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Abstract Method Development Evaluation

Single-cell RNA sequencing(scRNA seq) is a powerful
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means a higher average expression value of a specific gene
detected from that type of cell.
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of ovary tissues obtained from 4 patients (#3041 #3061 #3203

#3296). Possible cell types within this dataset are o
myofibroblast, stromal, T/NK cells, B-cells, macrophage,
smooth muscle cells, pericyte, endothelial, lymphatic
endothelial, epithelial, non-ciliated epithelial, ciliated
epithelial, and mast cells.

full path of rds file

Feature Plot: Redness indicate cells with a specific bio-marker.
Because of the large population in clusters #0 #1 #2 and #3,
there are several markers that have relatively high expressions
iNn the clusters.

Figure 1. Actual Shiny App interface we developed
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Table 1, List of tested genes and their relative markers & tissue type
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1. Obtain “feature” like PC values or number of genes
detected, so that we can color gene expression level
changes across different clusters/ cells.

2. Display feature plot and dot plot separately on two more
tabs.

Part 3. Pseudotime analysis
1. Label cell stage and separates them along differentiation
trajectory by Principal Components(PCs), diffusion map,
and Slingshot value.
Plot pseudotime population and compare values on
each identities (clusters) to clarify separation of clusters
In part 1.

Toolkit Used
1. Seurat: an R package originally developed as a clustering
tool. It enables users to perform rapid mapping and
integrative multimodal analysis for diverse types of
single-cell data.
Shiny App: a new open-source R framework to build
interactive web applications from RStudio.

Pseudotime Plot: Pattern of x value describe properties of
each identity (cluster). Difference between the patterns is a
proof of cell separation.

Conclusion

Clusters in the UMAP of ovary tissues are gathering to form a
large aggregation. However, none of them have similar
properties according to pseudotime analysis. We were able to
identify part of the cell types based on the dot plots and
feature plots. Some cell properties are still ambiguous.

Future Work:

one future direction to improve the downstream is to add
more visualization options like plots focusing on one specific
cluster. Besides, we need to consider other experimental
condition options; For example, we can separate metadata by
tissue types, not patients' numbers.
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