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Abstract: Are symbolic and nonsymbolic numbers coded differently in the brain? Neuronal data indi-
cate that overlap in numerical tuning curves is a hallmark of the approximate, analogue nature of non-
symbolic number representation. Consequently, patterns of fMRI activity should be more correlated
when the representational overlap between two numbers is relatively high. In bilateral intraparietal
sulci (IPS), for nonsymbolic numbers, the pattern of voxelwise correlations between pairs of numbers
mirrored the amount of overlap in their tuning curves under the assumption of approximate, analogue
coding. In contrast, symbolic numbers showed a flat field of modest correlations more consistent with
discrete, categorical representation (no systematic overlap between numbers). Directly correlating activ-
ity patterns for a given number across formats (e.g., the numeral “6” with six dots) showed no evi-
dence of shared symbolic and nonsymbolic number-specific representations. Overall (univariate)
activity in bilateral IPS was well fit by the log of the number being processed for both nonsymbolic
and symbolic numbers. IPS activity is thus sensitive to numerosity regardless of format; however,
the nature in which symbolic and nonsymbolic numbers are encoded is fundamentally different.
Hum Brain Mapp 36:475–488, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

An approximate sense of quantity is shared across many
species and human cultures [Nieder and Dehaene, 2009],
and it is thought to develop very early in human infants
[Libertus and Brannon, 2009]. It is thus not surprising that

many have hypothesized that symbolic numbers (e.g.,
Indo-Arabic numerals) are initially derived from this more
evolutionarily and developmentally basic, nonsymbolic
approximate number system [ANS; e.g., Dehaene,
1997; Eger et al., 2009; Feigenson et al., 2004; Fias et al.,
2003; Libertus and Brannon, 2009; Lyons and Ansari, 2009;
Lyons and Beilock, 2009; Nieder and Dehaene, 2009; Piazza
et al., 2007; Verguts and Fias, 2004]. One implication of
this view is that symbolic numbers should inherit, at least
in part, their representational structure from their nonsym-
bolic counterparts [e.g., Dehaene, 2008; Dehaene and
Cohen, 2007]. Recent evidence suggests that symbolic and
nonsymbolic numbers are more distinct than previously
assumed [Bulth�e et al., 2014; Cohen Kadosh et al., 2010;
Damarla and Just, 2013; Lyons et al., 2012], but the possi-
bility of parallel underlying neural representational struc-
tures remains open and untested.

By representational structure, we mean how the differ-
ent representations within a given system relate to one
another. Single-cell recordings in monkeys [see Nieder,
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2005, for a review] and behavioral evidence in humans
[e.g., Merten and Nieder, 2009] have provided a clear pic-
ture of the representational structure of nonsymbolic num-
bers. Populations of neurons in monkey parietal cortex are
tuned to specific nonsymbolic numbers, and the neuronal
tuning curves increase in width (i.e., decrease in precision)
as the tuned-for number in question increases [Nieder,
2005].1 A model of number representation based on these
observations is an excellent predictor of behavior in both
humans and monkeys [Merten and Nieder, 2009]. Figure
1a shows a simulated example using human performance
data from Merten and Nieder as a basis for this scaling
function. A heretofore untested implication of this model
is that the tuning curves for different pairs of numbers
overlap to different degrees. That is, the representations of
different numbers overlap one another, but, crucially, they
do so in a systematic manner that depends on the ratio
between the numbers in question. The pairwise proportion
of overlap for the Numbers 1–9 is shown in Figure 1b.
Two neurons’ responses (in terms of net firing rate),
regardless of their tuning preference, are expected to be
very similar for the Numbers 8 and 9 because the curves
for these numbers strongly overlap. We assessed similarity
of neural patterns for different numbers via representa-
tional similarity analysis [RSA; Kriegeskorte et al., 2008]:
distributed, voxelwise correlations between brain
responses, in this case to the Numbers 1–9, presented as
either symbolic (Arabic numerals) or nonsymbolic (dot-
arrays). We assessed activity patterns in bilateral intrapar-
ietal sulci (IPS), regions known to be important for both
symbolic and nonsymbolic number representation in
humans and monkeys [Eger et al., 2009; Fias et al., 2003;
Piazza et al., 2007]. In this way, we examined whether the
observed patterns of similarity relations between pairs of
number match the degree of representational overlap pre-
dicted by the model of nonsymbolic numbers depicted in
Figure 1.

The overall patterns of activity in a section of cortex seen
for two highly overlapping numbers should be correlated
more so than for two numbers with minimally overlapping
curves. We can thus capitalize on the fact that functional
magnetic resonance imaging (fMRI) measures neural
responses at the level of large populations of neurons to
directly test whether the correlation between the distributed
patterns of activity seen for two numbers is indeed pre-
dicted by the degree to which the curves for those two num-
bers are expected to overlap. Plotting the correlations
between each pair of numbers should yield a graph highly

similar to that in Figure 1b. Note that this is a more direct
and quantitatively precise test of the hypothesized underly-
ing structure of nonsymbolic number representation—that
neural tuning for different numbers shows systematic over-
lap as a function of numerosity—than has previously been
shown by more traditional, univariate analyses of fMRI data
[e.g., Piazza et al., 2004]. Furthermore, in this study, we iso-
lated neural activity that corresponds to a single number,
independent of response-demands, so that activity patterns
of two different numbers can be correlated in a manner not
contaminated by the presence of still other numbers. Para-
digms that rely on activity when comparing two numbers
or the change in activity when a one number switches to
another render it nearly impossible to determine if a given
pattern of activity corresponds to one of the numbers, both
numbers, the comparison process itself, or some combina-
tion of all three.

Eger et al. [2009] and Damarla and Just [2013] used
experimental paradigms similar to that employed here to
examine whether distributed neural patterns of activity for
numbers [{4 8 16 32} and {2 4 6 8} in Eger et al.; {1 3 5} in
Damarla and Just] presented in symbolic and nonsymbolic
formats could be distinguished from one another. Here,
we instead ask (1) about similarity between numbers and
(2) test this across a larger set of Numbers (1–9). Taken
together, this approach yields a complete snapshot of the
representational similarity across all numbers in the data-
set; that is, we can build a clear picture of the underlying
numerical structure with respect to systematic representa-
tional overlap as a function of numerosity. We can then
test whether the observed representation structure—how
the representations of different numbers in a system relate
to one another—matches that predicted by the model in
Figure 1. Because this model is derived from neuronal and
behavioral data, one can thus draw a direct line between
those data and ours in a manner that incorporates the pre-
dictions made by an explicit model of how an entire sys-
tem of (nonsymbolic) numbers is represented.

