillover effect is larger.

The second effect comes from the change in the educational and residential choices, keeping the

spillover levels fixed at their pre-shock values. Using equations (8) and (9), we can derive the

response of the cut-off functions to an increase in η as follows:

dŵt(at)

dη

∣∣∣∣
SAt ,SBt

= − 1
η2

τb
at(β0 +β1SBt)ξ

, (10)

and

d ˆ̂wt(at)

dη

∣∣∣∣
SAt ,SBt

=− RAtb
η2at [(β0 +β1SAt)ξ − (β0 +β1SBt)ξ ]

+

{
b+ aη(β0 +β1SAt)ξ

aη [(β0 +β1SAt)ξ − (β0 +β1SBt)ξ ]

}
dRAt

dη
.

(11)

These derivations show that in partial equilibrium - that is, when the rental rate is kept fixed

(dRAt/dη = 0) - both cut-off functions shift to the left, so that more children of any ability

get higher education and live in neighborhood A. The change in the educational choice is intu-

itive: the higher the skill premium, the higher the return to college, conditional on any level of

ability. Moreover, given that the local spillover is complementary to education, the higher the
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Figure 7: Cut-Off Response to Skill Premium Shock
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(b) General Equilibrium

skill premium, the higher is the return to the spillover, and hence the higher is the demand to

live in neighborhood A, conditional on any level of ability. Panel (a) in Figure 7 qualitatively

shows the partial equilibrium response of the educational and residential cut-off functions to the

skill premium shock, when spillovers in both A and B and the rental rate in A are kept fixed at

the pre-shock levels. The figure shows that both cut-off functions also become flatter after the

shock, as it is easy to derive that d2ŵt(at)/datdη
∣∣
SAt ,SBt

> 0 and d2 ˆ̂wt(at)/datdη
∣∣
SAt ,SBt

> 0 if

dRAt/dη = 0. This means that, with our functional form, the marginal impact of ability on the

return to education is smaller when the skill premium is larger.

Next, we analyze the general equilibrium effect, coming from the response of the rental rate in

neighborhood A to clear the housing market. Panel (b) in Figure 7 shows that when we consider

the general equilibrium, the residential cut-off function shifts back to the right, but in a tilted

fashion. As we explained above, taking as given the rental rate and the spillover effects, the

demand to live in neighborhood A will increase because of the differential spillover and the

complementarity between the spillover and education, shifting the residential cut-off to the left.

Given that the housing supply in neighborhood A is fixed, this demand increase pushes up rental

rates in that neighborhood, shifting the housing demand back to the right. In particular, the figure

shows that the shift back is more pronounced for poorer parents, who won’t be able to afford the

higher cost of living in the rich neighborhood, irrespective of their children’s ability. On net, this

generates the tilting that we see in panel (b) in Figure 7, which leads to a higher degree of income

segregation: after the shock, some richer families will move to neighborhood A even if their
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children do not have high ability, at the expense of some talented children from poorer families,

who will be induced to move to neighborhood B.30 This implies that more children from rich

families will be exposed to stronger spillover effects and will have even higher future income,

while more poor children will grow up in neighborhoods with weaker externalities and will have

worse prospects for their future. This, in turn, will amplify the increase in inequality and reduce

intergenerational mobility.

The analysis so far has kept the spillover size in the two neighborhoods as given. It has also

shown that if a skill premium shock hits a segregated economy, the degree of segregation by

income increases, and the response of inequality is amplified as a result. However, in our model,

the spillover sizes in the two neighborhoods respond endogenously to the shock. The increase

in η increases the future wage of all the educated children, increasing the spillover size in both

neighborhoods, SA and SB. The shift in the educational cut-off implies that more children get

high education in neighborhood B, increasing even further the spillover in that neighborhood.

Moreover, the tilting of the residential cut-off implies that neighborhood A will be populated by

richer but less talented children. This has two effects. First, it tends to increase the spillover

gap between the two neighborhoods: for a given ability, children with richer parents who live

in A have higher future income and children of poorer parents who live in B have lower future

income (not only because of the direct effect of their parents’ wage but also because they will

have higher chance to get educated). Second, it tends to decrease the same gap, given that more

talented children move from A into B, pushing in the opposite direction. The quantitative exercise

in Section 4 will show that the sorting effect by income dominates, so that the spillovers’ size in

both neighborhoods will increase, but the one in neighborhood A will increase relatively more,

generating an additional source of inequality amplification.

4 Quantitative Exercise

As the data show, from 1980 onward, the US experienced a steady increase in labor income

inequality. Many factors have contributed to this increase, but in this paper, we focus on skill-

biased technical change, which is widely recognized to be a crucial one (see, for example, Katz

and Murphy, 1992; Autor, Katz and Krueger, 1998; Goldin and Katz, 2001; Card and Lemieux,

30The fact that the new residential cutoff policy crosses the old one is typical in our quantitative exercises, but in
general depends on the evolution of the joint distribution of wages and abilities.
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2001; Acemoglu, 2002; Autor, Katz and Kearney, 2008).

In this section, we generalize the simple model to explore the quantitative response of the econ-

omy to an unexpected, one-time, permanent shock to the skill premium, as described in sub-

section 3.3. We show that the model is able to replicate well the dynamics of inequality and

segregation and the patterns of the intergenerational mobility across income groups. We also

validate the model using data on the dynamics of housing prices and neighborhood sizes.

4.1 General Model

For the quantitative analysis, we generalize the model in a number of dimensions to make it more

capable of capturing important features of the data.

First, to allow for richer sorting dynamics, we extend the analysis to a city with three neighbor-

hoods instead of two. Neighborhood n is now ∈ {A,B,C}. Having an intermediate neighborhood

makes the geographic decisions of the agents less extreme, allowing for more realistic sorting

dynamics. We focus on equilibria where RAt > RBt > RCt and SAt > SBt > SCt for all t, so that

kids who grow up in neighborhood A are the ones with highest expected income and those who

grow up in C the ones with the lowest.

Second, we generalize the formalization of the housing market, allowing for a general upward-

sloping housing supply curve in each neighborhood. In particular, the housing supply curve in

neighborhood n at time t is given by

Hnt = λn

(
Rnt

w̄t

)φn

,

where φn represents the housing elasticity in neighborhood n, λn is a shift parameter in the same

neighborhood, and w̄ is the average parental wage in the city at time t.31 This implies that

neighborhood sizes become endogenous and the model generates dynamic patterns that we can

compare with the data.

Third, we introduce two different forms of preference shocks. The first type of preference shock

is meant to capture that all agents prefer the richer neighborhoods to the poorer ones for reasons

31We normalize the housing rental rates by average wages so that if all prices increase proportionally to wages,
there are no real effects on the neighborhood sizes.
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other than the education spillover - in particular, fixed amenities, such as parks, water access,

restaurants, or even status considerations. We assume that utility from current consumption for

an agent who chooses neighborhood n is given by log[(1+θn)c], where θA > θB = 1 > θC with

probability π and θA = θB = θC = 1 with probability 1− π .32 The second type of preference

shock is an idiosyncratic component that is iid across neighborhoods and agents. Specifically, the

utility of an agent is now given by

log[(1+θn)c]+ log[Ω(w,a,e,Sn,ε)]+σζ ζn,

where Ω satisfies condition 7 and ζn follows a type-I extreme value distribution with scale pa-

rameter σζ . This shock introduces some additional randomness that is not systematically related

to any particular ranking of the neighborhoods and helps make the model analytically tractable.

Both these types of preference shocks help obtain a more realistic setting, where not all parents

who live in the more expensive neighborhood choose high levels of education for their children.

In our simple model, the only reason to pay a higher rent to live in neighborhood A is to exploit

the higher externality that affects the returns to education. In reality, residential choices are not

driven purely by educational considerations. By missing this feature of reality, the simple model

might generate a distribution of children growing up in neighborhood A biased towards too high

ability and biased toward levels of ability and educational investment that are too high.

Fourth, we make the educational choice continuous to allow for richer investment decisions in

education, which we believe are particularly important given the nature of our mechanism. In

the simple model with binary educational choice, rich parents are constrained in how much they

can invest in their children’s education, given that the best they can do is to pay for their college.

This means that the binary choice would arbitrarily bound the possible increase in the spillover

in response to a skill premium shock. To overcome these limitations, we now assume that the

educational choice is continuous, with e ∈ R+, and that the cost of education is τeγ .33 The

optimal educational level turns out to be increasing in the parents’ wage, innate ability, and, more

importantly, the size of the local spillover, because of the complementarity assumption. This

32This shock alone would generate residential segregation, even in the absence of local spillovers. In Section E.1,
we will explore a model where it is the only driver of residential segregation and spillovers are global.

33Calibrating the baseline model would result in too much intergenerational mobility. The continuous educational
choice is more appealing also in light of the evidence in Duncan and Murnane (2016) that there has been an increasing
polarization between educational investment in rich families and investment in poor ones.
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generates an amplification channel for the feedback between inequality and segregation. When

the gap in local spillovers increases, parents living in neighborhoods with stronger spillovers

invest more in their children’s education, and doing so increases the gap in local spillovers in

turn.

With these two modifications, the problem of household (w,a) becomes

U(w,a) = max
e,n

log((1+θn)(w−Rnt− τeγ))+ log((b+ ae(β0 +β1Snt)
ξ )wα

ε)+σζ ζn. (P3)

The equilibrium definition is a natural extension of Definition 1 in Section 3.2, where the agents’

optimization problem is given by P3, there are three neighborhoods, and the housing market

clearing conditions for the three neighborhoods are given by equation (4.1).

4.2 Calibration

We now describe our calibration strategy. Because the rise in labor income inequality started in

1980, we assume that in 1980, the economy is in steady state and is hit by an unexpected, one-

time, permanent shock to the skill premium. In particular, we change η to match the increase in

the skill premium in the data between 1980 and 1990.

In the model, individuals live for two periods: in the first period, they are young and go to school,

and in the second period, they are old and work. As noted by Fernandez and Rogerson (1998),

in this class of models, individuals spend the same time in period 1 and 2, so we could target

the length of a period to the working period or to the schooling period. Given our focus on the

educational investment, we choose to interpret one period as 10 years.34 We interpret period

t = 0 as 1980, when the economy is in steady state. We assume that at that time, an unexpected,

permanent shock hits the economy, and η increases to η ′ > η , so that the skill premium goes

from 0.39 in 1980 (t = 0) to 0.55 in 1990 (t = 1).

We choose parameters so that the steady state equilibrium of the model matches salient features

of the US economy mostly in 1980.35 Table 1 shows the targets of our baseline calibration, which

we are now going to discuss.

34The schooling age could be interpreted as 10 or 15, years depending on which level of education one targets.
Another factor in our choice of 10 years is that census data are available every 10 years.

35Below, we explain that the data available for the rank-rank correlation and the neighborhood exposure effect
give us only one data point, which we interpret as an average between 1980 and 2000.

26



Table 1: Calibration Targets

Description Data Model Source

Return to college 1980 0.391 0.391 Goldin and Katz (2009)
Return to college 1990 0.549 0.553 Goldin and Katz (2009)
Gini coefficient 0.376 0.376 Census 1980
Dissimilarity index by income 0.334 0.334 Census 1980
Income 25th/75th p 0.667 0.694 Chetty and Hendren (2018b)
Rank-rank correlation 0.341 0.336 Chetty et al. (2014)
Return to spillover 25th p 0.062 0.062 Chetty and Hendren (2018b)
Return to spillover 75th p 0.046 0.046 Chetty and Hendren (2018b)
Neighborhood A size 1980 0.194 0.193 Census 1980
Neighborhood A size 1990 0.217 0.215 Census 1990
Neighborhood B size 1980 0.301 0.301 Census 1980
Neighborhood B size 1990 0.250 0.278 Census 1990
Average population growth rate 1.089 1.089 Census 1980-2010
Share of rich in A 1980 0.437 0.459 Census 1980
Share of rich in B 1980 0.225 0.212 Census 1980
RA/RB 1.253 1.252 Census 1980
RB/RC 1.277 1.279 Census 1980
College share A 0.340 0.351 Census 1980
College share B 0.178 0.200 Census 1980
Dissimilarity index by education 0.243 0.266 Census 1980

The first two targets in Table 1 are the US college premia in 1980 and 1990 from Goldin and Katz

(2009). In the model, we map the skill premium in 1980 to the steady state difference between

the average log wage of college-educated individuals and the average log wage of the others.

