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A B S T R A C T

How the brain encodes abstract numerical symbols is a fundamental question in philosophy and cognitive
neuroscience alike. Here we probe the nature of symbolic number representation in the brain by characterizing
the neural similarity space for symbolic quantities in regions sensitive to their semantic content. In parietal and
occipital regions, the similarity space of number symbols was positively predicted by the lexical frequency of
numerals in parietal and occipital areas, and was unrelated to numerical ratio. These results are more consistent
with a categorical, frequency-based account of symbolic quantity encoding. In contrast, the similarity space of
analog quantities was positively predicted by ratio in prefrontal, parietal and occipital regions. We thus provide
an explanation for why previous work has indicated that symbolic and analog quantities are distinct: number
symbols operate primarily like discrete categories sensitive to input frequency, while analog quantities operate
more like approximate perceptual magnitudes. In addition, we find substantial evidence for related patterns of
activity across formats in prefrontal, parietal and occipital regions. Crucially however, between-format relations
were not specific to individual quantities, indicating common processing as opposed to common representation.
Moreover, evidence for between-format processing was strongest for quantities that could be represented as exact,
discrete values in both systems (quantities in the 'subitizing' range: 1–4). In sum, converging evidence presented
here indicates that symbolic quantities are coded in the brain as discrete categories sensitive to input frequency
and largely independent of approximate, analog quantities.
Introduction

How the brain represents discrete, symbolic forms and the relation-
ship between these representations to approximate, analog (continuous,
perceptually grounded) forms are long-standing questions in the cogni-
tive and neural sciences (e.g., Peirce, 1955; Harnad, 1990). Views on
these questions are manifold, though they can perhaps be broadly
distilled into two general perspectives. From one perspective, symbolic
representational systems fundamentally derive their meaning and
structure from an analog counterpart, with the former thus being firmly
‘grounded in’ or ‘embodied by’ the latter (e.g., Varela et al., 1991; Pul-
vermüller, 2013). In general, this more extensional view of symbolic
representation places emphasis on understanding the organizational
structure of analog representations and the mechanisms that link them to
their corresponding symbolic forms. The second perspective posits that
true symbolic systems are primarily determined by the relations between
the symbols within the system, perhaps even at the expense of weakened
links to analog perceptual grounding (e.g., Deacon, 1997). From this
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perspective, the primary challenge is in mapping the (often largely in-
dependent) associative relations between symbols that uniquely define a
given symbolic system.

In the current paper, we take up the challenges posed by both per-
spectives in a domain where the symbolic/analog debate is especially
salient: how the brain represents symbolic numbers. Specifically, we use
representational similarity analyses (RSA) to characterize the neural
similarity space of the set of single-digit Indo-Arabic numbers. We thus
tested how different properties predicted this neural similarity space, and
how this pattern of results aligned with the two theoretical views of
symbolic representation outlined above. We also computed the neural
similarity space of the same set of quantities presented as approximate,
analog magnitudes. This allowed us to compare whether the same
properties predict symbolic and analog similarity spaces in order to test
whether quantities in the two formats are organized in parallel fashion.
Furthermore, we assessed the manner and extent to which the neural
patterns elicited by symbolic and analog quantities may be directly
related. Does the neural pattern elicited by ●●● strongly predict that
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mailto:ian.lyons@georgetown.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.05.062&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.05.062
https://doi.org/10.1016/j.neuroimage.2018.05.062
https://doi.org/10.1016/j.neuroimage.2018.05.062


I.M. Lyons, S.L. Beilock NeuroImage 178 (2018) 503–518
elicited by ‘3’, as suggested by a perceptually grounded view of symbolic
representation; or are the patterns largely unrelated, indicating weak-
ened symbolic-analog links, as suggested by a more relational or
association-based view of symbolic representation?