The critical question that follows is whether symbolic
numbers are also characterized by the same—or at least a
similar—representational structure. Does the pattern of
similarity between numbers resemble that predicted by the
model in Figure 1? If the pairwise pattern of correlations
for symbolic numbers is similar to that seen for their non-
symbolic counterparts, this would be consistent with the
view that symbolic numbers inherit and retain the under-
lying representational structure from the approximate,
nonsymbolic number system. It is important to note here
that symbolic numbers tend to be more precise than their
ANS counterparts [e.g., Buckley and Gillman, 1974], and
so one might not expect an exact match between the two
formats. For instance, one widely held assumption is that
symbolic numbers simply operate with narrower tuning
curves [thus, accounting for their improved precision;
Nieder and Dehaene, 2009; Piazza et al., 2007; Verguts and
Fias, 2004], which would result in an attenuated but never-
theless similar pattern of relations. Four examples are

1An alternative, if highly related, model has been proposed in which
one first takes the log of the numbers and tuning-curve widths
remain constant. These models are difficult to distinguish, and the
debate is beyond the scope of this article. For explication purposes,
we show a linear model in Figure 1; our results were highly similar
whether we used the linear or log version of the model (see
Methods).
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shown in Figure 1c, each adopting an ever more precise
tuning function (80% down to 20% the width of that in
Fig. 1a,b), but nevertheless retaining the same numerosity-
dependent scaling as in Figure 1a,b. The crucial thing to
note is that the underlying structure of pairwise relations
is preserved: the correlations between pairwise overlap
values in Figure 1b and assuming functions of 80%, 60%,
40%, and 20% the width of that in Figure 1a (as shown in
Fig. 1c) are 0.995, 0.971, 0.889, and 0.662, respectively. In

other words, a more precise but otherwise qualitatively
similar representational structure for symbolic and non-
symbolic numbers predicts that the pairwise RSA correla-
tion patterns for the two formats should be correlated.

An alternative view is that symbolic numbers form a
representational system whose structure is qualitatively
distinct from the ANS [e.g., Carey, 2011; Zorzi and Butter-
worth, 1999]. For instance, one may notice from the previ-
ous paragraph that as tuning width decreased (Fig. 1c),
the correlation with the pattern of overlap in Figure 1b
decreased as well (from 0.995 at 80% as wide to 0.662 at
20% as wide). If the tuning curves were to become infin-
itely precise, the overlap between pairs of numbers would
go to zero, and hence the correlation with the pattern of
overlap in Figure 1b should also go to 0. Notice that infin-
itely precise tuning curves would essentially correspond to
discrete, categorical representations. In this way, one could
argue that the representational structure of symbolic num-
bers no longer retains any of the analogue qualities of
their ANS counterparts (at least in the literate, adult sub-
jects tested in the current study). Here, we test whether
the observed patterns of correlations seen between pairs of
symbolic numbers is reliably related (i.e., statistically
above 0, across subjects) to the patterns of correlations
seen between patterns of nonsymbolic numbers.

Finally, it is worth noting that there is a potential mid-
dle way. It may be that symbolic and nonsymbolic num-
bers differ in their respective representational structures
but the representations for a given number derive from a
common source. In this view, one would predict that the
cross-format correlations between the same number (e.g.,
the numeral “6” with six dots) should be higher than
cross-format correlations between different numbers (e.g.,
the numeral “3” and six dots). Here, we test this predic-
tion. Thus, combined with the analyses described earlier,
we test both whether symbolic and nonsymbolic numbers
share a similar representational structure, and, independ-
ently, whether they share common representations per se.

Figure 1.

a: Simulated neuronal tuning curves. Curves are Gaussian functions

computed with the width of each curve increasing linearly with

numerosity in keeping with human behavioral data [Merten and

Nieder, 2009] and are similar to actual neuronal results reviewed in

Nieder [2005]. b: For each pair of tuning curves, this shows the pro-

portion of those curves that overlap with one another. Note that as

the ratio between two numbers approaches 1, the overlap increases.

Note also that the main diagonal should yield values of exactly 1

because a number will overlap perfectly with itself. The diagonal has

been interpolated here simply for visualization purposes. c: This

shows the reduction in degree of overlap as the width of the tuning

curves is reduced (width is computed as a percentage of the width of

curves in Fig. 1a). Notice that the structure of the pattern in Figure

1b is preserved—even where tuning width is reduced to 20% of that

in Figure 1a.
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MATERIALS AND METHODS

Data from 33 University of Chicago undergraduate and
graduate students were collected on a 3T Philips Achieva
scanner using an 8-channel Philips SENSE head-coil. The
data analyzed here were taken from a larger data collection
project spanning multiple scanning sessions (all data
reported here were taken from the same scanning session;
results here are not reported elsewhere and address a
unique set of hypotheses). Thirty six descending interleaved
slices were collected at a TR of 2sec (TE5 25 msec), with a
slice-thickness of 3.0 mm (0.25 mm skip), an in-plane reso-
lution of 2.875 3 2.875 mm (80 3 80 matrix), and a flip-
angle of 80�. Prior to analysis, time-series were corrected
for slice-timing and subject motion, and then subjected to a
high-pass temporal filter [general linear model (GLM) Fou-
rier basis set]. No spatial smoothing was used. Data were
next submitted to a random-effects GLM [Friston et al.,
1994] convolved using a standard 2-gamma HRF model.
Large, bilateral IPS regions (Fig. 3a) were identified via the
main effect of all dot numerosities greater than baseline,
thresholded first voxelwise at P< 0.005, and subsequently
cluster-level corrected for multiple-comparisons using a
Monte-Carlo simulation procedure [Forman et al., 1995] at
a< 0.01. Preprocessing and RFX contrast analyses were con-

ducted using BrainVoyager QX (version 2.4.1); RSA was
conducted using MATLAB (version 2012a). Left and right
IPS regions were localized via the main effect of nonsym-
bolic numbers> baseline, and comprised 392 and 308 func-
tional voxels, respectively (baseline was estimated as the
model intercept for a given subject in a given voxel).

While in the scanner, subjects completed six runs of a
delayed match-to-sample task adapted from single-cell
studies with monkeys that have been successful in detail-
ing numerical tuning curves for individual neurons [see
Nieder, 2005; Fig. 2c]. In the current version, subjects first
saw a number for 500 msec followed by a jittered delay
(1.5–5.5 sec). A second number was then presented for 500
msec, after which the screen went blank for 2,500 msec or
until the subject responded. Fixation time between
response on a given trial and the initial stimulus onset for
the subsequent trial was also jittered (1.9–8.4 sec). Subjects’
task was to determine if the two numbers were numeri-
cally equal or different by pressing one of two buttons

Figure 2.

Example trials for symbolic and nonsymbolic numbers. Partici-

pants’ task was to decide whether the second stimulus matched

the first in terms of quantity. The focus of this study was on the

period corresponding to presentation of the first stimulus and

the delay as they held the number in mind (prior to seeing the

second stimulus or being able to prepare a specific response).

The program moved on to the fixation period between trials

after detecting a response; no feedback was given.

Figure 3.

a: Bilateral IPS regions were identified via the main effect of

nonsymbolic numbers> baseline at P< 0.005 (cluster-corrected

at a5 0.01). All parietal areas identified for symbolic num-

bers> baseline were subsumed by the nonsymbolic IPS areas

shown above. b: IPS activity (from the regions shown in Fig. 3a)

for symbolic and nonsymbolic numbers during the delay period,

plotted as a function of Number (1–9). Log fit was high for both

formats, indicating that the IPS was sensitive to number in both

formats. Note that linear fit was also high in each case (left-non-

symbolic: R25 0.85; left-symbolic: R25 0.63; right-nonsymbolic:

R25 0.86; left-nonsymbolic: R25 0.69).
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with their two index fingers. Which button meant same or
different was randomized across participants. The two
numbers were numerically equal on 50% of trials (match);
the second number was greater than the first on 25% of
trials (nonmatch); the second number was lesser than the
first on 25% of trials (nonmatch). Numbers were either
presented symbolically (Indo-Arabic numerals) or nonsym-
bolically (dot-arrays). Font style was randomized for sym-
bolic trials to reduce the efficacy of visual pattern-
matching. Note that the short presentation time of both
stimuli reduced the likelihood that participants counted
the dots in the dot-arrays. Continuous parameters (dot-
size, array contour, density, aggregate area) were balanced
across nonsymbolic trials, such that each parameter was
correlated with numerosity on half the trials, and anticor-
related on the remaining half. This was intended to reduce
the efficacy of relying on any one of these to compare
numerosities in the nonsymbolic task.