Given that the educational choice is continuous, we define a cut-off ê so that individuals with an

education level above ê are college educated and the ones with an education level below are not.

We choose ê so that in 1980, 17.8% of the population is college educated, as in the census data.36

Finally, we map the skill premium in 1990 to the same difference one period after the shock,

keeping the college cut-off ê constant.

The next target is the value of the Gini coefficient in 1980 with the sample restricted to families

with children, which we described in Section 2. Another measure of inequality at the metro area

that we target is the ratio of the average income for families in the top 25th percentile of the

income distribution to the average income for families in the bottom 25th percentile.

36To calculate this number, we look at the number of people older than 25 years of age who completed college at
the census tract level.
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Next, we target the 1980 value of the dissimilarity index by income. In order to calculate the

dissimilarity index, we first map the three neighborhoods in the model - A, B, and C - to the data.

For each MSA, we group the census tracts according to the share of rich families that live there,

and we define as “rich” the families in the top 20th percentile of the income distribution of that

MSA. In particular, for each MSA, we define neighborhood A as the group of census tracts with

more than 30% rich families, neighborhood C as the group of tracts with less than 17% rich, and

neighborhood B as the group of residual tracts. Given that, as we showed in Section 2, the rise in

inequality and segregation has been driven by the top of the distribution, we choose the cut-offs

of 17% and 30% so as to have roughly 50% of the population in neighborhood C and the rest

split between A and B. Once we have grouped the census tracts in three neighborhoods for each

MSA, we calculate the dissimilarity indexes for all the MSAs and then average them, weighting

by population. Once again, we restrict the sample to families with children.

Another feature of the US data we target is the level of intergenerational mobility. To this end,

we target the rank-rank correlation between log wages of parents and children estimated using

administrative records by Chetty et al. (2014).37 They use children born between 1980 and 1982

and calculate parent income as mean family income between 1996 and 2000 and child income

as mean family income between 2011 and 2012, when the children are approximately 30 years

old. Given that this correlation is calculated over several decades, we map it in the model to the

average rank-rank correlation across 1980, 1990, and 2000, where the 1980 value corresponds to

the steady state and the 1990 and 2000 values are calculated after the skill premium shock hits

the economy.

A key target for our exercise is what we call the “return to spillover” - that is, the effect of neigh-

borhood exposure on children’s income in adulthood. This effect is difficult to measure in the

data. Fortunately, there has been a recent growing literature that uses micro data to estimate it. In

particular, we use the results from the quasi-experiment in Chetty and Hendren (2018b). Using

tax return data for all children born between 1980 and 1986, Chetty and Hendren (2018b) esti-

mate the effect of local spillovers on children’s future income, by looking at movers across US

37The rank-rank correlation is the relationship between the rank based on income of children relative to others in
the same birth cohort and the rank based on parents’ income relative to others in the same birth cohort. We choose
this statistic instead of the log-log correlation or other measures, because as emphasized by Chetty et al. (2014), it
provides a more robust summary of intergenerational mobility.
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counties.38 We focus on their estimates for families moving across counties within the same com-

muting zone, given that we use the metro area as our geographic unit of analysis. Their estimate

implies that for a child with parents at the 25th percentile of the national income distribution,

growing up in a 1 standard deviation better county from birth would increase household income

in adulthood by approximately 6.2%. This number becomes 4.6% for a child with parents at the

75th percentile of the income distribution.39 These are the values that we target in our calibra-

tion. Let us explain how we map these targets to our model. First, we map the “movers” in Chetty

and Hendren (2018b) to the parents who decide to live in a neighborhood different from the one

where they grew up - that is, the one chosen by their parents. Then, we calculate the standard

deviation of the expected future wage of the children of “movers” at the 25th percentile and at the

75th percentile of the income distribution and divide that by the average wage of the parents.40

Given that these children are born between 1980 and 1986, in 1984-1998 and 1990-2004 they

will be in pre-kindergarten to 12th grade and hence exposed to the local spillover. Thus, as we

do for the rank-rank correlation, we map these numbers to the average “spillover effects” in the

model across 1980, 1990, and 2000; again, the values of 1990 and 2000 are calculated after the

shock.41

Our model is able to match a higher spillover return for the lower percentile of the distribution.

Given that innate ability is positively correlated with parents’ income, one would expect that

the assumption of complementarity between ability and spillover would make the neighborhood

effect stronger for richer families. This is true for the population, but not for the selected sample

38Chetty and Hendren (2018b) control for selection effects by looking at families that move from one county
to another with children of varying age, so they were exposed for different fractions of their childhood to the new
county. Building on this logic, they effectively use a sample of cross-county movers to regress children’s income
ranks at age 26 on the interaction of fixed effects for each county and the fraction of childhood spent in that county.
The identification assumption is that children’s future income is orthogonal to the age they move to a new county.

39See table II in Chetty and Hendren (2018b). The table also shows estimates for families moving across counties
that are not necessarily within the same commuting zone. In Section 5.1, we explore how these alternative estimates
would change our main results.

40The exposure effect is equal to 1
w̄

√
1
2 ∑n∈{A,B,C}(E(w′|n,m)−E(w′|m))2, where E(w′|n,m) is the expected

income of children of movers (m) from neighborhood n and E(w′|m) is the average expected income of all movers
(m).

41The fact that we match the rank-rank correlation and the spillover effects to averages in the model over the
period 1980-2000 is why we simultaneously calibrate the parameters of the model and the size of the shock. An
alternative calibration strategy would be to calibrate all the parameters of the model so that the steady state matches
only the targets for 1980, then use the rank-rank correlation from Chetty et al. (2014) and the spillover effects from
Chetty and Hendren (2018b) as if they were numbers for 1980. This alternative calibration would generate a larger
increase in the implied spillover effect after the shock, so our choice is conservative.
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of movers that we use to map the statistics in Chetty and Hendren (2018b). Let us use the

simple two-neighborhood model in Section 3 to explain the mechanism. As we have shown in

Figure 6, the cut-off function that represents the residential decision is non-increasing in the space

ability/parent’s wage. This implies that families that live in A tend to both be richer and have

children with higher ability. This also implies that in equilibrium, rich families who decide to live

in B instead of A have children with lower ability than a random rich family in the population.

Moreover, a poor family that moves from neighborhood B to neighborhood A will tend to have a

child with higher ability than a richer one, because she will have a higher ability cut-off for the

family to be willing to pay the higher housing cost. So, on average, poor families that move from

B to A will tend to have children with higher ability than rich families that move from B to A,

and hence higher return from the spillover.

In the model, the size of the neighborhoods is endogenously determined and evolves over time

in response to the shock. We use micro data on the evolution of population shares across census

tracts to calculate the size of the three neighborhoods in terms of population for the average MSA.

We target the population growth in the average metro area and the size of neighborhoods A and B

in both 1980 and 1990.42 We also target the share of rich families in the different neighborhoods

in 1980.

Another important object in our model is the relative cost of housing in the different neighbor-

hoods. We use housing values in 1980 at the census tract level from the census data and convert

them into rental rates.43 Using the same methodology to aggregate census tracts described above,

we calculate the ratio of rental rate in neighborhood A to that in neighborhood B and the ratio

of rental rate in neighborhood B to that in neighborhood C. We then average these ratios across

MSAs, weighting by population.

Finally, we use census tract data to calculate the number of college graduates older than 25 re-

siding in neighborhoods A, B, and C for the average MSA. We then target the share of college

educated individuals in neighborhood A and the share of college educated individuals in neigh-

borhood B. Moreover, we can use these data to calculate the dissimilarity index by education

for the average MSA, where the two exclusive categories are college educated and non-college-

educated.
42The size of neighborhood C can be calculated as a residual.
43We use a standard coefficient of 0.05 for the conversion.
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Table 2: Parameters

Parameter Value Description

ρ 0.44 Autocorrelation of log ability
σν 1.06 St. dev. of log ability
σε 0.65 St. dev. of log wage noise shock
α 0.25 Wage function parameter
β0 0.14 Wage function parameter
β1 0.07 Wage function parameter
ξ 1.07 Wage function parameter
b 1.90 Wage fixed component for no-college
γ 4.78 Education cost parameter
θA 1.20 Preference shock for neighborhood A
θC 0.46 Preference shock for neighborhood C
π 0.53 Preference shock probability
σζ 0.15 St. dev. of idiosyncratic preference shock
λA 0.13 Shift parameter of housing supply in A
λB 0.30 Shift parameter of housing supply in B
φA 2.37 Elasticity of housing supply in A
φB 0.11 Elasticity of housing supply in B
φC 13.62 Elasticity of housing supply in C
η ′ 2.78 Skill premium shock
n 1.09 Average population growth

Table 2 shows the parameters that we are using to calibrate the model, their calibrated value, and

their description. We normalized the values of η , τ , the mean of the ability process at , and the

mean of the noise shock to the wage process ε to be all equal to 1 in steady state. Moreover,

λC is pinned down by normalizing the average wage to be equal to 2.44, which is its empirical

counterpart in 1980.44 Notice that we have 20 parameters to match 20 targets.

4.3 Skill Premium Shock

We are now ready to show the response of the economy to a skill premium shock. As we ex-

plained above, we assume that in 1980, the economy is in steady state and that at the end of the

period, it is hit by an unexpected, one-time, permanent increase in η .

Table 3 shows the response of the economy to such a shock, one, two, and three periods ahead.

The first row shows the dynamics of the return to college. Remember that we choose the shock to

44For details about the normalizations see Appendix C.
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Table 3: Response to a Skill Premium Shock

t = 0 t = 1 t= 2 t= 3

Return to college 0.391 0.553 0.591 0.610
Gini coefficient 0.376 0.402 0.431 0.447
Dissimilarity index 0.334 0.382 0.418 0.438
A/B spillover ratio 1.112 1.540 1.787 1.920
B/C spillover ratio 1.126 1.181 1.166 1.162
RA/RB 1.135 1.495 1.703 1.824
RB/RC 1.162 1.234 1.228 1.229
SizeA 0.193 0.215 0.230 0.235
SizeB 0.301 0.278 0.256 0.237
SizeC 0.506 0.507 0.514 0.528

match the increase in the return to college between 1980 and 1990 in the data. What is interesting

is that the one-time, unexpected, permanent shock generates persistence in the return to college

that keeps increasing after 1990, just as the return to college in the data does. In particular, the

return to college in the data is equal to 0.61 and 0.68 in 2000 and 2010 (from Autor et al. (2020))

respectively, which is close to the predicted path in our model.

The second and third rows show the response of inequality and segregation, captured by the Gini

coefficient and the dissimilarity index. To visualize these results, Figure 8 shows the responses

(solid lines) of inequality and segregation to the shock in the model, together with their pattern

in the data (dashed lines). While the values of inequality and segregation in 1980 are targets of

the calibration, their path over time after 1980 is an outcome of the model and can be compared

with the one in the data as a form of validation.

Panel (a) shows that the dynamics of inequality in response to the skill premium shock in the

model are close to those in the data. However, the model generates a bit less inequality growth

than the data, which is to be expected, given that there are other sources of inequality increase

that are outside the model. Panel (b) shows that the model generates a response of segregation to

the skill premium shock that also does a good job of replicating the pattern in the data.45

Table 3 also shows that in response to the shock, both the spillover in A relative to that in B and

the spillover in B relative to that in C increase, and so do the respective rental rate ratios. At

45Note that the dissimilarity in Figure 8 is calculated aggregating the census tracts into three neighborhoods, as
explained in Section 4.2, and so it is not exactly the same dissimilarity measure reported in Figure 4.
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Figure 8: Responses to a Skill Premium Shock

(a) Inequality (b) Segregation

the same time, the sizes of neighborhood A and C increase, while the size of neighborhood B

shrinks. Moreover, these effects are persistent but declining over time.