Humans have the capacity to represent and manipulate quantities
(cardinal values) in both symbolic form (Indo-Arabic numerals) and
analog form (as in concrete sets of dots or objects; note that analog
quantities are sometimes referred to as ‘nonsymbolic’ quantities)
(Buckley & Gilman, 1974). Views on quantity representation broadly
mirror the two perspectives outlined above, with some emphasizing a
close, extensional link between symbolic and analog quantity systems;
for instance: “When we learn number symbols, we simply attach their
arbitrary shapes to the relevant nonsymbolic quantity representations”
(Dehaene, 2008). Indeed, over the last several decades, it is perhaps fair
to say this was the more dominant view among researchers in the field of
numerical cognition, with the general sentiment echoed many times over
(e.g., Dehaene, 1997, 2008; Feigenson et al., 2004, 2013; Lyons and
Ansari, 2009; Nieder and Dehaene, 2009; Piazza et al., 2007). Mean-
while, others have suggested that numerical symbols are chiefly defined
by their associations with other numerical symbols; for instance: “Sym-
bolic reference is crucially a link between sign-sign relations, not be-
tween individual sign-object relations” (Nieder, 2009). And in a recent
proposal, Nú~nez (2017) made the property ‘is relational’ a minimal
defining criterion of symbolic numbers. Some support for this view has
emerged in that symbolic representations of quantity appear to be largely
distinct (and possibly even independent) from analog representations of
quantity (e.g., Bulth�e et al., 2014, 2015; Cohen Kadosh et al., 2011;
Damarla and Just, 2013; Lyons et al., 2012, 2015a; for a comprehensive
review, see Knops, 2017). Comparatively very little evidence has
revealed precisely how number symbols are associated with one another,
however, especially at the neural level.

Numerical similarity spaces: characterizing within-format quantity-quantity
relations

There is strong evidence that analog representation of quantity is
driven by overlapping neural tuning curves whose width increase with
the quantity being represented (larger quantities have wider tuning
curves, roughly in keeping with Weber's law; e.g., Piazza et al., 2004;
Nieder, 2005; Merten and Nieder, 2009). This means that the neural
similarity space of analog quantities should be strongly predicted by
numerical ratio: the pattern of neural responses for two quantities whose
ratio is close to 1 (e.g., 8:9) will be more similar than two quantities
whose ratio is further from 1 (e.g., 1:2). This is precisely what Lyons et al.
(2015a) found. On the other hand, the properties determining the neural
similarity space of symbolic numbers remains largely unknown. Indeed,
what evidence we have strongly suggests that similarity space of sym-
bolic quantities does not follow this same ratio-dependent pattern that
analog quantities do (Lyons et al., 2015a). However, this is essentially a
negative statement, leaving largely unanswered the question: what
properties do predict the neural similarity space of symbolic quantities?

One possibility is that symbolic quantities operate less as approximate
distributions in the form of tuning curves, but more as truly discrete (if
still ordered) categories (Nú~nez, 2017). If so, then – in contrast to
approximate, analog quantities – the symbolic similarity space should be
largely insensitive to numerical ratio due to minimally overlapping
representations of even adjacent quantities. Another potential source of
neural similarity is relative frequency – specifically, frequency of
co-occurrence. Perhaps crucial, then, is the fact that smaller symbolic
quantities in the form of number words and written numerals are
encountered more frequently in the lexicon than are larger symbolic
quantities (Dehaene and Mehler, 1992). When we learn to count, we
usually start with smaller quantities (Wynn, 1990), and thus ordinal re-
lations between smaller quantities are rehearsed more frequently than
those between larger quantities (Lyons and Ansari, 2015). Thus, not only
do we encounter 3 and 4 more often than 7 and 8, we encounter 3 and 4
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togethermore often than we do 7 and 8. A frequency-based account would
predict higher similarity for higher joint frequency (a positive relation
between frequency and similarity). By extension, this view also predicts
smaller quantities should show greater neural similarity to one another
than larger quantities – e.g., greater similarity between 3 and 4 than
between 7 and 8. Note that this stands in opposition to analog quantities,
where wider tuning curves for larger quantities would predict greater
similarity between larger quantities, as discussed above. Taken together
with the (hypothesized) lack of relation between symbolic similarity and
the numerical ratio between two number symbols, such a pattern of re-
sults would be consistent with the notion that symbolic quantities
operate more like distinct categories that are sensitive to the relative
frequency with which they are encountered. Said pattern of results would
also dovetail with the heavy emphasis placed on the associative nature of
symbolic representation by some theorists (Deacon, 1997; Nieder, 2009;
Nú~nez, 2017).