The quantities to be held in mind during the delay
period (between the first and second numbers) were the
integers 1–9. Subjects saw 18 trials for each quantity; in
nine of these trials, numbers were presented symboli-
cally; in the other nine, numbers were presented non-
symbolically. To increase the precision of our estimate
for a given voxel’s activity for a given number, activity
across the nine trials (for each subject) was averaged
together. Our focus was on activity during the first stim-
ulus and the delay before the onset of the second stimu-
lus (activity during the second stimulus and response
was modeled to remove accompanying variance but was
treated as a covariate of no interest in the model). This
allowed for a measure of neural activity during repre-
sentation of a single quantity, independent of activation
related to preparation and execution of a specific motor
response.

Single-cell recordings [see Nieder, 2005, for a review]
and human behavioral data [Merten and Nieder, 2009]
converge to show that nonsymbolic number representation
can be well modeled by assuming a Gaussian distribution
centered on each number (Fig. 1a). The width of this dis-
tribution is assumed to increase linearly as number
increases. The scaling parameter we adopted here was
0.421, as Merten and Nieder [2009] showed that this value
yielded very good fit for human nonsymbolic number esti-
mation performance. Representations can be simulated to
be more “precise” by narrowing the width—that is, by
decreasing the scaling parameter. Figure 1c shows exam-
ples of the reduction in predicted pairwise overlap with
reduced scaling parameters, with the original 0.421 value
reduced to 0.337, 0.252, 0.168, and 0.084. Finally, there is
some debate in the literature over whether distribution
widths increase linearly with number, or if number is
actually represented on a log scale with fixed distribution
widths. Part of the debate is that both version of the model
tend to predict very similar neuronal and behavioral
curves [indeed, both models yielded similarly good fit of
behavioral data in Merten and Nieder, 2009]. This debate
is beyond the scope of this article; however, it is worth
noting that the degree of pairwise overlap (e.g., Fig. 1b) is
extremely similar whether one adopts the linear or log ver-
sion of the model: the predicted overlap proportions (Fig.
1b, x-axis of Fig. 6) are correlated at r5 0.996. Hence, it is
perhaps unsurprising that our results are highly similar
whether one opts for the log or linear version of the
model.

RESULTS

Univariate Results

Figure 3b shows delay activity for symbolic and non-
symbolic numbers in each hemisphere of the IPS plotted
as a function of the number being held in mind. In both
hemispheres, data were well fit by a log model, which is
highly consistent with previous work [Nieder and

Figure 4.

Behavioral curves plotted as a function of the number held in mind

(during the delay period). Linear fit was very high for nonsymbolic

numbers but not for symbolic numbers. Note that results were

similar for log fit (RT-nonsymbolic: R25 0.81; RT-symbolic:

R25 0.02; ER-nonsymbolic: R25 0.71; ER-symbolic: R25 0.11).
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Dehaene, 2009]. Further, this indicates that the IPS is sensi-
tive to number represented both symbolically and non-
symbolically—consistent with this, the 2(Format: symbolic,
nonsymbolic) 3 9(Number: 1–9) interaction was not signif-
icant in either hemisphere, whether number was modeled
linearly or as a log function. In other words, activity dur-
ing the delay varied systematically with the quantity of
the number being held in mind, whether that number was
presented symbolically or nonsymbolically—a result
highly consistent with previous work [Eger et al., 2009;
Fias et al., 2003; Piazza et al., 2007]. However, this analy-
sis—as with previous studies—cannot distinguish the
underlying type of numerical coding. To see why this is
may be a problem, we turn next to the behavioral results.

Behavioral Results

Figure 4 shows behavioral results plotted as a function
of the number held in mind during the delay period (akin
to Fig. 3b). For nonsymbolic numbers, as in Figure 3b,
both behavioral measures (response-times and error-rates)
varied systematically as a function of number (whether
modeled linearly or as a log-function), such that, as num-
ber increased, both response-times (RTs) and error-rates
(ERs) increased. This was true even after controlling for
the ratio between the delay number and the match num-
ber (Stimuli 1 and 2, respectively, in Fig. 2). In other
words, the complete pattern of behavioral results in Figure
4 can be attributed to the magnitude of Stimulus 1. Results
were markedly different for symbolic numbers, however:
Performance on neither measure varied significantly as a
function of number.

Interestingly, these results partially contrast with the
overall mean-activity results from the previous section
(Fig. 3b). Although the nonsymbolic behavioral and fMRI
results are highly consistent with one another, the sym-
bolic results are quite different.2 One explanation is sym-
bolic and nonsymbolic numbers are represented in
qualitatively different ways. That is, while the results in
Figure 3b [as well as considerable previous work: e.g.,
Eger et al., 2009; Fias et al., 2003; Piazza et al., 2007] indi-
cate that the IPS is sensitive to numerosity for both sym-
bolic and nonsymbolic numbers, the nature of the

underlying neural representations may be fundamentally
different.

Specifically, the behavioral data suggest that nonsym-
bolic numbers are represented in approximate fashion,
while symbolic numbers are represented in a much more
precise, categorical fashion. For nonsymbolic numbers, if
the width of neuronal tuning curves increases (and preci-
sion of representation decreases) as nonsymbolic quantity
increases [as has been demonstrated in numerically tuned
neurons in monkeys: Nieder, 2005; see also Fig. 1a), then
one would expect to see systematically degraded perform-
ance as a function of increasing quantity. This is exactly
what we see for nonsymbolic numbers in Figure 4. By con-
trast, if symbolic numbers are represented in a more cate-
gorical fashion, then the Numbers 1–9 should be
represented with equally high precision, and so perform-
ance should not vary with the number held in mind dur-
ing the delay.

At the neural level, the above accounts imply that there
should be very little (if any) overlap between tuning
curves for symbolic numbers. If true, then one would
expect there to be minimal correlations between neural
representations of different numbers at the population
level (as we will measure with RSA in the next section).
Most importantly, these correlations should not vary sys-
tematically as a function of number. The overlap between
tuning curves for nonsymbolic numbers should be overall
higher and should vary systematically with number (as in
Fig. 1a,b).

RSA

For RSA, for each voxel in each subject, we extracted 19
different values from the RFX GLM. These were activity
levels for the symbolic and nonsymbolic quantities 1–9,
and a measure of baseline activity (average activity for
that subject and that voxel3). In all RSA analyses, baseline
activity was included as a covariate (hence, all reported
values are partial-correlations). Adjacent voxels will share
vascular, neural, and imaging elements (e.g., field
strength) that may create the appearance of very high cor-
relations across voxels due largely to sources unrelated to
the functional elements of interest here (numerical repre-
sentation). Covarying out baseline activity is a statistical
means of reducing the influence of those elements of no
interest.