As we discussed in subsection 3.3, there is a rich feedback effect between inequality and segre-

gation at the heart of our model. First, as the skill premium increases, inequality mechanically

increases because college educated workers earn even more than the non-college-educated ones.

Given that educated workers are more likely to grow up in neighborhood A than B and in B

than C, segregation by income also mechanically increases. Second, as the return to education

increases, and given the complementarity between the neighborhood spillover and education, the

return to living in neighborhood A relative to that of living in B and the return to living in B

relative that of living in C increases. Given that housing supply is somewhat elastic, this shows

up in part as a response of housing supply and in part as a response of rental rates. In particular,

neighborhood A becomes more attractive relative to the others, so not only its size but also its

rental rate increase more than those of the others. This implies that some households move to A

because it is more attractive, but at the same time, some poorer households who previously lived

in A may be pushed out into neighborhood B or C because of the higher rental rate. On net, the

size of A increases. At the same time, neighborhood B becomes more attractive than neighbor-

hood C, implying that the rental rate in B increases relative to rental rate in C. This again implies

that more talented kids would be attracted to neighborhood B, but the increase in rental rate may

actually force poorer kids, even talented ones, to move from B to C. On net, the table shows that

the size of B declines. These sorting patterns imply that segregation by income increases, and

this will increase the spillover gaps between A and B and B and C, as shown in the table. Such
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an increase in spillover differentials feeds back into even higher future inequality.

The dynamics of the rental rate ratios and of the neighborhood sizes can also be compared with

the data for further validation. Table 4 shows the dynamics of the rental rate in neighborhood

A relative to that in B and the rental rate in B relative to that in C and the sizes of the three

neighborhoods. Comparing them with the corresponding model dynamics in Table 3 shows that

the model, although stylized, is able to replicate the qualitative properties of these patterns. In

particular, the increase in inequality and segregation happened at the same time as an increase

in population concentration in the more extreme neighborhoods. The population living in neigh-

borhoods characterized by a percentage of rich families between 17% and 30% went from 30%

to 22%, while neighborhoods with an extreme concentration of either rich or poor households

expanded.

Table 4: Neighborhood Sizes and Rental Rates: Data

1980 1990 2000 2010

RA/RB 1.253 1.282 1.326 (1.265)
RB/RC 1.277 1.318 1.343 (1.291)
SizeA 0.193 0.217 0.228 0.251
SizeB 0.301 0.250 0.229 0.215
SizeC 0.506 0.533 0.543 0.534

NOTE: The rental rate ratios in 2010 are in parenthesis because the definition of house prices in the census changed
in 2010 from single family housing units to a broader category that also included condos and mobile homes.

4.4 Intergenerational Mobility

An important implication of the model is that the same mechanism behind the feedback between

segregation and inequality also generates low intergenerational mobility. As living in neighbor-

hoods with higher spillover is expensive, richer families can afford to expose their children to

strong local spillover effects, while poorer families are forced to live in less attractive but more

affordable neighborhoods. This inevitably makes it more difficult for poor children to climb up

the social ladder and easier for richer children to perpetuate their status. One summary statistic

that captures the degree of intergenerational mobility is the rank-rank correlation that we target

in our calibration. A richer picture of the degree of intergenerational mobility is given by the

intergenerational mobility matrix that reports the probability of a child’s being in a given in-
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come quintile, conditional on the parents’ income quintile. In Table 5, Panel (a), we show the

intergenerational mobility matrix generated by the model. The table shows averages across the

period 1980-2000 to make it comparable to the data. Panel (b) of Table 5 shows the same matrix

calculated using administrative data by Chetty et al. (2014).

Table 5: Intergenerational Mobility Matrix

Panel (a): Model

Children’s Quintile

Parents’ 1 2 3 4 5
Quintile

1 34.0% 24.7% 19.3% 14.4% 7.6%
2 23.3% 22.9% 21.5% 19.1% 13.3%
3 18.2% 20.8% 21.6% 21.5% 18.0%
4 13.8% 18.2% 20.9% 23.2% 24.0%
5 8.3% 13.4% 17.9% 23.7% 36.6%

Table 6: Panel (b): Data

Children’s Quintile

Parents’ 1 2 3 4 5
Quintile

1 33.7% 28.0% 18.4% 12.3% 7.5%
2 24.2% 24.2% 21.7% 17.6% 12.3%
3 17.8% 19.8% 22.1% 22.0% 18.3%
4 13.4% 16.0% 20.9% 24.4% 25.4%
5 10.9% 11.9% 17.0% 23.6% 36.5%

Without targeting it, our model is able to replicate quite well the intergenerational mobility ma-

trix, which is a good validation of the model. The main feature of the data, well matched by the

model, is that the highest probabilities are in the diagonal and, in particular, in the two extreme

quintiles. That is, children tend to stay with higher probability in the same income quintile as

their parents, and this is especially true for the highest and, even more, for the lowest quintiles.

The data show that the probability that a child whose parents are in the lowest quintile of the

distribution stays in the same income quintile (Q5-Q5 probability) is 36.5%, and the model im-

plies 36.6%. This is an important number to take into consideration for policy prescriptions, and

in future work, we will think about how it is affected by alternative policies. Another important

statistic is the probability that a child whose parents are in the highest quintile of the distribution

stays in the same income quintile (Q1-Q1 probability), which is 33.7% in the data and 34% in

the model.

Another implication of the model is that intergenerational mobility declines over time in response

to the skill premium shock. For example, the rank-rank correlation goes from 0.34 in 1980 to

roughly 0.35 in 2010, while the Q5-Q5 probability goes from 29.2 in 1980 to 42.8 in 2010.

Unfortunately, given the limited availability of data, it is hard to calculate a reliable time-series

for the rank-rank correlation or for the intergenerational mobility matrix. However, Aaronson
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and Mazumder (2008) show some indirect evidence of a positive relationship between the skill

premium and the IGE (intergenerational elasticity) that is consistent with our findings. Moreover,

Kulkarni and Malmendier (2022) use cross sectional variation to show that cities with higher

homeownership segregation have lower intergenerational mobility.

5 Segregation’s Contribution to Inequality

We now use the model to perform a number of exercises in order to answer our main ques-

tion: How important is segregation in amplifying the effects of a skill premium shock to income

inequality? We also explore how segregation affects intergenerational mobility. In the next sub-

section, we propose two main exercises that help us answer this question. Next, we explore a

number of exercises to better understand the quantitative role of different channels in the model.

5.1 Main Counterfactual Exercises

In this section, we show the main counterfactual exercises that quantify the role of segregation in

amplifying inequality. In the model, the presence of local spillovers generates sorting of richer

parents into the better neighborhoods, generating residential segregation by income. As explained

in detail in Section 4.3, segregation amplifies the response of inequality to a skill premium shock

because of two main effects. First, even if the strength of the spillover in the two neighborhoods

is kept fixed, the increase in income segregation implies that more of the rich children will benefit

from exposure to the better neighborhood and will become even richer, while more of the poor

children will be forced to grow up in worse neighborhoods, which will worsen their income

prospects. Second, the higher degree of income segregation will, in turn, endogenously translate

into a larger gap between the spillover effect in the different neighborhoods, further increasing

inequality.

One natural way to assess the contribution of segregation to inequality is to shut down families’

residential choice in response to the shock, which is going to mute the sorting process. We can do

that either by randomly relocating households across neighborhoods or by not allowing agents

to move away from the neighborhood where they grew up. We construct two counterfactual

exercises corresponding to these two alternatives.

First, we consider a counterfactual exercise where, at the moment of the shock and at any time
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after that, families are randomly relocated across the three neighborhoods.46 This implies that

the sizes of the local spillover effects in the three neighborhoods are equalized, given that the

distribution of families is identical, and so is the expected income of the children growing up

there. We impose that the rental rate in the three neighborhoods is the same and is equal to the

rental rate that clears a single metro-wide housing market.

In this exercise, children are still exposed to a positive externality that evolves over time, but the

strength of the spillover is the same for any location, so the spillover becomes global instead of

local. Parents’ income still affects children’s wages through the direct effect on the wage function

Ω and through the educational choice, but the location is not relevant for their future earnings.

This mitigates the effect of intergenerational linkages on income and hence mitigates the response

of income inequality to a skill premium shock.

Figure 9: Counterfactuals: Inequality and Segregation

(a) Inequality (b) Segregation

In panel (a) of Figure 9, we compare the response of inequality to the skill premium shock in the

baseline model (blue solid line) with the response of the economy when families are randomly

relocated across the neighborhoods every period after the shock (red dashed line). The figure

shows that segregation contributes to 27% of the increase in inequality over the whole period

between 1980 and 2010. The same exercise implies that segregation also amplifies the decrease

in intergenerational mobility in response to the shock. In particular, it contributes to 32% of the

increase in the rank-rank correlation between 1980 and 2010.
46We use the same parameters calibrated in Section 4.2, given that we assume that the economy is in the same

steady state in 1980.
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Second, we consider a counterfactual exercise where, after the shock, parents are not allowed to

move to a neighborhood different from the one where they grew up; that is, locations are fixed.

We then keep the rental rates in the three neighborhoods fixed at their steady state levels.47 The

green dotted line in Figure 9 (a) represents the response of inequality in this exercise and shows

that according to this counterfactual exercise, segregation contributes to 25% of the inequality

increase between 1980 and 2010. We also calculated that segregation contributes to 33% of the

increase in the rank-rank correlation in the same period. It is reassuring to notice that the two

exercises generate similar results.

Although the two counterfactual exercises deliver a similar pattern for the dynamics of inequal-

ity, the patterns of segregation are very different. Figure 9 (b) compares the dynamics of the

dissimilarity index in the baseline model and in the two counterfactuals. In the first exercise,

where we randomly re-allocate households at every time after the shock, all neighborhoods end

up having the same distribution of households, and the dissimilarity index is constant and equal to

zero (dashed red line). To be more conservative, we consider the second exercise, where we keep

the location of households fixed and the level of the dissimilarity index at the time of the shock

does not change. However, in this exercise, even if location is fixed, the dissimilarity index does

not stay constant; rather, it declines over time after the shock (dotted green line). This decline

reduces the contribution to inequality.

The main reason why the dissimilarity index declines in the counterfactual with fixed location

is the evolution of the distribution of ability across neighborhoods. In particular, in our model,

given the complementarity between spillover and ability, the neighborhoods with higher spillover

tend to attract families with children with higher ability. Once we shut down the sorting process,

the average ability in the neighborhoods tends to converge over time, given mean reversion in the

ability process.48 One may think that endogenous education might be another reason behind the

decline in segregation, but in Appendix D, we show that quantitatively, this is not the case.

A key moment behind these results is the estimate of the strength of the neighborhood spillover,

which we take from Chetty and Hendren (2018b). They find that growing up in a 1 standard

47In Appendix D, we also explore the alternative exercise where agents make residential choices, but the housing
supply in the three neighborhoods is fixed at the their steady state levels, and rental rates are such that the housing
markets clear. Figure 22 shows that the contribution of segregation to inequality calculated with this alternative
exercise is very similar.

48See Figure 20 in Appendix D.
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deviation better county within the same commuting zone would increase adult income by 6.2%

for a child in the lowest 25th percentile of the income distribution and by 4.6% for a child in the

top 25th percentile. We also explore how these results would change if we recalibrate the model

targeting 10.4% and 6.4%, for the lowest and the highest 25th percentile respectively, which are

the estimates that Chetty and Hendren (2018b) calculate by looking at families moving across

counties, but not necessarily within the same commuting zone. In this case, the contribution of

segregation to inequality is, as expected, even higher. It is equal to 54% according to the first

counterfactual exercise and to 53% according to the second.49

5.2 Understanding the Mechanism

To better understand how local spillover amplifies the effect of inequality on segregation, we

now show two alternative counterfactual exercises that complement the previous ones. First, we

explore what would happen to inequality if there were no local spillovers at all. Second, we

explore what would happen if there were local spillovers, but they were not responsive to the

shock. The first exercise is extreme, as it shuts down any form of externality, and the second

one keeps the spillovers constant, focusing only on the endogenous response of the spillovers’

strength.