Relations between symbolic and nonsymbolic quantities

A second key question that arises when attempting to describe how
the brain encodes number symbols concerns the extent to which symbolic
and analog quantities are directly related to one another, in that the
neural pattern for a quantity or set of quantities in one format may be
related to the neural pattern seen for quantities in the other format. Note
that this question is independent of the preceding discussion about
within-system similarity spaces: while the within-system relations be-
tween quantities may follow different organizing principles, there may
nevertheless be important links between systems. For instance, branches
of the same company might operate in different countries with radically
different political and social organization. There are multiple ways to
think about direct links between symbolic and analog quantity systems,
however, which make different predictions with respect to neural simi-
larity. Perhaps the most straightforward view focuses on the represen-
tational level, by proposing that a general neural pattern (‘three-ness’)
might be shared across two different systems (symbolic and analog).
Dehaene's quote above (“When we learn number symbols, we simply
attach their arbitrary shapes to the relevant nonsymbolic quantity rep-
resentations,” Dehaene, 2008) perhaps most succinctly characterizes this
view. This representation-based view predicts that the neural similarity
between formats should be particularly high when looking at the same
quantity (e.g., the similarity between ‘3’ and●●● should be higher than
the similarity between ‘3’ and ●, ●●, ●●●●, and so on).

An alternative view is that quantities may be processed via a common
mechanism, but that this mechanism is largely agnostic to the specific
quantity in question. For instance, general attentional or working
memory mechanisms might be agnostic to the type of numerical input,
processing all such quantities in a similar fashion. As such, the direct
relations between systems (in terms of patterns of neural activity) may
not be quantity specific. The relation between ‘3’ and ●●● may be no
different than the relations between ‘3’ and ●, ‘3’ and ●●, ‘3’ and
●●●●, and so on. However, this view would nevertheless still predict
that between-format similarity should overall be positive (greater than
0).

The role of subitizing

A third important point to consider is the specific set of quantities in
question. A prominent theory of children's numerical development posits
that early acquisition of number symbols is bootstrapped from nonverbal
(nonsymbolic) quantity processing, but specifically for the limited range
of small quantities that the visual system is capable of representing
discretely – i.e., those in the ‘subitizing’ range, 1–4 (Le Corre and Carey,
2007; Carey, 2011; Carey et al., 2017). Moreover, behavioral evidence
demonstrating estrangement between symbolic and analog quantity
processing is significantly weaker for quantities within the subitizing
range (Lyons et al., 2012). Thus, in assessing similarity in neural patterns
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between symbolic and analog quantities, it may be critical to consider
whether the quantities in question are within the subitizing range or not.
In particular, one might predict common representation (quantity-spe-
cific similarity) may be higher within versus outside the subitizing range.
Alternatively, nonsymbolic quantities within the subitizing range can be
processed in exact, discrete fashion (Trick and Pylyshyn, 1994; Revkin
et al., 2008). Hence, one might instead predict common processing
within a general mechanism such as short-term memory or visual
attention that is specific to subitizable quantities, but agnostic with
respect to the specific quantity therein. This view would predict
between-format similarity to be particularly strong for quantities within
the subitizing range, but in a manner that does not distinguish between
whether the two inputs indicate the same quantity (the neural pattern for
‘3’ is equally related to that of ●●, ●●● and ●●●●).