2Note that this result implies an explanation based on solely on “task
difficulty” cannot explain the full set of imaging results because, at
least for symbolic numbers, neuroimaging results in Figure 3b differ
from behavioral results in Figure 4. Furthermore, because we focus
neural analyses entirely on delay activity—prior to any outward
behavioral decision—an explanation based solely on difficulty
requires participants to have some means of assessing impending
difficulty. The most obvious source of such information is the num-
ber to be held in mind. In other words, an explanation for the neural
results—both univariate and the RSA results that follow in the next
section—based on difficulty in fact assumes the very phenomenon
under investigation—relative numerosity.

3These may be understood as deflections from the global mean
(across all voxels and all subjects) specific to that voxel and that sub-
ject, which are a natural consequence of treating individual voxels
independently and each subject as a random observation under the
assumptions of the whole-brain, random-effects GLM [Friston et al.,
1994]. In this way, the “baseline” vector for each subject across voxels
controls for idiosyncratic—but potentially systematic—correlations
in activity between voxels that may have little to do with the activity
evoked by the stimuli of interest (i.e., activity while each number is
held inmind by the subject).
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RSA was computed for each hemisphere of the IPS sepa-
rately. The left hemispheric IPS activation comprised 392
functional voxels (Talairach center-of-gravity: 230, 252,
38); right hemisphere comprised 308 functional voxels
(Talairach center-of-gravity: 29, 255, 38). A partial-r was
computed for each pair of numbers. This was done sepa-
rately for each of the 33 subjects. Because r-values are non-
normally distributed, r-values were next transformed
using Fisher’s z-transformation: z5 arctanh(r). The z for
each number-pair was then averaged over all subjects;
averages are plotted as a function of number-pair in

Figure 5 (see also Tables 1–2). Note that the maps are
symmetrical over the main-diagonal. Also, the main diago-
nal corresponds to autocorrelations (r5 1), but for visual-
ization purposes, these were interpolated with
surrounding cells. A z of 0.10 is associated with an r-value
of 0.0997 and P-values of 0.0245 and 0.0406, in the left and
right hemispheres, respectively; a z of 0.20 is associated an
r-value of 0.1974 and ps of <0.0001 and 0.0003. Significance
bands in Figure 5 are computed in this manner. An alterna-
tive means of testing for significance is a one-sample t-test
of zs in a cell against 0 (N5 33). As a rule of thumb, average

Figure 5.

RSA results were shown by plotting the average Fisher-z values

(across 33 subjects) relating the patterns of activity for each pair

of numbers in each hemisphere of the IPS, and for nonsymbolic

(top) and symbolic (bottom) numbers. Z-axes plot Fisher-z val-

ues. Different color bands distinguish z-values that meet increas-

ingly strict significance criteria (which vary across hemispheres

due to the different numbers of voxels in each ROI). Note that

the main-diagonal of each map should contain values of 1, but to

avoid occluding other values, these are instead interpolated with

their nearest neighbors.
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z-values in Figure 5 of 0.07 or greater were significantly
greater than 0 at P< 0.05 (two-tailed), and significance
increased on average by roughly an order of magnitude for
each increase in z-value of 0.04 (e.g., z of 0.39 roughly corre-
sponds to P5 5 E210).

From Figure 5 (see also Tables 1–2), one can see that the
pattern of correlations for nonsymbolic numbers is highly
similar to that predicted by the degree of overlap between
analogue tuning curves in Figure 1b. By contrast, RSA
results for symbolic numbers show a flat field of near-zero
correlations, which is more consistent with independent,
non-overlapping representations of each symbolic number
(i.e., a discrete, categorical representation).

Figure 6 shows these correlations plotted against the
degree of tuning curve overlap from Figure 1b (as the
matrices in Fig. 5 are symmetrical, only the 36 off-
diagonal values from one half of each map are used). In
this manner, one can statistically quantify the degree to

which correlations across numbers in each format match
the degree of overlap predicted from an approximate,
analogue representation. This relation was significant for
nonsymbolic (Left: r345 0.839, P< 0.001; Right: r345 0.800,
P< 0.001) but not symbolic numbers (Left: r34520.177,
P5 0.302; Right: r34520.131, P5 0.445).4 The difference
in slopes across formats was also significant in both
hemispheres (Left: F1,685 62.75, P< 0.001; Right:
F1,685 51.93, P< 0.001). Note that the main effect of for-
mat was significant in both hemispheres as well (Left:
F1,685 35.29, P< 0.001; Right: F1,685 17.01, P< 0.001), with
the overall degree of correlations between numbers
higher for nonsymbolic numbers. Finally, if one directly
relates RSA correlation values for symbolic with non-
symbolic numbers (as a function of each of the 36 num-
ber pairs), the relation was in fact slightly negative (Left:
r34520.406, P5 0.014; Right: r34520.326, P5 0.053),
indicating, if anything, opposing patterns of similarity for
symbolic and nonsymbolic number-pairs. Notice that the
upper bounds of the 95% confidence intervals on these
correlations are below or essentially equal to 0 (Left:
CI95(upper)520.090; Right: CI95(upper)5 0.002.This indi-
cates that the representational structure of symbolic num-
bers is not merely a more precise version of that seen for
nonsymbolic numbers. Instead, taken together with the
analyses discussed above, the overall pattern of results is
highly consistent with the notion that nonsymbolic num-
bers are analogue-coded and symbolic numbers are
coded in a qualitatively distinct, perhaps categorical
manner.

Note that the theoretical perspective adopted in the pre-
ceding paragraph and in Figure 6 treats individual varia-
tion as idiosyncratic deviation from a central tendency—
that is, noise in one’s estimate that can be reduced by
averaging across observations from individual humans to
obtain a clearer picture of the hypothesized underlying
central principle [for a similar approach to fitting model
predictions with group averages of fMRI data, see, e.g.,
Piazza et al., 2004]. An alternative view concerns the likeli-
hood of agreement between a model and what is observed
in a specific individual (e.g., the patient seated across
one’s desk). In the current dataset, one can assess this by
computing the correlation between predicted overlap from
the model in Figure 1b and the pattern of (transformed)
partial-rs for each subject individually (i.e., repeat the anal-
ysis in Fig. 6 separately for each individual subject). By
comparing average model fit, one can assess whether the
model in Figure 1b is, on average, more capable of predict-
ing an individual’s RSA results (partial-rs) for nonsym-
bolic relative to symbolic numbers. Average correlations

Figure 6.

The average Fisher-z values (across 33 subjects) was plotted for

each pair of numbers (Fig. 5) against the proportion of tuning

curve overlap for those two numbers (assuming an analogue

representation, see Fig. 1). Note that a log-fit was similar for

both formats (nonsymbolic: left: R25 0.68, right: R25 0.64; sym-

bolic: left: R25 0. 01, right: R25 0.01).

4The slight negative correlation for symbolic numbers indicates that
number-pairs with less predicted overlap (e.g., 1:2) were more corre-
lated than those with greater predicted overlap (e.g., 8:9).

r Lyons et al. r

r 482 r



between the model and RSA results were significantly5

greater than 0 for nonsymbolic (Left: mean5 0.438,
se5 0.050, t325 8.73, P< 0.001, d5 3.09; Right: mean5
0.461, se5 0.057, t325 8.07, P< 0.001, d5 2.85) but not sym-
bolic numbers (Left: mean520.049, se5 0.029, t32521.72,
P5 0.095, d520.61; Right: mean520.038, se5 0.031,
t32521.23, P5 0.229, d520.43). Average correlations
between the model and RSA results were significantly
greater for nonsymbolic than symbolic numbers (Left:
t325 7.57, P< 0.001, d5 2.68; Right: t325 7.87, P< 0.001,
d5 2.78). Finally, if one directly relates correlation values
for symbolic with nonsymbolic numbers (as a function of
each of the 36 number pairs), the average relation was
slightly negative (Left: mean520.089, se5 0.029,
t32523.02, P5 0.005, d521.07; Right: mean520.075,
se5 0.029, t32522.60, P5 0.014, d520.92).