The first additional exercise is to consider the case with no spillover effects - that is, where the

wage function Ω is not affected by the spillover, or β1 = 0. In this case, the only difference

between the three neighborhoods is the existence of different “fixed amenities,” which in our

model are captured by the fact that a random fraction of the households always prefer to live in

neighborhood A relative to B and in B relative to C. This generates some degree of segregation

in the initial steady state that is driven purely by income: richer families would be the only ones

willing to pay to live in the better neighborhoods. The blue solid lines in Figure 10 report the

response of the baseline model to the skill premium shock in subsection 4.3, while the dotted

green lines show the economy’s response to the same shock, with β1 = 0 and all the other param-

eters unchanged. The figure shows that both inequality and segregation increase much less when

β1 = 0. We can interpret the distance between the blue solid lines and the green dotted lines as

the contribution of the spillover effect to the increase in inequality. The figure shows that the

49For robustness, we also recalibrate the model using smaller values for the lowest and the highest 25th per-
centile: 5% and 3%, respectively. In this case, the contribution of segregation to inequality is equal to 15% and 13%
according to the two counterfactual exercises.
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presence of spillover effects contributes significantly to the increase in inequality in the model.

This exercise is extreme, as it rules out not only local spillovers, but any type of externality in

education returns. In Appendix E, we consider a version of the model where we eliminate a local

component of the spillover, but we keep a global externality.50

Figure 10: Counterfactuals with No Spillover and No Spillover Feedback

(a) Inequality (b) Segregation

The second exercise that we consider aims at assessing the contribution to the rise in inequality

coming from the feedback effect due to the endogeneity of the local spillovers. To this end, we

explore the response of the economy to the same skill premium shock if local spillovers were

present but did not change endogenously - that is, if SA, SB, and SC were fixed at their initial

steady state levels. The red dashed lines in panels (a) and (b) of Figure 10 show the responses

of inequality and segregation, respectively, in this exercise. When we compare them with the

results in the baseline model, we can interpret the differential response as the amplification due

to the feedback effect coming from the endogeneity of the local externality. The figure shows

that the spillover feedback effect contributes to 40% of the increase in inequality. Moreover, the

contribution to the increase in segregation is 37%.51

Why does the endogenous change in the spillover effects further amplify inequality? The local

spillover effects in the three neighborhoods - SA
t , SB

t , and SC
t - increase in response to the skill

premium shock, given that all college educated workers have higher wages, and moreover ev-

50Figure 10 is realized without recalibrating the parameters to focus on the decomposition of the response in
the model. In the next subsection, we will consider a different exercise. In it, we recalibrate the model so that
the difference among neighborhoods is driven purely by amenities and the spillover effects to education returns are
global.

51Notice that when we compare the response with fixed spillovers with the response in the baseline, we are shutting
down not only the endogenous response of the local spillover, but also any form of externality.
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erybody invests more in education. However, the strength of the local spillover in neighborhood

A increases relatively more than that of neighborhood B, and the strength of the spillover in B

increases relatively more than the one in C.52 Table 3 reports the increase in the spillover ratios

in response to the shock, which is illustrated by the solid blue lines in Figure 11.

Figure 11: Decomposing the increase in the spillover ratio

(a) SA/SB (b) SB/SC

We can decompose the response of SA
t /SB

t and SB
t /SC

t to the skill-premium shock into three

effects. First, there is a mechanical effect: children in richer neighborhoods benefit more from

the increase in the skill premium because they are more highly educated and are exposed to

stronger spillover effects. This mechanically increases their expected income, and hence the

strength of the spillover in the richer neighborhoods. The green dotted lines in the figure show

the increase in the spillover ratios due to this mechanical effect - that is, fixing the rental rate

and the optimal choices of the parents, but letting the spillover adjust. Second, there is an effect

coming from the endogenous response of the optimal educational and residential choice of the

parents. As the return to education increases, all parents increase their investment in education,

but the richer parents, who are more concentrated in richer neighborhoods, do so even more,

increasing the gap in returns. Moreover, parents will tend to move to neighborhoods with higher

returns, so families will move from B to A and from C to B. This implies that the ratio SA/SB will

increase even further, while the ratio SB/SC could go in either direction. The dashed red lines in

Figure 11 show the increase in the spillover ratios due the sum of the mechanical effect and the

effect coming from the endogenous change in educational and residential choices, what we call

the “partial equilibrium effect.” It shows that the increase in SA/SB is amplified, while the ratio

52The ratio SB
t /SC

t increases on impact in response to the shock and overall between 1980 and 2010, although it
is not always monotone.
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SB/SC starts declining after the first period. Finally, there is a general equilibrium effect coming

from the increase in the rental rate in the richer neighborhoods, which increases the degree of

sorting by income. Although the more talented children will benefit more from the increase

in skill premium, only richer families will be able to pay the higher cost of living in richer

neighborhoods, irrespective of their children’s ability. This further raises the gap between the

spillovers’ strengths in the different neighborhoods. We can interpret the difference between the

blue solid lines and the red dashed line as the contributions of the general equilibrium effect to the

increase in the spillover ratio. The figure shows that the endogenous reallocation of households

across neighborhoods due to the general equilibrium effect plays a crucial role in producing a

large increase in the spillover ratio, contributing to 34% of the increase in SA
t /SB

t and to 15% of

the increase in SB
t /SC

t between 1980 and 2010.

In Appendix E, we also explore alternative versions of our main model to understand the role of

some of our modeling choices. In particular, we explore a version of the model where segregation

is driven purely by local amenities and an exercise where we use our main model but we consider

a shock to wage dispersion instead of a skill premium shock. For both cases, we show that our

main exercise is able to better replicate important features of the data. Next, we investigate a

version of the model where we mute the complementarity between ability and local spillovers,

and a version of the model where we define the local spillover as the average income of parents

living in the neighborhoods instead of the average expected income of the children growing up

there. We find that our main results are broadly robust to both these alternative specifications.

6 Scaling Up Moving to Opportunity Policies

In our model, local spillovers generate residential segregation by income that, in turn, reduces

intergenerational mobility. Talented children from poor families who grow up in the poorer

neighborhoods do not have the same opportunities as children of richer families who can afford

a neighborhood with higher spillover and higher amenities. To alleviate these issues, in the mid-

90s, the US Department of Housing and Urban Development ran the Moving To Opportunity

program (MTO), offering vouchers to low-income people living in high-poverty neighborhoods

to move to richer neighborhoods.
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Chetty et al. (2016) show that children younger than 13 years old whose families benefited from

the vouchers of this program had an income 31% higher than the control group’s. Given the

success of this program, a natural question is whether we should think about scaling up this

experience and run similar programs on a larger scale. Our model is well suited to address this

question, given that one natural concern is whether the general equilibrium effects of moving a

larger mass of families to better neighborhoods could undermine the benefits of the policy. In

particular, as poorer families move to the better neighborhood, the selection of families living in

the three neighborhoods endogenously changes, affecting the local spillovers as well as the local

rental rates.

6.1 MTO program

The MTO experiment involved 4,604 low-income families living in five cities (Baltimore, Boston,

Chicago, Los Angeles, and New York) from 1994 to 1998. The program consisted of offering

subsidized housing vouchers to a randomly selected subset of families with children that satified

two criteria: they 1) lived in a neighborhood with a poverty rate of 40% or more in 1990 and 2)

had an income below 50% of the median income for the metropolitan area. Families were ran-

domly allocated to one of three groups: (i) the experimental group, which could use the voucher

only to move to census tracts with 1990 poverty rates below 10%; (ii) the Section 8 group, which

could use the voucher without any specific relocation constraint; and (iii) a control group, which

received no assistance through MTO. Voucher recipients were required to contribute 30% of their

annual household income toward rent and utilities and received housing vouchers that covered

the difference between their rent and the family’s contribution, up to a maximum amount, defined

as the 40th percentile of rental costs in a metro area.

To map the MTO program to our model, we assume that the poorest x families living in the worst

neighborhood (neighbohorood C) are offered a voucher to move to a better neighborhood. As in

the program, families accepting a voucher are required to pay 30% of their income toward their

rent. We focus on the experimental group and require voucher recipients to move to the best

neighborhood (neighborhood A). To finance the policy, we assume that the vouchers are covered

by a proportional tax on income levied on all families in the city. 53

53In order to characterize the equilibrium, we can naturally extend our equilibrium definition with the presence of
the policy. The only difference is that we need to introduce an additional state variable, which is the neighborhood
where a parent grew up, or birth neighborhood. Appendix E.5 describes the equilibrium in detail.
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6.2 Calibrated MTO Policy

We first introduce in the calibrated model a voucher policy that resembles the actual MTO ex-

periment implemented in 1994-1998. That is, we introduce a voucher policy with p = 0.001, to

reflect the number of families eligible for a voucher on average across the cities involved in the

MTO program. We then compare the predictions of our model with the data on the take-up rates

of the eligible families and the income gain for the kids in families taking up the vouchers relative

to that of the control group.

First, we look at take-up rates for the MTO experimental group. In our model, about 75% of

eligible families in the experimental group choose to accept the voucher. There are two rea-

sons why the model can generate a take-up rate smaller than 100%. First, the rental rate in the

worst neighborhood may be lower than the required down-payment to move to the best neigh-

borhood, payment of which is mandatory for the experimental group. In addition, the MTO

experiment imposes a cap on the voucher amount, expressed as a fraction of the rental rate in the

best neighborhood. Second, our model includes an idiosyncratic preference shock for different

neighborhoods, so that a fraction of the eligible families may prefer to remain in their original

neighborhood.

In the data, the fraction of families eligible for the voucher in the experimental group taking up

the voucher is equal to 48%. Our abstraction from moving costs might explain why the number

is a bit smaller than the one in the data. 54

Second, we examine the income gain for the kids in the families taking up the voucher once they

reach adulthood, relative to that of the control group. Chetty et al. (2016) found that relative to the

control group, kids in the experimental group who were less than 13 years old when their family

received the voucher experienced 31% higher income once they reached their mid-twenties.55

On the other hand, they find essentially null or slightly negative effects for kids who entered the

program when they were past the age of 13.

In our model, we compute the income gain for kids in families that receive the voucher once they

become adult, relative to kids in families in the same income percentile in neighborhood C if the

54It would be easy to introduce moving costs in the model, but it is hard to discipline those numbers with data.
55This corresponds to what Chetty et al. (2016) call TOT (treatment-on-the treated) estimates.
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Table 7: Share of Eligible Families with Different Income Cut-Offs

0.001% 5% 10% 15% 20% 25%
1980 0 0 0 0 0 0
1990 0.0009 0.0385 0.0650 0.1019 0.1242 0.1489
2000 0.0009 0.0309 0.0492 0.0732 0.1062 0.1219
2010 0.0007 0.0341 0.0540 0.0947 0.1104 0.1310
2020 0.0007 0.0258 0.0541 0.0780 0.0932 0.1090

voucher policy were not in place.56 Given that our model does not distinguish between young

and old kids, we compare the income gain from the voucher policy in the model to a simple

average income gain of young and old kids in the data, which corresponds to 15.5%. Our model

generates an income gain of 13%, which is quite close to the average gain in the data.

6.3 Scaling Up the MTO Program

We now use our model to study the effects of scaling up the MTO experiment. To do so, we

relax the eligibility requirements for voucher assignment by increasing the income threshold

for families living in neighborhood C. In particular, we explore the effects of increasing the

percentile of eligible families from the .001th (which is approximated to 0 in the x axis) up to

the 25th percentile. Table 7 shows the proportion of families eligible for the voucher over time

for different income cut-offs. This also means that as we scale up the program, we change the

distribution of ability and income of the families who receive the voucher.

To evaluate the effectiveness of the policy, we first consider the income gain of the children of

voucher recipients, who benefit from growing up in a neighborhood with higher spillover. The

income gain is calculated as the percentage difference between the expected income of the kids

of voucher receivers and the expected income of the same kids if there were no policy in place.