Current study

In the present study we sought to characterize the nature of symbolic
number representation in the brain. Specifically, we adopted a repre-
sentational similarity analysis (RSA) approach (using human fMRI data)
in which one computes the similarity of spatially distributed activity
patterns between two conditions in a given section of cortex (Krie-
geskorte et al., 2008). This approach allows one to assess the relative
similarity in cortical processing for a large set of conditions by mapping
the ‘similarity space’ that defines the pairwise relations between all
conditions in the set. This similarity space can then be tested against
predictions based on various assumptions or models (Davis and Poldrack,
2013).

Here, we sought to characterize the relational structure of symbolic
quantities by assessing (1) which numerical properties (such as ratio and
frequency, Fig. 1b–c) predict the neural similarity space elicited by
processing individual1 number symbols (Fig. 1a, region outlined in blue).
We also assessed (2) whether these properties parallel those of analog
quantities (Fig. 1a, region outlined in red), and (3) whether the similarity
space within one format predicts that of the other (Fig. 1a, region out-
lined in green/turquoise). Furthermore, (4) we tested for direct relations
between the same quantity in different formats by assessing how the
neural pattern for a given quantity in one format relates to the same
quantity in the other format (common representation, e.g., ‘3’ to ●●●;
Fig. 1a, turquoise diagonal). We also tested (5) for more general common
processing between systems – i.e., a consistent relation between neural
patterns but in a quantity-agnostic manner (e.g., ‘3’ relates equally to ●,
●●,●●●,●●●●, etc.; Fig. 1a, off-diagonal section outlined in green).
We also assessed (6) whether the degree of between-format similarity
depends on whether the quantities in question can be represented
discretely (i.e., within the ‘subitizing’ range, 1–4; Fig. 1a, pink/purple
and yellow/orange outlines). Finally, to narrow functional interpretation
of the RSA results, we examined the above in all regions that showed
systematic sensitivity to relative quantity.

Methods

Participants

Participants were 33 right-handed neurologically normal University
of Chicago students (16 female, mean age¼ 20.03yrs).

Procedure

All procedures were approved for use with human subjects by the
University of Chicago Institutional Review Board (IRB). The data
analyzed here were taken from a larger data collection project (Lyons and
1 Neural patterns were estimated when participants were processing only one
quantity at a given time and prior to the onset of response demands.
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Beilock, 2013; Lyons et al., 2015a) spanning multiple scanning sessions;
results here are not reported elsewhere and address a unique set of hy-
potheses. The data reported here were from 6 functional runs from the
same scanning session. The high-resolution anatomical scan was ac-
quired halfway through the functional runs; this allowed participants a
brief rest and reduced the maximum amount of spatial discrepancy be-
tween the anatomical and functional runs.

Task and stimuli
During scanning, participants completed 6 runs of a delayed match-

to-sample (DMS) task adapted from single-cell studies with monkeys
that have been successful in detailing numerical tuning curves for indi-
vidual neurons (see Nieder, 2005, Fig. 2c; see also Lyons et al., 2015a,
Fig. 2). In the current version, participants first saw a quantity for
500msec followed by a jittered delay (1.5–5.5sec). A second quantity was
then presented for 500msec, after which the screen went blank for
2500msec or until the participant responded. Fixation time between
response on a given trial and the initial stimulus onset for the subsequent
trial was also jittered (1.9–8.4sec). Participants' task was to determine if
the two quantities were numerically equal or different by pressing one of
two buttons with their two index fingers. Which button meant same or
different was randomized across participants. The two numbers were
numerically equal on 50% of trials (match); the second number was
greater than the first on 25% of trials (nonmatch) and less than the first
on 25% of trials (nonmatch). For numerals, font style was randomized for
symbolic trials to reduce the efficacy of visual pattern-matching. Note
that the short presentation time of both stimuli reduced the likelihood
that participants counted the dots in the dot-arrays. Continuous param-
eters (dot-size, array contour, density, aggregate area) were balanced
across analog trials, such that each parameter was correlated with
quantity on half the trials, and anti-correlated on the remaining half. This
was intended to reduce the efficacy of relying on any one parameter to
compare quantities in the analog task.