Rather than the amount of overlap predicted by a hypo-
thetical model, another way to think about the data in Fig-
ures 5 and 6 is in terms of the ratio between two numbers.
It has long been recognized that the ratio between two
numbers is a strong determinant of how well individuals
are able to compare the two numbers in terms of their rel-
ative quantity [e.g., Dehaene, 2008]—an effect that is espe-
cially striking for nonsymbolic numbers [e.g., Buckley and
Gillman, 1974]. This is thought to be driven by the fact
that there is increasing overlap in the approximate repre-
sentations of two numbers as the ratio between them
approaches 1. Thus, if indeed nonsymbolic numbers are
represented in an analogue fashion, then the correlation in
neural activity between two numbers should be directly
related to the ratio between those numbers. According to
our view that symbolic numbers are represented in a more
discrete fashion—with little or no overlap between num-
bers—we should not see such a relation for symbolic num-
bers. In keeping with these predictions, the relation
between ratio and correlation coefficients (plotted as a
function of 36 possible number-pairs) was significant for
nonsymbolic (Left: r345 0.837, P< 0.001; Right: r345 .796,
P< 0.001) but not symbolic numbers (Left: r34520.152,
P5 0.377; Right: r34520.106, P5 0.537). The difference in
slopes was also significant in both hemispheres (Left:
F1,685 60.58, P< 0.001; Right: F1,685 49.71, P< 0.001). Inter-
estingly, this (non)result for symbolic numbers (along with
the behavioral results in Fig. 4) is consistent with previous
behavioral and neuroimaging work indicating that ratio-
effects in symbolic number comparison tasks are driven
less by numerical representations per se, but perhaps by
more general processes related to response generation
[G€obel et al., 2004; Maloney et al., 2010; Van Opstal et al.,
2008; Verguts and Van Opstal, 2005]. In sum, our RSA
results hold whether one considers neural correlations
between numbers as a function of the modeled overlap

between pairs of tuning curves, or simply as the ratio
between two numbers.6

Number Specificity and Cross-Format

Representation

Given null results for symbolic numbers discussed ear-
lier and shown in Figures 5 and 6, one may wonder
whether this was driven by failure to elicit reliable activa-
tion patterns for each symbolic number. To test this, we
conducted a split-half analysis. Trials were arbitrarily
divided into even and odd instances of a given number in
a given format, and activity estimates were obtained via
an RFX GLM as above. For each subject, we were then
able to examine the correlations between a given number
symbol (say, 3) in one half of the dataset and that same
number (in the same format) in the other half of the data-
set. As before, this could also be done for different
number-pairs. If the activity pattern for a given number
symbol (3) is reliably activated, then same-number correla-
tions (e.g., 3 with 3) should be higher than different-
number correlations (e.g., 3 with 2, 3 with 4, etc.). In this
way, for each subject, we computed average same-number
correlations and average different-number correlations
(this was done separately for symbolic and nonsymbolic
numbers and are shown in Fig. 7—white and black bars,
respectively). In both hemispheres, for symbols, same-
number correlations (converted here to Fisher-z values)
were indeed significantly greater than different-number
correlations. Left: same>different: t325 20.56, P< 0.001,
d5 7.27. Right: same>different: t325 14.09, P< 0.001,
d5 4.98. The same was true for nonsymbolic numbers.
Left: same>different: t325 21.79, P<0.001, d5 7.71. Right:
same>different: t325 20.56, P<0.001, d5 6.26. Hence, the
null results for symbols in Figures 5 and 6 (no systematic
correlations between different symbolic numbers) cannot
be attributed to a failure to reliably evoke consistent pat-
terns across instances of a given number.

Next, we assessed numerical specificity across formats.
That is, we tested whether same number correlations
across formats (e.g., the numeral “6” with six dots) were
greater than different number correlations across formats
(e.g., the numeral “3” with six dots). This allowed us to
assess whether, in spite of comprising different representa-
tional structures, a given number in one format neverthe-
less shares a core representation with its counterpart in
the other format. Note that testing same-number against
different-number correlations is an important check to
ensure that cross-format correlations are indeed number-
specific. Statistics were computed as in the previous

5Note that means and statistical tests reported here were computed
using Fisher-z transformed values.

6This is not entirely surprising, as the degree of overlap between two
numbers in the model shown in Figure 1b was directly related to the
numerical ratio between the two numbers (R25 0.93); however, this
demonstrates that our results are not strictly tied to the validity of
themodel in Figure 1.
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paragraph (including transformation to Fisher z-values),
with the exception that there was no need to first split the
dataset into even and odd instances; results are depicted
in Figure 7 (gray bars). In the left hemisphere, same-
number cross-format correlations were significantly greater
than zero (t325 4.71, P< 0.001, d5 1.67); however, these
correlations were not indicative of shared number-specific
representation, as same-number correlations were not any
greater than different-number correlations (t325 1.00,
P5 0.324, d5 0.35). In the right hemisphere, same-number
cross-format correlations were neither greater than zero
(t325 0.76, P5 0.451, d5 0.27) nor greater than different-
number correlations (t325 0.60, P5 0.550, d5 0.21). Con-
sistent with previous work [Bulth�e et al., 2014; Damarla
and Just, 2013; Lyons and Beilock, 2012], these results do
not support the claim that numbers in symbolic and non-
symbolic formats overlap in their representations.

DISCUSSION

Here, we test whether symbolic numbers inherit the rep-
resentational structure of their nonsymbolic counterparts,
and our results strongly indicate that they do not. Bilateral
IPS showed activity during the delay that varied system-
atically with the quantity of the number being held in
mind, whether that number was presented symbolically or
nonsymbolically. This result is consistent with previous
work [Eger et al., 2009; Fias et al., 2003; Piazza et al.,
2007], and it indicates that the IPS is sensitive to numeros-
ity in both formats. Behavioral results, however, showed
that the quantity of a number held in mind predicts the
speed and accuracy with which one matches said number
with another number only in the nonsymbolic case (Fig.
4). This suggested that, while parietal cortex appears to
code for number in both formats, the manner in which it
does so depends on format. RSA neural results confirmed

this prediction: the degree to which patterns of voxelwise
activity correlated for a pair of numbers was directly pre-
dicted by the amount of hypothesized—under the assump-
tion of an approximate, analogue representation—neuronal
tuning-curve overlap for those two numbers but only for
nonsymbolic numbers (Figs. 5 and 6). Symbolic numbers
showed overall significantly reduced correlations between
numbers (compared to their nonsymbolic counterparts),
and these correlations did not vary systematically as a
function of either ratio or predicted overlap (Figure 1b–c).
These three lines of evidence (traditional mean-based fMRI
data, behavioral results, and RSA) converge to show that
parietal cortex is important for representing both symbolic
and nonsymbolic numbers, but the former are represented
in a more discrete fashion (with little to no overlap
between numbers), while the latter are represented in a
more analogue fashion (with overlap increasing systemati-
cally with increasing numerosity). Our results are consist-
ent with evidence suggesting that symbolic and
nonsymbolic numbers are more distinct than previously
thought [e.g., Cohen Kadosh et al., 2011; Lyons et al., 2012;
Shuman and Kanwisher, 2004]. Specifically, our results
indicate that symbolic numbers form a system of discrete,
categorical representations qualitatively distinct from the
approximate, nonsymbolic number system.