The blue line in panel (a) of Figure 12 shows how the income gain of voucher recipients changes

as we scale up the policy. As more families receive the voucher, the average income gain in-

creases at first, but then it starts to decline. To better understand this pattern, we first study the

income gain that would arise in partial equilibrium (red line) when both rental rates and spillover

56Given that the policy is very small, general equilibrium effects are negligible.
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Figure 12: Income Gain and Education for Voucher Recipients’ Kids
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sizes are kept constant. The figure shows that the non-monotonicity already arises in partial

equilibrium. This is due to different forces working in opposite directions. On the one hand,

as the income cut-off of the eligible families increases, richer families will be able to take up

the voucher. This also means that families with more talented kids will be able to move to the

better neighborhood, because of the correlation between parents’ ability and kids’ ability. Given

that there is complementarity between the local spillover and education, between spillover and

parents’ wage, and between spillover and ability, the richer families will have a larger income

gain from moving to a neighborhood with higher spillover. Moreover, the presence of a cap on

the voucher policy contributes to most of the increase in income gain for the initial scale’s in-

crease.57 On the other hand, children of richer families have a smaller gain from the voucher

policy because their parents would have invested in education even in the absence of the voucher.

This second effect dominates when the scale of the policy becomes large enough, generating the

inverted-U shape.

To clarify the education investment channel, panel (b) in Figure 12 compares the education level

chosen by the families receiving the voucher when the policy is in place (treated group, in blue)

with the education level chosen by the same families if there were no policy (control group, in

57When the scale is small, a large fraction of the eligible families are so poor that they end up not taking up the
voucher. The reason is that the housing cost is higher than 30% of their income and is beyond the cap imposed by
the policy. This means that these families would have to pay additional out-of-pocket expenses to move to A, and a
large of fraction of them end up deciding not to take up the voucher, even if they have high ability children. When
the scale increases, a larger fraction of families take up the voucher, so more high ability children have a chance to
move to A. Given the complementarity between ability and spillover, the average income gain becomes larger.
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Figure 13: Spillover in the Three Neighborhoods
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red). The figure shows that the families that receive the voucher when the percentile is below or

equal to 10% are poor enough that if there were no voucher policy, they would have chosen not

to invest in education. This is why when they receive the voucher to move to a neighborhood

with high spillover and start investing in education, their children expect a large income gain.

When the scale increases above 10%, the families receiving the voucher would have invested

in education even with no policy, and so the income gain of their children from the policy gets

smaller.

On top of the effects described, as we scale up the policy, there is a general equilibrium effect that

further reduces the income gain of the voucher recipients and becomes stronger the larger is the

scale. This can be observed in panel (a) of Figure 12 by comparing the blue line, which represents

the actual income gain, with the red line, which represents the income gain that would arise in

partial equilibrium. The general equilibrium effect dampens the income gain of the children of

the voucher recipients because of the endogenous change of spillovers and rental rates in the three

neighborhoods.

The first general equilibrium effect is due to the change in spillovers. Figure 13 shows the

spillover’s response on impact in the three neighborhoods to the introduction of the policy, as

a function of its scale. As the scale increases, more poor families move from C to A. This

reduces the spillover in neighborhood A, while it increases the spillover of neighborhood C, re-

ducing the advantage of moving from C to A. At the same time, as the spillover in neighborhood

A decreases, more families decide to move from neighborhood A to neighborhood B, increasing
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the spillover in B. As we scale up the policy, such a process gets more pronounced until it leads to

a switch in the ranking of the neighborhoods’ spillovers. In particular, when the cut-off is equal

to or larger than the 15th percentile, the spillover in B becomes larger than the spillover in A,

making B the most desirable neighborhood.58

The other general equilibrium effect is driven by the change in the rental rates and in the sizes of

the three neighborhoods. Panels (a) and (b) in Figure 14 show, respectively, the rental rates and

the sizes of the three neighborhoods as a function of the policy’s scale. There are two opposite

forces that affect the housing demand in neighborhood A. On the on hand, the spillover decline

tends to decrease the demand. On the other hand, demand increases because of the voucher

recipients moving to A. Overall, the second effect dominates and results in an increase in both

the rental rate and the size of neighborhood A. Demand to live in B also increases, because of

the increase in families that decide to move from A to B, due to the decline in the spillover gap,

while the rental rate in A increases. This increases the rental rate and also slightly increases

the size of neighborhood B. The demand to live in neighborhood C decreases because of the

voucher recipients who move to A, although this effect is partially offset by the increase in the

spillover due to the improvement of the composition of families living there. As a result, both the

size and the rental rate in neighborhood C decline. The increase in the rental rate in A and the

decrease in rental rate in C further reduce the advantage of moving from C to A, contributing to

the dampening of the kids’ income gain due to the policy.

In sum, as we scale up the MTO program, the effectiveness of the policy in terms of the adult

income gain of the children of voucher recipients at first increases, but eventually it declines as

the scale gets larger. This decline is due both to composition effects and to general equilibrium

effects.

6.4 Aggregate effects

In this section, we look at how the aggregate effects of MTO program change as the scale in-

creases.

Figure 15 shows the level of income inequality, measured by the Gini coefficient (panel a), and of

residential segregation, measured by the dissimilarity index (panel b), as a function of the scale

58If the scale of the program increases further, the spillover in A further decreases to the point that for some
parameters and a large enough scale, it can become even lower than the spillover in C.

48



Figure 14: Rental Rates in the Three Neighborhoods and Neighborhood Sizes
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of the policy, measured in the period in which the policy is implemented.59 When the scale of the

policy is 0.001, as in the actual MTO experiment, the aggregate effects of the policy are negligi-

ble, and both inequality and residential segregation are substantially at the same level they would

be at if there were no policy. However, as the scale increases, the policy becomes more suc-

cessful in reducing both inequality and residential segregation, for two reasons. First, inequality

decreases because voucher recipients, who are on the low end of the income distribution, move

to the best neighborhood, and thus their kids are exposed to the highest spillover and have higher

adult income. Second, at the same time, the kids of the richer families living in A are exposed to a

slightly lower spillover because of the general equilibrium effect. This reallocation of individuals

across the city also reduces residential segregation, as poorer families move to neighborhood A,

making it more mixed. At the same time, neighborhood C becomes less poor because the poorer

families move out.

Finally, Figure 16 shows welfare, measured as average expected utility, in the period in which the

policy is implemented, as a function of the policy’s scale, both in partial equilibrium (red dashed

line) and in general equilibrium (blue solid line). In particular, we plot the difference in welfare

relative to the baseline case with no policy. It is interesting to note, that while inequality and

segregation improve monotonically with the scale, the effect on welfare is non-monotonic. More

specifically, the figure shows that the non-monotonicity is due to the general equilibrium effect.

59We measure the Gini coefficient on the distribution of expected adult income of kids growing up in the period
in which the policy implemented, who are the first generation being affected by the policy.
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Figure 15: Income Inequality and Segregation
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Figure 16: Welfare
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As the scale increases, there are more families who benefit from the voucher, and their expected

utility increases. However, in general equilibrium, the benefit of moving to neighborhood A

declines with the scale increases as the spillover in A declines. In addition, more families end

up paying the highest rent and fewer families end up paying the lowest, so the total amount of

resources that ends up in the pocket of house owners (who are outside of the model) increases,

reducing average welfare.
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7 Concluding Remarks

In this paper, we propose a model where segregation and inequality amplify each other because

of a local spillover that affects the returns to education. After calibrating the model using US

data and using the micro estimates for neighborhood exposure effects in Chetty and Hendren

(2018b), we look at the response of the economy to an unexpected permanent shock to the skill

premium. We find that local spillovers and the resulting residential segregation across neighbor-

hoods play a significant role in amplifying the rise in aggregate income inequality and the decline

in intergenerational mobility. Differences between neighborhoods in terms of educational oppor-

tunities grow over time, and children from poor families do not get a chance to live the American

dream. We also use the model to explore the effects of scaling up a voucher policy in the spirit of

the MTO program and show that as the scale increases, general equilibrium effects dampen the

effectiveness of the policy.

There are a number of interesting directions for future research. One is to explore the cross-

sectional implications of our model and the heterogeneity of experiences across US metro areas.

Another is to think about the link between residential segregation by income and residential

segregation by race.60 Moreover, the decreasing effectiveness of MTO at larger scales opens

the question of whether other types of policies, such as place-based policies, might be more

effective. Finally, it would be interesting to endogenize the cost of education or the creation of

new neighborhoods, both of which could further magnify the increase in income inequality.
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Appendix (For Online Publication)

A Data Methodology

A.1 Segregation and Inequality over Time

Data sources and sample selection. We use tract-level income data from decennial censuses

(1980 to 2000) and from the American Community Surveys (ACS) for the 5 year period spanning

2008-2012. Our sample includes metropolitan areas using the 2003 OMB definition. Table 8

reports the sample size, in terms of number of MSAs, census tracts, and all families. Census

tracts are small, relatively permanent statistical subdivisions of a county and are designed to have

an optimum size of 4,000 people. Census tracts are merged or added over time to keep population

size constant. The number of census tracts has increased over time, reflecting the increase in the

population.

Table 8: All Families: Summary Statistics

Year MSAs Census Tracts All Families

1980 379 42,406 46,154,644
1990 380 48,412 52,853,972
2000 380 53,033 59,087,771
2010 380 59,842 63,325,283

In our calibration, we restrict the sample to families with children. The data on families with and

without children at the census tract level are available for 2000 and 2010, but not for 1980 and

1990. The data in 2000 and 2010 are available for six groups at each income bracket level: 1)

married couple family with own children under 18 years; 2) male householder (no wife present)

with own children under 18 years; 3) female householder (no husband present) with own children

under 18 years; 4) married couple family without own children under 18 years; 5) male house-

holder (no wife present) without own children under 18 years; and 6) female householder (no

husband present) without own children under 18 years. We calculate the number of families with

children at the census tract-income bracket level as the sum of (1), (2), and (3). Families without

children at the census tract-income bracket level are calculated as the sum of (4), (5) and (6).

For 1980 and 1990, these data are not directly available at the census tract level. However, the
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Table 9: Families with Children: Summary Statistics

Year MSAs Census Tracts Families with Kids

1980 347 41,246 23,325,537
1990 373 47,184 24,922,747
2000 380 53,033 29,209,867
2010 380 59,842 29,155,384

data are available for those years at a compound geographic level. In particular, from IPUMS

NHGIS we use “Census Tract/Block Numbering Area (by State–Standard Metropolitan Sta-

tistical Area - County–Place)” for 1980 and “Census Tract/Block Numbering Area (by State–

County–Metropolitan Statistical Area/Consolidated Metropolitan Statistical Area/Remainder–

Primary Metropolitan Statistical Area/Remainder)” for 1990.

The data are available for the following 9 groups at each income bracket level:1) married couple

family with own children under 6 years old; 2) married couple family with own children between

6 and 17 years old; 3) male householder (no wife present) with own children under 6 years old;

4) male householder (no wife present) with own children between 6 and 17 years old; 5) female

householder (no husband present) with own children under 6 years old; 6) female householder

(no husband present) with own children between 6 and 17 years old; 7) married couple family

without own children; 8) male householder (no wife present) without own children; and 9) female

householder (no husband present) without own children.

We extract the state, county, and census tract codes from the unique GISJOIN identifier. The

unique GISJOIN identifier has information on state, county, census tract, and block code. Since

we use compound geographic levels, there are multiple observations for census tracts that lie

along multiple county subdivisions. For 1980, we have 47,974 observations with 41,246 unique

census tracts. For 1990, we have 47,271 observations with 47,184 unique census tracts. We

aggregate the counts of (1)-(9) at the census tract level using the extracted census tract codes. The

data for families with children at the census tract-income bracket level is calculated by summing

up (1)-(6). Families without children at the census tract-income bracket level are calculated by

summing up (7)-(9).

The data on non-family households and all households are available at the census tract level for

1990. This means that we do not have to use the compound geographic level information for
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the two series, and we can check if we have the correct numbers for families with and without

children at the census tract level using the census tract codes extracted from the unique GIS

identifier. We find that the sum of families with children, families without children, and non-

family households is equal to the number of total households at the census tract level, as shown

in Table 10 below.