The quantities to be held in mind during the delay period (between
the first and second quantities) were the integers 1–9. Participants saw
eighteen trials for each quantity; in nine of these trials, quantities were
presented as numerals (symbolic format); in the other nine, quantities
were presented as dot-arrays (analog format). The second stimulus al-
ways matched the first in terms of format. Trial order (including quantity
and format) was randomized across participants. To increase the preci-
sion of our estimate for a given voxel's activity for a given quantity, ac-
tivity across the nine trials (for each participant) was averaged together.
Our focus was on activity during the first stimulus and the delay before
the onset of the second stimulus, as this allowed for a measure of neural
activity during representation of a single quantity, independent of acti-
vation related to preparation and execution of a specific motor response.
Activity during the second stimulus and response was modeled as a co-
variate of no interest to remove response-related variance according to
the duration of the response (which optimizes model fit and implicitly
controls for trial-by-trial variability in response times2; Grinband et al.,
2008; Yarkoni et al., 2009; Motes et al., 2017).
MRI analysis

Acquisition and preprocessing
Data were collected on a 3T Philips Achieva scanner using an 8-chan-

nel Philips SENSE head-coil. 36 descending interleaved slices were
collected at a TR of 2sec (TE¼ 25msec), with a slice-thickness of 3.0mm
(0.25mm skip), an in-plane resolution of 2.875� 2.875mm (80� 80
matrix), and a flip-angle of 80�. Prior to analysis, time-series were
2 This approach causes some variability in run duration, though said vari-
ability here was minor: range¼ 142 to 156 TRs, mean¼ 143.2, median¼ 143,
sd¼ 1.18; 96% of all runs fell between 142 and 147 TRs. Results did not differ if
the 4% of runs with 148 or more TRs were omitted.



Fig. 1. [a] gives a sample similarity matrix with sub-
sections highlighted to indicate which analyses they
were used in. Blue: Symbolic within-format analyses;
Red: Analog within-format analyses; Green: different-
quantity between-format similarity; Turquoise: same-
quantity between-format similarity; Purple: between-
format similarity for small quantities (pink indicates
same-quantity); Orange: between-format similarity for
large quantities (yellow indicates same-quantity).
Each cell indicates the correlation between each pair
of quantities in the indicated format(s). ‘S’ indicates
Symbolic; ‘A’ indicates Analog; the number indicates
quantity. The variations in shading simulate varia-
tions in similarity values; they are not real data. Note
that the overall matrix is symmetrical over the main
diagonal; hence it is arbitrary whether one extracts
data from the upper or lower triangle. Fig. 1 [b] and
[c] show predicted similarity matrices for Ratio and
Frequency, respectively.
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corrected for slice-timing and subject motion, and then subjected to a
high-pass temporal filter (GLM Fourier basis set). No spatial smoothing
was used. Data were next submitted to a random-effects GLM (Friston
et al., 1994) convolved using a standard 2-gamma HRF model. Pre-
processing and whole-brain RFX univariate analyses were conducted
using BrainVoyager 20.4); ROI-based analyses (univariate and RSA) were
conducted using Matlab.

Regions of interest (ROIs)
One of the central goals of this study was to characterize the