It is worth distinguishing here between representational
structure—how elements (i.e., numbers) within a represen-
tational system relate to one another—and the representa-
tions themselves. The RSA results in Figures 5 and 6 (and
Tables I and II) indicate that the structure of how symbolic
numbers relate to one another is qualitatively different
than the structure of how nonsymbolic numbers relate to
one another. Importantly, this distinction does not appear
to be driven simply by narrower tuning curves for sym-
bolic numbers. As Figure 1c shows, narrower curves still
preserve the overall structure of the representational over-
lap, and hence yield similar RSA predictions—that is, the

Figure 7.

Same-number and different-number correlations for symbolic (white) and nonsymbolic (black) stim-

uli is given in this figure. Gray bars indicate cross-format correlations. Correlation values have

been Fisher-z transformed. Error-bars indicate standard errors of the mean (across 33 subjects).
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RSA patterns for symbolic and nonsymbolic numbers (plot-
ted as a function of each number pair, as in Fig. 6) should
still be correlated. However, the RSA results for each pair of
symbolic numbers were unrelated (or in fact perhaps
slightly negatively related) to both the RSA results for non-
symbolic numbers and the predictions from the model in
Figure 1. Thus, a narrowed tuning curve account would

need to postulate essentially infinitely narrow curves—or,
discrete, categorical representations. It is on this basis that
we argue that the representational structures of symbolic
and nonsymbolic numbers are qualitatively different.

Turning to the representations themselves, it remains
possible that the representation for a given symbolic num-
ber (e.g., the numeral “6”) and its direct nonsymbolic

TABLE II. RSA correlations (from Figure 5) for each symbolic number pair (Fisher z-transformed)

Left 9 8 7 6 5 4 3 2 1

9 — 0.053 0.152 0.147 0.104 0.046 0.139 0.142 0.148
8 0.042 — 0.161 0.030 0.077 0.183 0.145 0.075 0.119
7 0.045 0.041 — 0.083 0.134 0.173 0.172 0.156 0.184
6 0.041 0.043 0.039 — 0.090 0.085 0.110 0.084 0.098
5 0.041 0.041 0.040 0.034 — 0.133 0.134 0.122 0.072
4 0.041 0.037 0.034 0.048 0.041 — 0.173 0.108 0.137
3 0.048 0.048 0.040 0.046 0.041 0.035 — 0.163 0.229
2 0.048 0.039 0.039 0.045 0.046 0.042 0.045 — 0.233
1 0.044 0.054 0.034 0.047 0.052 0.039 0.049 0.040 —

Right 9 8 7 6 5 4 3 2 1
9 — 0.032 0.083 0.136 0.098 0.030 0.131 0.139 0.102
8 0.043 — 0.072 0.037 0.039 0.158 0.116 0.019 0.066
7 0.050 0.045 — 0.102 0.056 0.088 0.100 0.122 0.123
6 0.041 0.039 0.040 — 0.119 0.120 0.116 0.094 0.088
5 0.035 0.041 0.041 0.030 — 0.105 0.048 0.058 0.076
4 0.035 0.031 0.040 0.037 0.038 — 0.160 0.026 0.121
3 0.044 0.045 0.040 0.037 0.036 0.036 — 0.122 0.163
2 0.047 0.043 0.034 0.046 0.036 0.042 0.036 — 0.206
1 0.048 0.050 0.034 0.042 0.038 0.042 0.037 0.039 —

Values above the diagonal are averages (across 33 subjects); values below the diagonal are corresponding standard-errors of the mean.

TABLE I. RSA correlations (from Figure 5) for each nonsymbolic number pair (Fisher z-transformed)

Left 9 8 7 6 5 4 3 2 1

9 — 0.402 0.262 0.368 0.212 0.220 0.134 0.105 20.080
8 0.052 — 0.323 0.341 0.222 0.155 0.123 0.152 0.039
7 0.048 0.057 — 0.321 0.215 0.169 0.145 0.078 20.078
6 0.047 0.048 0.063 — 0.233 0.252 0.123 0.121 20.033
5 0.046 0.038 0.040 0.038 — 0.181 0.130 0.073 0.012
4 0.033 0.038 0.042 0.036 0.036 — 0.154 0.080 0.004
3 0.040 0.037 0.036 0.031 0.039 0.038 — 0.114 0.011
2 0.043 0.034 0.042 0.037 0.033 0.034 0.035 — 0.045
1 0.036 0.051 0.027 0.027 0.031 0.032 0.043 0.036 —

Right 9 8 7 6 5 4 3 2 1
9 — 0.366 0.314 0.355 0.305 0.227 0.090 0.105 20.062
8 0.047 — 0.334 0.369 0.290 0.228 0.138 0.159 0.037
7 0.040 0.056 — 0.343 0.302 0.212 0.077 0.139 20.095
6 0.039 0.047 0.058 — 0.271 0.241 0.130 0.132 20.070
5 0.038 0.048 0.043 0.049 — 0.200 0.073 0.129 20.022
4 0.037 0.042 0.037 0.046 0.041 — 0.070 0.124 20.042
3 0.039 0.039 0.036 0.039 0.041 0.038 — 0.117 0.021
2 0.034 0.036 0.038 0.041 0.033 0.034 0.036 — 0.002
1 0.036 0.045 0.033 0.038 0.032 0.033 0.036 0.032 —

Values above the diagonal are averages (across 33 subjects); values below the diagonal are corresponding standard-errors of the mean.
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counterpart (e.g., six dots) are linked, even if the respective
symbolic and nonsymbolic systems are unrelated. To draw
a loose analogy, a train station and an airport in a given city
may by physically adjacent or even occupy the same build-
ing, but the respective locomotive and aerial networks to
which each belongs may be entirely unrelated. To test this
possibility, we examined whether the cross-format correla-
tions were number-specific—for example, is the correlation
between “6” and six dots, greater than that between “3” and
six dots? Figure 7 (gray bars) indicate that they were not. In
other words, consistent with recent work [Bulth�e et al.,
2014; Damarla and Just, 2013; Lyons et al., 2012], our results
show that symbolic and nonsymbolic numbers differ not
only in terms of their representational structure but also in
terms of the representations themselves.

On a broader note, our results provide an example of
how, even though a given region represents two types of
stimuli, this does not mean that the underlying neural
codes for these stimuli are the same. Our argument paral-
lels one made from behavioral evidence. Distance effects
(better performance when comparing two numerically dis-
tant versus two numerically close numbers) are regularly
observed for both symbolic and nonsymbolic numbers
[e.g., Buckley and Gillman, 1974], leading to the conclusion
that their underlying representations operate according to
similar principles [e.g., Dehaene, 2008]. However, further
evidence suggests there are distinct sources driving the
distance effects observed for symbolic and nonsymbolic
numbers [G€obel et al., 2004; Maloney et al., 2010; Van
Opstal et al., 2008; Verguts and Van Opstal, 2005]. In other
words, though outward behavior is similar (distance
effects), the underlying causes may be different. Our RSA
analyses indicate that, while the IPS is sensitive to number
in both formats, the underlying nature of symbolic and
nonsymbolic processing is nevertheless quite distinct.