Table 10: Sample Size in 1990

Year Metro Counties Census Tracts Families Non-Family Households All Households

with children without children
1990 373 870 47,184 24,922,747 26,684,647 22,122,914 73,730,308

Computing the Dissimilarity Index. The dissimilarity index uses the following formula:

D( j) =
1
2 ∑

i

∣∣∣∣xi( j)
X( j)

− yi( j)
Y ( j)

∣∣∣∣ ,
where X( j) and Y ( j) respectively denote the total number of poor and rich families in metro j,

while xi( j) and yi( j) respectively denote the number of poor and rich families in census tract i in

metro j. To use this formula, we must define poor and rich families within an MSA. To this end,

we rank family income buckets from lowest to highest and calculate the cumulative population

across buckets. We then find the bucket with a cumulative share closest to our cut-off percentile

(we calculated the dissimilarity index using the 50th, 80th, and 90th percentiles). All families

with an income greater than the cut-off bucket are labeled "rich," and all families with a lower

income are labeled "poor." This definition is then applied to all census tracts within the relevant

MSA. The dissimilarity index is then calculated for each MSA, and the results are aggregated to

the national level using metro level population weights.

Computing the Gini The Gini coefficients in this paper are calculated following the method of

von Hippel et al. (2017). First, a non-parametric estimation of the income CDF is calculated for

each metropolitan area. The non-parameteric CDF is calculated using the function binsmooth,

provided by von Hippel et al. (2017). This function linearly interpolates between the upper

bounds of each income bracket to calculate the CDF, preserving the empirical cumulative distri-

bution for each bin. It then uses the empirical mean income to calculate the implied upper bound

for the support of the PDF, choosing the upper bound and the scale parameter so that the mean
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of the estimated CDF matches the empirical mean. Three methods are proposed to characterize

the distribution of the top bracket: linear, Pareto, and exponential. The default method is linear

and is what is used here. The binsmooth function returns a non-parameteric CDF function, which

can be used to calculate the Gini coefficient (and the conditional mean income of the top-coded

bracket). Define

µ =
∫

x f (x)dx.

Then, the Gini coefficient is calculated as

G = 1− 1
µ

∫ E

0
(1−F(x))2dx.

These integrals must be calculated numerically; however, because the CDF is piecewise linear,

the approximation error is small. Importantly, the µ from the non-parametric CDF matches the

empirical mean. We calculate the Gini coefficient for each MSA and then take the weighted

average using metro level population weights to aggregate at the national level.

Example: Segregation in Chicago over Time. The dissimilarity index captures the deviation

from an even distribution of rich and poor families. Given that we define as rich the families

in the top 20th percent of the metro distribution, the index is equivalent, up to a constant, to a

weighted sum of the deviations of the share of rich families in all census tracts from 20%, with

weights given by the census tract population relative to the metro population. Figure 2 in the

main text plots the share of rich families in each census tract of Chicago in 1980 and 2010.61 If

there were no segregation, each census tract would have the same share of rich families equal

to 20%. To visualize how segregation has changed over the period, we use a heat map. We use

orange to identify census tracts with a share of rich families higher than 30% (which correspond

to neighborhood A in our calibrated model), dark blue for the census tracts with a share of rich

families below 17% (which correspond to neighborhood C), and light blue for census tracts with

a share of rich between 17% and 30% (which correspond to neighborhood B). We observe that

over time, the number of tracts with either high or low concentration of rich families increases

at the expense of tracts with an intermediate fraction of rich families. To do these figures, we
61To construct this figure, we use the sample of all families.
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keep the geography constant over time, and map the 2010 distribution using the 1980 geographic

borders. As we explained above, the census tracts are comparable in terms of population but not

necessarily in terms of geographic area (larger in suburban and less densely populated areas).62

A.2 Inequality and Segregation: Robustness

Figure 3 in the main text shows that the increase in spatial segregation by income across neigh-

borhoods happened at the same time as the increase in income inequality.

We now check the robustness of these patterns, using alternative measures of income segregation

and income inequality.

Figure 17: Dissimilarity Index: Different Cut-Offs
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Figure 17 plots the dissimilarity index calculated using different percentiles to define the income

groups. The red dashed line shows our benchmark dissimilarity index, while the solid blue line

and the dotted green line show the dissimilarity index constructed using the 10th and the 50th

percentiles, respectively. The figure shows that the dissimilarity index shifts up as the cut-off

62Note that this measure is different from the one proposed by Reardon and Bischoff (2011), since it is not affected
by changes in inequality. Their measure defines the rich in terms of distance from the median income in the metro.
With the recent, large increase in inequality, the share of people at the tails of the income distribution has increased
even without changes in segregation. The measure we propose is not affected by this issue, as it keeps constant the
percentile to define the rich group.
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percentile decreases, given that as groups become progressively more homogeneous with respect

to income, they are also characterized by higher levels of segregation. However, regardless of the

level, all measures show an increasing trend over time.

The increase in inequality is also a robust finding. Figure 18 plots other three measures of income

inequality that have been widely used in the literature: the 90/10 ratio that measures the ratio of

family income in the top 90th percentile of the population relative to that in the bottom 10th

percentile, and, similarly, the 50/10 ratio, and the 90/50 ratio.63 Figure 18 shows that both the

90/10 and the 90/50 ratios have increased steadily since 1980, while the 50/10 ratio is flat or even

slightly decreasing after 1990. This confirms that the rise in income inequality has been driven by

the top of the distribution, as already shown by Autor et al. (2008) for individual wage inequality.

Figure 18: Inequality: Different Measures
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A.3 Regression Analysis

To explore the relationship between segregation and inequality, we run several regressions. First,

we regress the Gini coefficient on the dissimilarity index at the MSA level.64 Table 11 shows
63The procedure implemented to calculate these ratios from binned data at the census tract level is described in

Appendix A.1.
64For this analysis, we define the cut-off between rich and poor as the 80th percentile. We use population weight-

ing in the regressions, although the results do not change significantly if the observations are unweighted.
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the results both without and with controls for racial and industrial composition. Racial shares

are reported at the MSA level and are from the decennial census and the American Community

Survey. Industry employment shares are from the Quarterly Census of Employment and Wages,

provided by the Bureau of Labor Statistics. The results are largely similar to the regressions

without controls.

Table 11: Regression Analysis: Levels

Dependent variable: Gini1980

(1) (2) (3) (4)

Dissimilarity1980 0.250∗∗∗ 0.107∗∗∗ 0.171∗∗∗ 0.077∗∗∗

(0.015) (0.016) (0.017) (0.017)

Constant 0.300∗∗∗ 0.562∗∗∗ 0.151∗∗ 0.346∗∗∗

(0.005) (0.023) (0.063) (0.059)

Race1980 No Yes No Yes
Industry1980 No No Yes Yes
Observations 379 379 379 379
R2 0.421 0.632 0.607 0.724
Adjusted R2 0.420 0.627 0.596 0.713
Residual Std. Error 9.637 (df = 377) 7.725 (df = 373) 8.044 (df = 367) 6.781 (df = 363)
F Statistic 274.303∗∗∗ (df = 1; 377) 128.136∗∗∗ (df = 5; 373) 51.629∗∗∗ (df = 11; 367) 63.505∗∗∗ (df = 15; 363)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Regressions use population weights

Table 12 shows the results of regressing changes in Gini coefficient between 1980 and 2010

on changes in dissimilarity index in the same period at the MSA level. We report the results

both without and with controls for changes in the racial and industrial composition in the same

period. Table 15 shows the crosswalk we used to construct consistent time series for the industrial

composition for the MSAs. We also run regressions controlling for the initial level of racial and

industrial composition, and the results are robust to this change. Tables 13 and 14 report the

summary statistics for the different variables in both regressions.

We also run the same regressions, restricting the sample to families with kids, and find larger

coefficients. In particular, the coefficient for the level regression is 0.33 (0.12 with both controls),

and the coefficient for the regression in changes is 0.24 (0.20 with both controls).

A.4 School District Analysis

In our model, local spillovers are broadly defined to include many channels. However, school

quality is an important one, which makes it interesting to explore the evolution of residential

segregation by income at the school district level.
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Table 12: Regression Analysis: Changes

Dependent variable: ∆Gini2010−1980

(1) (2) (3) (4)

∆Dissimilarity2010−1980 0.176∗∗∗ 0.170∗∗∗ 0.158∗∗∗ 0.154∗∗∗

(0.017) (0.018) (0.016) (0.016)

Constant 0.054∗∗∗ 0.054∗∗∗ 0.031∗∗∗ 0.031∗∗∗

(0.001) (0.002) (0.003) (0.004)

∆Race2010−1980 No Yes No Yes
∆Industry2010−1980 No No Yes Yes
Observations 379 379 379 379
R2 0.212 0.231 0.402 0.420
Adjusted R2 0.209 0.221 0.384 0.396
Residual Std. Error 6.183 (df = 377) 6.139 (df = 373) 5.458 (df = 367) 5.407 (df = 363)
F Statistic 101.158∗∗∗ (df = 1; 377) 22.431∗∗∗ (df = 5; 373) 22.424∗∗∗ (df = 11; 367) 17.493∗∗∗ (df = 15; 363)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Regressions use population weights

Table 13: Regression in Levels: Summary Statistics

Variable Mean Min Max Std

Dissimilarity1980 0.27 0.01 0.50 0.07
Gini1980 0.37 0.32 0.46 0.02
Pct. White1980 0.86 0.33 0.99 0.11
Pct. Black1980 0.10 0.00 0.44 0.10
Pct. Indian1980 0.01 0.00 0.33 0.02
Pct. Asian1980 0.01 0.00 0.60 0.03
Pct. Other1980 0.03 0.00 0.38 0.05
Pct. Agriculture, Forestry, and Fishing1980 0.02 0.00 0.41 0.05
Pct. Construction1980 0.05 0.02 0.17 0.02
Pct. Finance, Insurance, and Real Estate1980 0.05 0.02 0.19 0.02
Pct. Manufacturing1980 0.24 0.00 0.60 0.12
Pct. Mining1980 0.01 0.00 0.25 0.03
Pct. Nonclassifiable Establishments1980 0.00 0.00 0.01 0.00
Pct. Public Administration1980 0.06 0.00 0.49 0.06
Pct. Retail Trade1980 0.19 0.11 0.35 0.03
Pct. Services1980 0.27 0.11 0.53 0.06
Pct. Transportation and Public Utilities1980 0.06 0.03 0.16 0.02
Pct. Wholesale Trade1980 0.05 0.00 0.12 0.02

Dissimilarity Index at the School District Level. The National Center for Education Statis-

tics (NCES) collaborates with the US Census Bureau to provide demographic data for school

districts. The data are provided from the 1990 and 2000 decennial census, as well as the 2008-
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Table 14: Regression in Changes: Summary Statistics

Variable Mean Min Max Std

∆Dissimilarity2010−1980 0.05 -0.12 0.24 0.05
∆Gini2010−1980 0.06 -0.01 0.10 0.02
∆Pct. White2010−1980 -0.07 -0.27 0.22 0.05
∆Pct. Black2010−1980 0.01 -0.10 0.16 0.02
∆Pct. Indian2010−1980 0.00 -0.02 0.04 0.00
∆Pct. Asian2010−1980 0.02 -0.06 0.24 0.02
∆Pct. Other2010−1980 0.03 -0.22 0.19 0.03
∆Pct. Agriculture, Forestry, and Fishing2010−1980 -0.01 -0.41 0.07 0.04
∆Pct. Construction2010−1980 -0.01 -0.12 0.04 0.02
∆Pct. Finance, Insurance, and Real Estate2010−1980 0.01 -0.11 0.08 0.02
∆Pct. Manufacturing2010−1980 -0.12 -0.34 0.11 0.07
∆Pct. Mining2010−1980 -0.01 -0.11 0.03 0.01
∆Pct. Nonclassifiable Establishments2010−1980 0.00 0.00 0.00 0.00
∆Pct. Public Administration2010−1980 0.00 -0.31 0.26 0.04
∆Pct. Retail Trade2010−1980 -0.05 -0.17 0.06 0.03
∆Pct. Services2010−1980 0.22 0.00 0.38 0.06
∆Pct. Transportation and Public Utilities2010−1980 -0.02 -0.10 0.05 0.02
∆Pct. Wholesale Trade2010−1980 -0.01 -0.07 0.05 0.02

2012 American Community Survey. The data for 1980 are taken from the Census of Population

and Housing, Summary Tape 3F and are provided by ICPSR. After combining these files, we

calculate the dissimilarity index for all families using school districts as the relevant sub-unit.65

Figure 19 shows the results of these calculations. The first thing to note is that the overall trend is

almost identical to what we get with census tracts. The main difference is that there is a greater

increase in dissimilarity from 1990 to 2000 at the school district level and less of an increase from

2000 to 2010. One possible explanation for this trend is the increase in the attendance of private

school, which has taken place precisely in the last twenty years and mostly on the East Coast,

where there are some of the most populated metros in the US (which have larger weight in our

estimates). The increase in the share of children attending private schools weakens the incentive

to segregate across school district lines.