respective neural similarity spaces for symbolic and analog quantities
(via RSA), within regions that demonstrate systematic sensitivity to
relative quantity. ROIs were identified in three steps. First, we identified
regions that showed a significant main effect of quantity via a whole-
brain univariate ANOVA [2(Format: symbolic, analog)� 9(Quantity:
1–9)]. RSA operates by computing correlations over voxels within an
ROI, so ensuring a reasonable minimum number of voxels (i.e., a mini-
mum number of observations) per ROI is important for ensuring mean-
ingful correlation estimates. For this reason, the statistical map was
thresholded voxelwise at p< .005, and subsequently cluster-level cor-
rected for multiple-comparisons using a Monte-Carlo simulation pro-
cedure (Forman et al., 1995) at α< .01. The slightly more liberal
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voxelwise and more conservative cluster-level thresholds emphasized
larger ROIs; however, all ROIs that survived this threshold also survived
the more conventional (Cunningham and Koscik, 2017; Slotnick, 2017)
threshold of p< .001, α< .05. Second, we split very large ROIs into
smaller, anatomically more sensible smaller ROIs. While overly small ROI
sizes are problematic for RSA as noted above, overly large ROIs that span
substantially different sections of cortex can also prove difficult to
interpret. To balance this concern, very large bilateral ROIs spanning
intraparietal, occipital and ventral-posterior temporal cortices were split
into 5 sub-clusters in each hemisphere using a standard k-means clus-
tering algorithm (Lloyd, 1982; as implemented via the kmeans function
in Matlab using squared Euclidean distance). Importantly, only
anatomical coordinate information was used for clustering purposes so
that clustering was independent of specific functional activity patterns.
This broke the superclusters into IPSa, IPSp, POJ, OCCp, and TOJv (see
Fig. 2 for abbreviations). In addition, a large midline prefrontal region
clearly spanning ACCdp and PreSMA were split into 2 sub-clusters using
the same approach.

Recall that the primary purpose of the ROI-identification process was
to ensure RSA results obtained in regions that demonstrated systematic
sensitivity to relative quantity. Therefore, third, within each resulting
ROI, we verified that each ROI showed a significant linear contrast effect



Fig. 2. Visualizes regions that showed a significant
main effect of Quantity at the whole-brain level. These
regions also comprised the ROIs that were used for
subsequent ROI-based analyses. See Table 1 for region
details. Abbreviations: ACCdp: dorso-posterior ante-
rior cingulate cortex, FEF: frontal eye-fields, IFJ:
inferior frontal junction, INSa: anterior insula, IPSa:
anterior intraparietal sulcus, IPSp: posterior intra-
parietal sulcus, MFGa: anterior middle frontal gyrus,
OCCp: posterior occipital cortex, POJ: parietal-
occipital junction, PreSMA: pre-supplementary motor
area, TOJv: ventral temporal-occipital junction.

4 These may be understood as deflections from the global mean (across all
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in both formats.3 A main effect with 9 levels might be driven by any
number of patterns, so this step provided crucial verification that mod-
ulation of activity by quantity followed a systematic pattern, such that
activity increased (or decreased) as a function of input quantity. This step
also served as a kind of manipulation check in that it helped guard
against the notion – especially in the case of symbolic quantities – that
participants may have solved the behavioral portion of the task via
simple pattern matching. Systematic modulation of activity as a function
of the symbolic quantity represented strongly suggests participants were
indeed processing the semantic content of the numerical symbols.
Furthermore, assessing a linear trend is made all the more important by
the fact that, in the current case, ‘baseline’ (a beta of 0) corresponds to
average activity across all runs (for that subject in that voxel). In the case
of a linear trend with increasing quantities, higher quantities will, by
necessity, show activity ‘above baseline’ and lower quantities will show
activity ‘below baseline’. Hence, for current purposes, a linear contrast
was seen as the more informative criterion, rather than, say, contrasting
mean activity across all quantities against 0 (baseline).

When reporting all ROI-based results (both univariate and RSA), we
provide two statistical thresholds – the more traditional p< .05, and a
more stringent threshold of p< .0027. This latter value was determined
by correcting for multiple comparisons using the Dunn-�Sid�ak (1967)
method assuming 19 comparisons (for the 19 ROIs revealed in the uni-
variate analyses – see Table 1 in the Results below). Note that this
correction is intended for situations where one's focus is on whether any
3 One might remark that the primary focus of this study is on symbolic
quantities, so ROIs should not require sensitivity to quantity for analog quan-
tities as well. Thus, it is important to note that there were no regions outside of
the set considered in Fig. 2 that showed a significant main effect of quantity for
just symbolic quantities.
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single result may have been the result of chance. The .0027 threshold is
thus likely overly conservative in the present case (i.e., we would not
necessarily advise discounting every result that fails to pass this stricter
threshold) because we are concerned here more with the overall pattern
of results (e.g., do the majority of parietal regions show pattern X versus
pattern Y) rather than with the significance of a single region in isolation.
Nevertheless, we provide information about this more conservative
threshold as it provides greater context for interpreting the strength of
the various effects. Finally, to maximize generalizability, critical statistics
are reported as effect-sizes (Cohen's d) wherever possible.