In this respect, it is important to emphasize that we are not
attempting to argue against a considerable body of literature
indicating that parietal cortex is important for processing
symbolic numbers [Ansari, 2008; Bugden et al., 2012; Cohen
Kadosh et al., 2010; Dehaene et al., 2003; Eger et al., 2009; Fias
et al., 2003; Holloway et al., 2013; Lyons and Ansari, 2009;
Nieder and Dehaene, 2009; Notebaert et al., 2011; Piazza
et al., 2007; Pinel et al., 2001; Sandrini et al., 2004; Santens
et al., 2010]. Indeed, Figure 3b shows numerically sensitive
responses (i.e., good fit between delay activity and the log of
the number being held in mind) in bilateral IPS for symbolic
and nonsymbolic numbers, in keeping with previous predic-
tions about the nature of number representation in the brain
[see Nieder and Dehaene, 2009, for a review]. IPS activity is
thus sensitive to numerosity regardless of format, but RSA
results show that the nature of this sensitivity depends fun-
damentally on whether numbers are represented symboli-
cally or nonsymbolically.

It is worth considering that regions were localized via
the main effect of nonsymbolic numbers> baseline. With
respect to RSA, correlations between each nonsymbolic

number and baseline activity (due to the within-subjects
nature of the contrast) will be inflated due to this localizer
contrast. We included baseline activity as a covariate for
both symbolic and nonsymbolic RSA; thus, if anything, the
localizer contrast may have deflated the overall strength of
correlations between nonsymbolic numbers. Furthermore,
because the localizer was an unweighted main effect, it
does not bias one to find greater number–number correla-
tions for any one pair of nonsymbolic numbers over
another (which was the primary focus of the RSA results).

With respect to symbolic numbers, one may object to
the nature of the localizer on theoretical as opposed to sta-
tistical grounds because the nonsymbolic localizer may
have biased us to find numerical tuning for nonsymbolic
as opposed to symbolic numbers. The whole-brain main-
effect of symbolic numbers> baseline yielded a significant
result only at a more liberal P< 0.05 (cluster-corrected at
a5 0.05) threshold, and even then only in a subset of 33
functional voxels in left IPS (which were subsumed by the
larger left IPS region found for nonsymbolic> baseline). It
may be that symbolic numbers are processed only in this
subset of IPS voxels. If so, then including the other 359 left
IPS voxels in the RSA may have unnecessarily suppressed
the apparent correlations between symbolic numbers in
this region. First, we chose to analyze the larger IPS
regions (392 and 308 voxels) in the main analyses because
the larger number of observations increases our power to
detect subtle differences in correlations between pairs of
numbers. Second, we do not find the above argument con-
vincing on the grounds that—as will be seen in the next
section—the canonical (mean-based) results shown in Fig-
ure 3 indicated IPS sensitivity to increasing number in
symbolic numbers even when including all voxels in the
larger IPS regions. Nevertheless, we re-ran the RSA analy-
ses on only the 33 left IPS voxels that also showed a signif-
icant main effect of symbolic> baseline.7 Results were
highly similar, with the exception that overall correlations
were reduced, as one would expect given the inclusion of
roughly a tenth the number of observations. Crucially, the
central conclusions remain unchanged; complete results
can be found in Supporting Information.

Another potential objection is that subjects may have
relied entirely on matching of perceptual features, and so
did not actually activate numerosity. First, both symbolic
and nonsymbolic stimuli were varied so as to discourage
such a strategy. Second, all fMRI analyses focused on
activity during the delay, prior to onset of the matching
decision. From Figure 3b, bilateral IPS showed systematic
increase in activity as a function of the number being held

7These voxels were subsumed by the larger left IPS region used in
themain RSA analyses because these 33 voxels were in fact identified
by the conjunction of main effects (nonsymbolic>baseline) \ (sym-
bolic>baseline). Each contrast was thresholded at P< 0.05 (yielding
a joint probability of 0.05250.0025), with the conjunction map
cluster-corrected at a< 0.05.
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in mind during the delay period, indicating that subjects
did indeed activate the quantity associated with the stimu-
lus. Third, several studies have demonstrated that, when a
number precedes a second number in time, the (numeri-
cal) meaning of the first influences processing of the sec-
ond, indicating that, even though the quantity of the first
may be irrelevant to processing the second, the numerical
meaning of the first is nevertheless activated [Bahrami
et al., 2010; Naccache and Dehaene, 2001; Roggeman et al.,
2007; Van Opstal et al., 2008]. Note also that these studies
typically involve very brief presentations of the first num-
ber; here, we required subjects to explicitly hold the first
number in mind, making activation of said number’s
numerical meaning still more likely. Taken together, these
lines of evidence—stimulus design, evidence in Figure 3b,
and previous literature—converge to make it clear that
subjects did in fact activate numerosity during the delay
period for both symbolic and nonsymbolic numbers. This
point is particularly salient when considering the null RSA
result for symbolic numbers, and reinforces the conclusion
that the IPS does process symbolic numbers, but it does so
in a manner qualitatively different than for their nonsym-
bolic counterparts.

With respect to the nonsymbolic task, given that we meas-
ured activity during a delay period that was several seconds
long in some cases, one might imagine that subjects may
have converted dot-arrays into a verbal code, and so we
would not be measuring nonsymbolic number activity at
that point. We do not think this is the case however, because
a verbal code, being symbolic, would have yielded RSA
results akin to those seen for symbolic numbers. This was of
course not the case (Fig. 5), which makes this explanation
less plausible. In a similar vein, it is difficult to proffer an
alternative explanation based on “task difficulty” or working
memory load that accounts for all of our results. While these
explanations could certainly explain the behavioral results in
Figure 4, it is then unclear how they account for the diver-
gent nature of the mean-based results in Figure 3 and the
RSA results in Figure 5. In sum, while various alternative
explanations might account for this or that part of the
results, we maintain that the simplest single explanation that
accounts for all aspects of the data is that the IPS processes
both symbolic and nonsymbolic numbers, but it does so in a
manner that varies qualitatively across formats.

CONCLUSION

We provide the first neural evidence that symbolic and
nonsymbolic numbers are coded in fundamentally different
ways in the human IPS. Our results are also consistent with
evidence suggesting that symbolic and nonsymbolic num-
bers may be more distinct than previously thought [Bulth�e
et al., 2014; Cohen Kadosh et al., 2011; Lyons et al., 2012;
Shuman and Kanwisher, 2004]. On the one hand, we show
that the IPS is sensitive to numerosity whether presented
symbolically or nonsymbolically. On the other hand, we

provide converging behavioral and neural evidence that
nonsymbolic numbers are coded according to an analogue
principle of overlapping, approximate tuning curves. Cru-
cially, we find no evidence that symbolic numbers are
coded in this manner. Instead, both behavioral and neural
results indicate that symbolic numbers are each coded inde-
pendently of one another, with little or no representational
overlap between numbers. A long line of behavioral evi-
dence indicates that symbolic number processing is more
precise than nonsymbolic number processing [e.g., Buckley
and Gillman, 1974; Dehaene, 2008]. Our data provide a
potential neural mechanism for this: while the precision of
nonsymbolic number representation becomes steadily less
precise as the number being represented increases, the com-
plete lack of overlap in symbolic numerical tuning curves
(indicating essentially infinitely precise or categorical repre-
sentation) may be extended to explain how symbolic num-
bers can retain representational precision even at extremely
large values (e.g., one can numerically differentiate
1,000,000 from 1,000,001 using number symbols but not
arrays of dots).