65Income data for families with children are not available.
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Table 15: Industry Crosswalk

NAICS Industry Classification SIC Industry Classification
Real estate and rental and leasing
Finance and insurance Finance, Insurance, and Real Estate Division

Transportation and warehousing
Utilities Transportation and Public Utilities Division

Educational services
Accommodation and food services
Administrative and waste services
Other services, except public administration
Arts, entertainment, and recreation
Professional and technical services
Management of companies and enterprises
Information
Health care and social assistance

Services Division

Agriculture, forestry, fishing and hunting Agriculture, Forestry, and Fishing Division
Construction Construction Division
Manufacturing Manufacturing Division
Mining, quarrying, and oil and gas extraction Mining Division
Unclassified Nonclassifiable Establishments
Public administration Public Administration Division
Retail trade Retail Trade Division
Wholesale trade Wholesale Trade Division

Figure 19: Inequality and Segregation over Time
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Census Tracts vs. School Districts. Census tracts have several advantages over school districts

as our unit of analysis. Census tracts are determined by the Census Bureau and are largely fixed

over time. When initially determined, the Census aims to include roughly 4,000 people per tract
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and attempts to define the tract over a homogeneous population. Further, boundaries for census

tracts generally follow local government boundaries, such as state, MSA, and county borders,

allowing for a clean mapping between sub-units and metros.

In contrast, school districts are locally administered, and their geographic structure can vary by

region. Like those of census tracts, the definitions of school districts are relatively stable over

time. However, many states have seen a significant consolidation in school districts over time.

School districts follow state boundaries but not necessarily MSA lines, complicating our ability to

cleanly map sub-units to metros. The degree to which school districts coincide with government

boundaries differs across the nation. For instance, on the East Coast, school districts tend to

coincide with counties, townships, or city boundaries while in the Midwest, they are almost

entirely, independent of municipal boundaries. Finally, the dissimilarity index can be misleading

when there are not enough sub-units available. For example, consider an MSA that has a single

school district. The dissimilarity index would necessarily be 0 in this case, since the population

at the district level necessarily coincides with the population at the metro level. This result may

potentially hide significant income segregation within the MSA. The literature has noted that

over the past three decades, segregation has increased both between school districts and between

schools. Using census tracts will reflect these changes, whereas using school districts would

mask the latter trend.

Table 16 reports summary statistics at the district level. The average number of districts in a

metro is much smaller that the number of census tracts. This also explains why the sample size

is not the same when using different geographic sub-units: districts may span multiple counties,

only some of which may belong to a metro area. Several metros have only one school district.

The dissimilarity index is necessarily equal to zero in such cases, since the income distribution at

the district level coincides with the income distribution of the metro.

Table 16: School Districts: Summary Statistics

Year MSAs School Districts All Families

1980 379 6611 75,233,974
1990 379 6669 63,218,899
2000 379 6849 70,998,529
2010 380 6838 76,071,068
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B Proof of Proposition 1

Given that we focus on equilibria with RA
t > RB

t = 0, we require SA
t > SB

t for all t. Also, this

requirement together with Assumption 1, implies that agents who choose low education strictly

prefer neighborhood B to neighborhood A, so nobody chooses e = eL and n = A. Hence, agents

choose among three options: 1) high education and neighborhood A-for short, HA; 2) high edu-

cation and neighborhood B, HB; and 3) low education and neighborhood B, LB.

Let us consider a given time t and drop the time subscript to simplify notation. Also, to simplify

notation, let us drop ε , given that it is iid, so it does not play any role for the optimal policies.

Consider an agent with wealth w and ability a who chooses HA. It must be that he prefers that to

HB or LB; that is,

u(w−RA− τ)+ g(Ω(w,a,eH ,SA))≥ u(w− τ)+ g(Ω(w,a,eH ,SB)) (12)

and

u(w−RA− τ)+ g(Ω(w,a,eH ,SA))≥ u(w)+ g(Ω(w,a,eL,SB)). (13)

Take any w′ > w. By concavity of u and RA > 0, we have

u(w′−RA− τ)−u(w′− τ) ≥ u(w−RA− τ)−u(w− τ)

and

u(w′−RA− τ)−u(w′) ≥ u(w−RA− τ)−u(w).

Combining these conditions with the assumption that the composite function g(Ω) has increasing

differences in w and S and in w and e (from Assumption 2), we obtain

u(w′−RA− τ)+ g(Ω(w′,a,eH ,SA))≥ u(w′−RB− τ)+ g(Ω(w′,a,eH ,SB))

and

u(w′−RA− τ)+ g(Ω(w′,a,eH ,SA))≥ u(w′−RB)+ g(Ω(w′,a,eL,SB))

for all w′ > w and given a. Let us call w1(a) and w2(a) the values of w that respectively make

conditions (12) and (13) hold with equality for given a. We can then define the cut-off function

as

ŵ(a) = max{w1(a),w2(a)}.
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This proves that all agents with w≥ ŵ(a) choose the option HA for a given a. If we use Assump-

tion 1 and 2 and the implicit function theorem, it is straightforward to show that both w1(a) and

w2(a) are non-increasing functions, and hence that ŵ(a) is a non-increasing function as well.

Next, consider an agent with wealth w and ability a who chooses LB. By revealed preferences,

he must prefer that to HA or HB; that is,

u(w−RB)+ g(Ω(w,a,eL,SB))≥ u(w−RA− τ)+ g(Ω(w,a,eH ,SA)) (14)

and

u(w−RB)+ g(Ω(w,a,eL,SB))≥ u(w−RB− τ)+ g(Ω(w,a,eH ,SB)). (15)

Following steps analogous to the ones before, we can show that for a given a, all agents with

w′ < w prefer LB to both HA and HB. Notice that the value w that makes equation (14) hold with

equality is the cut-off value w2(a) defined above. Moreover, let us call w3(a) the value of w that

makes condition (15) hold with equality for given a. We can then define the cut-off function as

ˆ̂w(a) = min{w2(a),w3(a)}.

This proves that all agents with w ≤ ˆ̂w(a) choose the option LB for given a. If we use As-

sumption 2 and the implicit function theorem, it is straightforward to show that w3(a) is also a

non-increasing function, and hence that ˆ̂w(a) is a non-increasing function as well. Given that

both ŵ(a) and ˆ̂w(a) are non-increasing functions, it must be that ŵ(a) ≥ ˆ̂w(a) for all a. If there

was an a′ such that ŵ(a) < ˆ̂w(a), then all agents with w ∈ (ŵ(a), ˆ̂w(a)) would find strictly opti-

mal both HA and LB, which is a contradiction. This proves that an equilibrium is characterized

by two non-increasing functions ŵ(a) and ˆ̂w(a), with ŵ(a) ≥ ˆ̂w(a) for all a, such that all agents

with (w,a) such that w > ŵ(a) choose e = eH and n = A and all agents with (w,a) such that

w < ˆ̂w(a) choose e = eL and n = B.

C Normalizations
For convenience, let us report the optimization problem for a household with wage w and a child
with ability a,

u(w,a) = maxe,n ln(w−Rn− τeγ)+ ln
(

b+ ae(β0 +β1Sn)
ξ

)
+α lnw+ lnε +σζ ζn, (16)

and her future wage,

w′(w,a) =
(

b+ ae(β0 +β1Sn)
ξ

)
wα

ε . (17)
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First note that average ability is not independent of β0 and β1, as we can scale a by a constant ca

and scale both β0 and β1 by c
− 1

ξ

a while leaving the optimization problem and the wage expression

unchanged. Specifically, we can set ca =
1
µa

so that the adjusted average ability is equal to 1.

Moreover, we can scale ε by a constant cε and, at the same time, scale b by c−1
ε and both β0 and

β1 by c
− 1

ξ

ε , again leaving the problem unchanged. We can normalize the mean of ε to 1 by setting

cε =
1

µε
.

Next, notice that we can multiply w by a constant cw. We can scale b by c−(1−α)
w and β0 and

β1 by c
−(1−α)

ξ

w . This leaves the wage dynamics unchanged. Moreover, from the housing market

condition, Rn is going to be automatically scaled up by the same constant, and we can multiply

τ by cw so that the optimization problem is unchanged as well. This means that we can choose

cw > 0 so that the average wage in the economy is equal to 2.44, the average income for a family

with children in 1980, in $10,000s.

Finally, we show that we can normalize τ = 1. In particular, we can make the transformation

ẽ = τ
1
γ e and scale β0 and β1 by τ

1
γξ . This leaves the optimization problem (where we now

optimize over n and ẽ instead of n and e) and the wage equation unchanged.

D More on Counterfactual Exercise II

In Section 5.1, we show that in the second counterfactual exercise, where we keep location fixed,

segregation is not constant but declines over time. This is driven mainly by the endogenous

dynamics of the ability distribution in the different neighborhoods. In particular, in our model,

given the complementarity between spillover and ability, the neighborhoods with higher spillover

tend to attract families with children with higher ability. This is even more true in response to the

skill premium shock. Once we shut down the sorting process by fixing the families’ locations,

the average ability in the neighborhoods tend to converge over time, given mean reversion in

the ability process. Panel a in Figure 20 shows that in response to the skill premium shock,

average ability in the three neighborhoods in our baseline model tends to diverge. Panel b in the

same figure shows that, once we keep fixed family residential choice, average ability in the three

neighborhoods tend to converge. The speed of this convergence is affected by the persistence of

the ability process that we calibrated in Section 4.2.
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Figure 20: Evolution of Average Ability in the Neighborhoods
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Figure 21 compares the dynamics of segregation in the baseline model and in the counterfactual

with fixed location with those in an alternative counterfactual where keep fixed not only the

families’ location but also their investment in education. This figure shows that the pattern of

segregation does not change much when we keep education fixed; if anything, it decreases even

further. This implies that the endogenous choice of education cannot be behind the decline in

segregation.

In the counterfactual with fixed location that we explore in section 5.1, parents do not have

a residential choice, and rental rates are fixed at their steady state values. In Figure 22, we

explore an alternative version of the counterfactual. In this version, agents optimally choose their

location, but housing supply in the three neighborhoods is fixed so that their sizes are at the steady

state levels and rental rates adjust to clear the housing markets. The figure shows that this choice

does not quantitatively affect the results.
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Figure 21: Segregation: Fixed Location and Education
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Figure 22: Segregation: Fixed Location and Housing Supply
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E Alternative Model Specifications and Robustness

E.1 Model with Global Spillovers and Local Amenities

In our model, spatial segregation is driven not only by the presence of local spillovers but also

by the presence of local amenities. In this section, we try to disentangle the two by studying
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a version of the model where spillovers are global, not local, and local amenities are the only

source of segregation.

In particular, we consider a version of the model where the spillover is the same in all three

neighborhoods and equal to the expected wage of the children in the city, St = Et(wt+1), so that

future wages do not depend on the neighborhood where children grow up. Rental rates in differ-

ent neighborhoods are still different, but just to reflect the presence of different local amenities

that make a random fraction π of the agents prefer neighborhood A to B and neighborhood B

to C, given that θA > θB > θC. This generates segregation by income, given that richer families

can afford to pay higher rents to live in neighborhoods with better amenities. However, such a

spatial segregation does not translate in differential returns to education. This implies that a skill

premium shock does not affect directly the marginal advantage of living in one neighborhood

relative that of living in another. When the skill premium shock hits the economy, inequality

increases, making richer people even richer and more willing to pay higher rental rates for better

amenities. This, in turn, increases residential segregation. However, such an increase in segrega-

tion does not feed back into higher inequality, because residential choices do not affect expected

wages in this version of the model.

