
A Connectome-based Predictive Model of Affective Experience  
During Naturalistic Viewing 

 
Jin Ke (jinke@uchicago.edu) 

Yuan Chang Leong (ycleong@uchicago.edu) 
Department of Psychology, The University of Chicago 

5848 S University Ave, Chicago, IL 60637, USA 
Abstract: 

Our thoughts and actions are guided by our ongoing 
affective experience. Affective states are often measured 
using self-report ratings, which are labor intensive to 
collect and can also disrupt ongoing cognition if 
obtained while performing a task. In this study, we aim to 
1) derive a continuous and non-intrusive measure of 
affective experience based on dynamic functional 
connectivity (FC), and 2) characterize the interaction 
between brain regions underlying changes in affective 
states. We trained a connectome-based predictive model 
to predict subjective ratings of valence, arousal and 
dominance from fMRI data of participants watching a TV 
episode. All three models achieved reasonable accuracy 
(valence: r = .486, p = .018; arousal: r = .519, p = .002; 
dominance: r = .602, p = .008). FC edges within and 
between multiple large-scale functional brain networks 
reliably contributed to model predictions, suggesting 
that affective states are encoded in the interactions 
between brain regions. Taken together, our work 
presents a promising approach to probe affective 
experience based on brain imaging data. 
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Introduction 

Affective experience guides perception1,2, 
cognition3,4, decision making5,6, and social behaviors7,8. 
For example, when people experience low arousal 
negative emotions (e.g., sadness), they are more likely 
to behave in an antisocial manner in economic games7. 
Unsurprisingly, measuring affective experience 
improves our ability to explain and predict human 
behavior8,9. Affective states are often measured using 
behavioral ratings along affective dimensions (e.g., 
valence, arousal) or emotion categories (e.g., joy, anger, 
fear). Obtaining continuous measures of these ratings 
while participants perform a task is labor-intensive. 
Moreover, repeatedly probing participants’ affective 
state during a task is disruptive to performing the task 
and can in turn bias their behavior. 

The goal of the current study is to two-fold. The first 
is to compute a continuous, non-intrusive measure of 
affective experience derived from time-varying 
functional connectivity data while participants watch a 

dynamic visual-audio stimulus. The second is to 
characterize the interaction between brain regions that 
contribute to ongoing affective experience. While prior 
studies have identified specific brain areas where 
activity correlates with the experience of different 
affective states10,11, we know less about how these 
brain regions interact with each other and the rest of the 
brain. By examining how whole-brain functional 
connectivity tracks with dynamic changes in affective 
experience, we advance our understanding of how 
affect is encoded in the brain.   

To that end, we trained a connectome-based 
predictive model (CPM) on time-varying functional 
connectivity data from an open dataset of participants 
watching a TV episode (n = 17). The CPM was trained 
to predict behavioral ratings of valence, arousal 
dominance collected from a separate group of 
participants (n = 125). For each affective dimension, we 
then examined the functional connectivity edges that 
most reliably contributed to model predictions. 

Results 

Model Predictions Track Self-Report Affective 
Experience 

We trained a support vector regression (SVR) model 
to predict moment-to-moment (i.e., at every TR) 
behavioral ratings of valence, arousal, and dominance 
from dynamic functional connectivity (Figure 1A and B). 
The model was trained on the Sherlock dataset12 and 
tested within the same dataset using a leave-one-
subject-out cross-validation procedure. We calculated 
the Pearson’s correlation between model predictions 
and behavioral ratings. The resulting r-values were then 
Fisher’s z-transformed, averaged across cross-
validation folds, and then transformed back to an 
average r-value as a measure of model performance. 
Mean squared error (MSE) and 𝑅! were computed as 
additional measures of model performance.    

To assess statistical significance, we compared 
model performance against null distributions generated 
by computing the correlation between phase-
randomized behavioral ratings and model predictions 



(1000 permutations). We assumed a one-tailed 
significance test, with P = (1 + number of null r values 
≥ empirical r)/(1 + number of permutations). Across all 
three affective dimensions, model performance was 
significantly higher than null, indicating that affective 
experience can be predicted from patterns of functional 
connectivity (valence: mean r = .486, MSE = .765, 𝑅! = 
.235, p = .018; arousal: mean r = .519, MSE = .734, 𝑅! 
= .267, p = .002; dominance: mean r = .602, MSE = 
.646, 𝑅! = .354, p = .008; Figure 1C) 
 

 
Fig. 1 Behavioral ratings (A), and model predictions (B) 
of valence, arousal, and dominance. All models are 
significantly better than null models (all p < .02, C)  

Functional Connectivity Networks for Valence, 
Arousal, and Dominance 

To characterize the anatomy of the predictive 
networks, we visualized the functional connections (FC) 
consistently retained in the feature selection step in 
every round of within-dataset cross-validation. For the 
valence network, a set of 330 FCs was consistently 
selected (250 positive, 80 negative); For the arousal 
network, 653 FCs were selected (395 positive, 258 
negative); For the dominance network, 517 FCs were 
selected (280 positive, 237 negative) (Fig.3).  

 
Fig. 2 FC networks for valence, arousal and dominance 

The results suggest that affective states are encoded 
by more than the subcortical and limbic networks 
commonly associated with emotional experience13. 
Other networks, especially the default and control 
networks are also substantial involved via connections 
with other networks. 

Conclusion 

Using naturalistic viewing data from an open fMRI 
dataset, we built a CPM to predict the experience of 
three affective dimensions (valence, arousal and 
dominance) from dynamic functional connectivity 
patterns. Our models achieved a reasonable predictive 
accuracy (mean r > 0.48 for all models), and reveal the 
involvement of brain regions across multiple large-scale 
functional brain networks. An important limitation of the 
current work is that we trained and tested on affective 
states experienced while viewing the same stimulus. 
Even though we utilized a leave-one-subject-out cross 
validation procedure, the model remains susceptible to 
overfitting to features of the stimulus. Future work will 
train similar models on multiple datasets to assess 
generalizability of the model. Nevertheless, the current 
work presents a promising new approach to measure 
affective experience based on brain imaging data. 

Materials and Methods 

Behavioral Data Analysis 
Behavioral ratings of were acquired from Kim et al., 

202011. 125 participants watched the first episode of 
Sherlock. The video was paused every ~4.5 seconds, 
and participants were asked to rate the valence, arousal 
and dominance of the preceding segment. We 
averaged the ratings, convolved them with a HRF and 
applied a tapered sliding window of 30 TR (= 45s), with 
a step size of 1 TR and a Gaussian kernel 𝜎 = 3 TR. 
fMRI Image Acquisition and Preprocessing 

The preprocessed Sherlock dataset was downloaded 
from Princeton University’s DataSpace repository14. 
Preprocessing steps followed slice timing correction, 
motion correction, linear detrending, high-passing 
filtering (140-s cut off), coregistration, and affine 
transformation to the MNI space. The functional images 
were resampled to 3-𝑚𝑚" voxels. 
Whole-Brain Parcellation 

We followed Yeo et al.15 for whole brain parcellation. 
Cortical regions were parcellated into 114 ROIs based 
on a 7-network cortical parcellation. Subcortical regions 
were parcellated into 8 ROIs from the Brainnetome 
atlas16 (bilateral amygdala, hippocampus, basal 
ganglia, and thalamus). 
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