REFERENCES

Ansari D (2008): Effects of development and enculturation on num-
ber representation in the brain. Nat Rev Neurosci 9:278–291.

Bahrami B, Vetter P, Spolaore E, Pagano S, Butterworth B, Rees G
(2010): Unconscious numerical priming despite interocular
suppression. Psychol Sci 21:224–233.

Buckley PB, Gillman CB (1974): Comparisons of digits and dot
patterns. J Exp Psychol 103:1131–1136.

Bugden S, Price GR, McLean DA, Ansari D (2012): The role of the
left intraparietal sulcus in the relationship between symbolic
number processing and children’s arithmetic competence. Dev
Cognit Neurosci 2:448–457.

Bulth�e J, De Smedt B, Op de Beeck HP (2014): Format-dependent
representations of symbolic and non-symbolic numbers in the
human cortex as revealed by multi-voxel pattern analyses.
NeuroImage 87:311–322.

Carey S (2011): Pr�ecis of ’The Origin of Concepts’. Behav Brain Sci
34:113–124.

Cohen Kadosh R, Muggleton N, Silvanto J, Walsh V (2010): Dou-
ble dissociation of format-dependent and number-specific neu-
rons in human parietal cortex. Cereb Cortex 20:2166–2171.

Cohen Kadosh R, Bahrami B, Walsh V, Butterworth B, Popescu T,
Price CJ (2011): Specialization in the human brain: The case of
numbers. Front Hum Neurosci 5:62.

Damarla SR, Just MA (2013): Decoding the representation of
numerical values from brain activation patterns. Hum Brain
Mapp 34:2624–2634.

Dehaene S (1997): The Number Sense: How the Mind Creates
Mathematics. New York: Oxford University Press.

Dehaene S (2008): Symbols and quantities in parietal cortex: Ele-
ments of a mathematical theory of number representation and
manipulation. In Haggard P, Rossetti Y, editors. Sensorimotor
Foundations of Higher Cognition (Attention and Performance).
New York: Oxford University Press. pp 527–574.

Dehaene S, Cohen L (2007): Cultural recycling of cortical maps.
Neuron 56:384–398.

r Neural Coding of Numbers r

r 487 r



Dehaene S, Piazza M, Pinel P, Cohen L (2003): Three parietal cir-
cuits for number processing. Cognit Neuropsychol 20:487–506.

Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt
A (2009): Deciphering cortical number coding from human
brain activity patterns. Curr Biol 19:1608–1615.

Feigenson L, Dehaene S, Spelke E (2004): Core systems of number.
Trends Cogn Sci 8:307–314.

Fias W, Lammertyn J, Reynvoet B, Dupont P, Orban GA (2003):
Parietal representation of symbolic and nonsymbolic magni-
tude. J Cogn Neurosci 15:47–56.

Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll
DC (1995): Improved assessment of significant activation in
functional magnetic resonance imaging (fMRI): Use of a
cluster-size threshold. Magn Reson Med 33:636–647.

Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak
RSJ (1994): Statistical parametric maps in functional imaging: A
general linear approach. Hum Brain Mapp 2:189–210.

G€obel SM, Johansen-Berg H, Behrens T, Rushworth MF (2004):
Response-selection-related parietal activation during number
comparison. J Cogn Neurosci 16:1536–1551.

Holloway ID, Battista C, Vogel SE, Ansari D (2013): Semantic and
perceptual processing of number symbols: evidence from a
cross-linguistic fMRI adaptation study. J Cogn Neurosci. 25:
388–400.

Kriegeskorte N, Mur M, Bandettini P (2008): Representational sim-
ilarity analysis—Connecting the branches of systems neuro-
science. Front Syst Neurosci 2:4.

Libertus ME, Brannon EM (2009): Behavioral and neural basis of
number sense in infancy. Curr Dir Psychol Sci 18:346–351.

Lyons IM, Ansari D (2009): The cerebral basis of mapping non-
symbolic numerical quantities onto abstract symbols: An fMRI
training study. J Cogn Neurosci 21:1720–1735.

Lyons IM, Beilock SL (2009): Beyond quantity: Individual differen-
ces in working memory and the ordinal understanding of
numerical symbols. Cognition 113:189–204.

Lyons IM, Ansari D, Beilock SL (2012): Symbolic estrangement: Evi-
dence against a strong association between numerical symbols and
the quantities they represent. J Exp Psychol Gen 141:635–641.

Maloney EA, Risko EF, Preston F, Ansari D, Fugelsang J (2010): Chal-
lenging the reliability and validity of cognitive measures: The case
of the numerical distance effect. Acta Psychol (Amst) 134:154–161.

Merten K, Nieder A (2009): Compressed scaling of abstract
numerosity representations in adult humans and monkeys.
J Cogn Neurosci 21:333–346.

Naccache L, Dehaene S (2001): Unconscious semantic priming
extends to novel unseen stimuli. Cognition 80:215–229.

Nieder A (2005): Counting on neurons: The neurobiology of
numerical competence. Nat Rev Neurosci 6:177–190.

Nieder A, Dehaene, S (2009): Representation of number in the
brain. Ann Rev Neurosci 32:185–208.

Notebaert K, Nelis S, Reynvoet B (2011): The magnitude represen-
tation of small and large symbolic numbers in the left and
right hemisphere: An event-related fMRI study. J Cogn Neuro-
sci 23:622–630.

Piazza M, Izard V, Pinel P, Le Bihan D, Dehaene S (2004): Tuning
curves for approximate numerosity in the human intraparietal
sulcus. Neuron 44:547–555.

Piazza M, Pinel P, Le Bihan D, Dehaene S (2007): A magnitude
code common to numerosities and number symbols in human
intraparietal cortex. Neuron 53:293–305.

Pinel P, Dehaene S, Rivière D, LeBihan D (2001): Modulation of
parietal activation by semantic distance in a number compari-
son task. NeuroImage 14:1013–1026.

Roggeman C, Vergutsa T, Fias W (2007): Priming reveals differen-
tial coding of symbolic and non-symbolic quantities. Cognition
105:380–394.

Sandrini M, Rossini PM, Miniussi C (2004): The differential
involvement of inferior parietal lobule in number comparison:
A rTMS study. Neuropsychologia 42:1902–1909.

Santens S, Roggeman C, Fias W, Verguts T (2010): Number proc-
essing pathways in human parietal cortex. Cereb Cortex 20:77–
88.

Shuman M, Kanwisher N (2004): Numerical magnitude in the
human parietal lobe; tests of representational generality and
domain specificity. Neuron 44:557–569.

Van Opstal F, Gevers W, De Moor W, Verguts T (2008): Dissecting
the symbolic distance effect: Comparison and priming effects
in numerical and nonnumerical orders. Psychon Bull Rev 15:
419–425.

Verguts T, Fias W (2004): Representation of number in animals
and humans: A neural model. J Cogn Neurosci 16:1493–1504.

Verguts T, Van Opstal F (2005): Dissociation of the distance effect
and size effect in one-digit numbers. Psychon Bull Rev 12:925–
930.

Zorzi M, Butterworth B (1999): A computational model of number
comparison. In: Hahn M, Stoness SC, editors. Proceedings of
the Twenty First Annual Conference of the Cognitive Science
Society. Mahwah, NJ: Erlbaum. pp 778–783.

r Lyons et al. r

r 488 r