Figure 23 compares the pattern of inequality and segregation after the skill premium shock in the

baseline model (blue solid lines) with the same patterns in the version of the model just described

(red dashed lines). The figure shows that after recalibrating the model to hit the same moments

as in the baseline exercise, inequality and segregation behave quite similarly in the two models.

However, such a model would miss important features of the data that our baseline model with

local spillover can generate. In particular, Table 17 shows that this model would not be able to

replicate two salient patterns in the data: the increase over time in the size of neighborhood A

and the increase over time of the ratio of rental rates in neighborhood A relative to those in B,

which are documented in Table 4. As we have shown in Table 3 in Section 4.3, our baseline

model can match both these dynamics. The reason is that when the skill premium increases,

everybody wants to invest more in education. This implies that when educational spillovers are

equalized across neighborhoods, relatively poorer households may find it more attractive to live

in neighborhoods with worse amenities but cheaper housing, where they can afford to invest

more in education, hence reducing the demand to live in neighborhood A. On the contrary, in our

baseline model with local spillover, neighborhood A becomes relatively more attractive because
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Figure 23: Local Spillover vs. Local Amenities
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of the complementarities between spillover and education, thus matching the increase in demand

to live in neighborhood A that is a feature of the data. In the next section, we will explore an

alternative shock that does not directly affect the return to education.

E.2 Different Shock to Inequality

Another important choice that we make in our baseline exercise is about the nature of the shock.

One natural question is if the implied dynamics of the model would be similar if we considered

a different type of inequality shock-for example, a simple increase in the volatility of the noise

of the wage process. It is interesting to note that given the nature of our mechanism, which

is centered on the effect of local spillover on returns to education, such a shock has different

implications relative to a skill premium shock, which directly affects the return to education.

Figure 24 shows the dynamics of inequality and segregation implied by our baseline model in re-
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Table 17: Neighborhood Sizes and Rental Rates

1980 1990 2000 2010

RA/RB 1.421 1.398 1.384 1.367
RB/RC 1.412 1.581 1.805 1.980
SizeA 0.193 0.183 0.174 0.163
SizeB 0.301 0.277 0.255 0.234
SizeC 0.506 0.541 0.573 0.602

sponse to an increase in the volatility of the wage noise σε . The figure shows that both inequality

and segregation increase less over time in response to such a shock, relative to a skill premium

shock, and this difference is quantitatively larger for inequality. This is because a skill premium

shock has a more persistent effect on educational investment, which increases the gap between

rich and poor.

Figure 24: Shock to Volatility of Wage Process
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Another important difference with our baseline exercise is that, after a wage volatility shock, the

model is not able to replicate the relative rental rates dynamics. Table 18 shows that after a wage

volatility shock, both the rental rate ratio of neighborhood A versus B and that of B versus C are

decreasing over time in contrast with the data. This happens because there is no change in the

return to education, so the pool of families that select into the better neighborhoods is determined

mainly by income and not by ability. In contrast, in response to a skill premium shock, richer

families with more talented kids tend to move to better neighborhoods. They end up investing

more in education, thereby increasing the spillover gaps between neighborhoods. This, in turns,

feeds back into more future segregation and inequality, generating a persistent effect over time.

Table 18: Neighborhood Sizes and Rental Rates

1980 1990 2000 2010

RA/RB 1.286 1.260 1.222 1.186
RB/RC 1.306 1.284 1.249 1.226
SizeA 0.193 0.207 0.205 0.210
SizeB 0.301 0.285 0.272 0.259
SizeC 0.506 0.507 0.523 0.531

E.3 Role of Complementarities

In the baseline model, we assume complementarity between the spillover and innate ability in

the wage process. Although we believe this assumption is consistent with some recent empirical

literature on skill formation (see papers cited in Section 3), we also find it interesting to relax it

and explore the case where spillover and ability enter linearly in the wage process. In particular,

we assume that

wt+1 = (b+ et(at +(β0 +β1Snt)
ξ )wα

ε .

Figure 25 compares our baseline model with a recalibrated version of the model with the above

wage process. The figure shows that this assumption is not particularly crucial for the qualitative

properties of the model, because both inequality and segregation increase in response to the

shock. However, the persistency of both inequality and segregation decrease substantially relative

to our baseline. When ability and spillover are complementary, in response to the skill premium

shock, families with more talented kids tend to move to the better neighborhood to exploit the

higher spillover where the return to education is higher. This, in turn, increases the spillover
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gap and makes the effect persistent. However, when spillover and ability enter linearly the wage

process, there is no particular incentive for families with more talented kids to move, and so this

effect is muted.

Figure 25: Role of Complementarity in Wage Process
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E.4 Alternative Spillover Specification

Our choice of spillover definition is motivated by the desire not to take a stand on the specific

source of the local spillover, to better replicate the quasi-experiment studied in Chetty and Hen-

dren (2018b). In particular, we define the spillover as average expected wage of the children

growing up in a neighborhood. Future wages are affected both by parental income, through a

direct effect and an indirect effect on the residential and educational choice, and by children’s

ability, which affects the returns to education and to spillover. This means that in our formula-

tion both average ability and average parental income affect the size of the spillover, making it

possible to capture a variety of mechanisms: peer effects, public school quality, networks, social
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norms, and so on. However, the past literature on local spillovers (e.g. Benabou (1996a), Ben-

abou (1996b), Fernandez and Rogerson (1996), Fernandez and Rogerson (1997), Fernandez and

Rogerson (1998), Eckert and Kleineberg (2021)) has focused on the effect of the quality of public

schools. Given that public schools are locally financed, these papers define the spillover as the

average parental income in the neighborhood. In this section, we explore this alternative spillover

specification and compare the implied dynamics of inequality and segregation in response to a

skill premium shock to our main results.

Figure 26: Spillover Equal to Parents’ Average Income
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Figure 26 compares the dynamics of inequality and segregation in the baseline model (blue solid

lines) with the same dynamics in the model where the neighborhood spillover is defined as the

average income of the parents living in the neighborhood (red dashed lines). The figure shows

that in the baseline model, there is more propagation of the skill premium shock both for in-

equality and segregation. This is expected, given that in the baseline model the spillover does

not depends only on parents income but also on children’s ability, which allows additional mech-
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anisms to affect local spillover, such as, for example, peer effects. However, the figure shows

that quantitatively, the difference is not large, which suggests that parental income is the most

important factor in local spillover effects-for example, by affecting the quality of public schools.

For future research, it would be interesting to use micro data to better disentangle better these

different effects.

If we run the same counterfactual exercises that we performed for the baseline model in Subsec-

tion 5.1, we obtain that the contribution of segregation to the increase in inequality between 1980

and 2010 with this spillover specification is equal to 22% and to 16%, relative to 27% and 25%,

respectively.

Overall, this exercise also shows that our mechanism’s capability to explain the increase in in-

equality due to segregation is sizeable, irrespective of the specific definition of the local spillover.

E.5 Equilibrium Definition with MTO

To resemble the MTO program, we assume that the poorest x families living in the worst neigh-

borhood (neighborhood C) are offered a voucher to move to a better neighborhood. Families

accepting a voucher are required to pay 30% of their income toward their rent. The voucher

covers the difference between their rent and the family’s contribution up to a maximum amount,

known as the Fair Market Rent, defined as the 40th percentile of rental costs in the metro area.

We examine the "experimental policy," which requires that a family must move to the best neigh-

borhood (the neighborhood with the highest spillover) if they accept the voucher.

To finance the policy, we assume that the vouchers are covered by a proportional tax ν on income,

levied on all families in the city.

In order to characterize the equilibrium with the presence of the policy, we need to introduce an

additional state variable, which is the neighborhood where a parent grew up, or birth neighbor-

hood, bt .

A parent is now characterized by the triplet (wt ,at ,bt). Let χ(wt ,at ,bt) denote the eligibility

indicator, so that χt(wt ,at ,bt) = 1 if the parent is eligible and equal to 0 otherwise. The MTO

policy prescribes that χ(wt ,at ,bt) = 1 if bt = argmink ∈ A,B,C{SA,SB,SC} and wt ≤ w̃t , where
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w̃t is such that

G[w̃t |at ,bt ] = p,

where p is a given percentile of the income distribution of the metro area. We define the worst

neighborhood as the one with the lowest spillover. Given that the local spillovers are endogenous

and evolve over time, the worst neighborhood may change in response to the policy.

Parents who are eligible for the voucher will accept it if they get higher utility from accepting

it than from not accepting it. Define vt(wt ,at ,bt) as the voucher acceptance indicator. For all

parents such that χt(wt ,at ,bt) = 0, vt(wt ,at ,bt) = 0, while for all parents such that χt(wt ,at ,bt) =

1, vt(wt ,at ,bt) solves

maxvt{UV (wt ,at ,bt),UN(wt ,at ,bt)}, (18)

where

UV (wt ,at ,bt) = max
et

log(1+θn̂)((1−ν)qwt− τeγ

t )+ (19)

+ log[(y+ atetη(β0 +β1Sn̂)
ξ )wα

t εt ]+σζ ζn̂t

and

UN(wt ,at ,bt) = max
et ,nt

log(1+θnt )((1−ν)wt−Rnt − τeγ

t )+ (20)

+ log[(y+ atetη(β0 +β1Snt )
ξ )wα

t εt ]+σζ ζntt ,

where UV (wt ,at ,bt) is the value of accepting the voucher, UN(wt ,at ,bt) is the value of not ac-

cepting it, n̂ is the neighborhood with the lowest spillover, and q is the fraction of the income re-

maining after contributing to the rent (equal to 70%). A parent accepting the voucher pays taxes

on the remaining income qwt and has to move to the neighborhood with the highest spillover.

The voucher covers the difference between Rn̂t and her contribution. A parent not accepting the

voucher has to pay the full rent and pays taxes on the total income, but can choose the optimal

neighborhood.

We are now ready to define an equilibrium with voucher policy.

Definition 2 Equilibrium. For a given initial wage distribution G0(w0,a0,b0), an equilibrium is

characterized by a sequence of educational and residential choices, {et(wt ,at ,bt)}t and {nt(wt ,at ,bt)}t ,
a voucher eligibility indicator {χt(wt ,at ,bt)}t ∈{0,1}, a voucher acceptance choice {vt(wt ,at ,bt)}t ,
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a sequence of rents and spillover sizes in the three neighborhoods, {Rkt}t and {Skt}t for k =

A,B,C, a sequence of tax rates {νt(wt ,at ,bt)}t , and a sequence of distributions {Gt(wt ,at ,bt)}t
that satisfy:

1. agents’ optimization:

(a) for each t and (wt ,at ,st) such that χ(wt ,at ,bt) = 0, the policy functions et and nt

solve problem (20), for given Rkt and Skt for k = A,B,C;

(b) for each t and (wt ,at ,bt) such that χ(wt ,at ,bt) = 1, the policy functions et and nt

solve problem (18), for given Rkt and Skt for k = A,B,C;

2. spillover consistency: for each t, equation (2) is satisfied for n = A,B,C;

3. market clearing: for each t and k ∈ {A,B,C}, Rkt ensures housing market clearing in

neighborhood k:

λk

(
Rkt

w̄t

)φk

=
∫ ∫ ∫

nt(wt ,at ,bt)=k
Gt(wt ,at ,bt)dwtdatdst ; (21)

4. wage dynamics: for each t,

wt+1 = Ω(wt ,at ,et(wt ,at),Snt(wt ,at ,bt)t ,εt); (22)

5. budget balance: for each t, νt is such that∫ ∫ ∫
vt(wt ,at ,bt)=1

(RA−(1−q)wt)Gt(wt ,at ,bt)dwtdatdst ≤ ν

(∫ ∫ ∫
wtGt(wt ,at ,bt)dwtdatdst

)
.

In equilibrium, eligible parents optimally choose whether to accept a voucher or not.
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