Representational similarity analysis (RSA)
In the present study, for each voxel in each participant, we extracted

19 different values from the RFX GLM. These were activity levels for the
symbolic and analog quantities 1–9, and a measure of baseline activity
(average activity for that subject and that voxel4). In all RSA analyses,
baseline activity was included as a covariate (hence, all RSA results re-
ported here are based on partial-correlations). This is because adjacent
voxels will share vascular, neural, and imaging elements (e.g., field
strength) that may create the appearance of very high correlations across
voxels due largely to sources unrelated to the functional elements of in-
terest here (numerical processing). Covarying out baseline activity is a
voxels and all subjects) specific to that voxel and that subject, which are a
natural consequence of treating individual voxels independently and each sub-
ject as a random influence under the assumptions of the whole-brain, random-
effects GLM (Friston et al., 1994). In this way, the ‘baseline’ vector for each
subject across voxels controls for idiosyncratic – but potentially systematic –

correlations in activity between voxels that may have little to do with the ac-
tivity evoked by the stimuli of interest.



Table 1
Anatomical details for regions showing a main effect of quantity. Coordinates are centers of gravity. The number of voxels for each region is given in terms of functional
voxels (3 mm on a side, 27 mm3). See Fig. 2 for abbreviations and region visualization.

ROI Tal. Coordinates Voxels ROI Tal. Coordinates Voxels

x y z x y z

RIPSa 36.9 �36.1 46.2 251 ACCdp 3.9 15.6 39.2 94
LIPSa �33.5 �39.4 45.7 125 PreSMA 0.1 5.5 51.5 105
RIPSp 21.0 �64.4 46.8 310 RINSa 30.6 19.9 8.0 33
LIPSp �19.3 �62.1 49.3 204 RMFGa 28.8 41.9 27.1 84
RPOJ 28.5 �71.9 26.8 202 LMFGa �25.6 42.9 29.8 17
LPOJ �23.9 �74.1 26.6 206 RIFJ 45.7 5.8 27.5 110
ROCCp 27.9 �80.1 4.9 247 LIFJ �43.6 �1.1 34.6 51
LOCCp �25.8 �83.0 1.2 254 RFEF 25.9 �5.1 48.2 54
RTOJv 41.4 �66.2 �3.8 145 LFEF �25.1 �10.1 51.4 66
LTOJv �38.9 �69.4 �2.6 145
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statistical means of reducing the influence of those elements of no in-
terest (Lyons et al., 2015a). Within each ROI, a partial-r was computed
for each pair of quantities. The resulting matrix of r-values thus mapped
the ‘similarity spaces’ defining symbolic ~ symbolic, analog~ analog
and between-format (symbolic ~ analog) coding (see Fig. 1a). This was
done separately for each of the 33 subjects. Because r-values are
non-normally distributed, r-values were next transformed using Fisher's
z-transformation: z¼ arctanh(r). All relevant statistics were then
computed using these z-values as inputs. Results are reported in figures as
effect-sizes (d), with traditional statistical thresholds also indicated.
Means and standard errors for these z-values can be found in Supple-
mentary Information (Tables S1–S7). Voxelwise data for all 19 ROIs can
be found at https://osf.io/d645p/.

Predictive properties
The two main properties we used to predict pairwise neural similarity

for symbolic and analog quantities were Ratio and Frequency. Ratio was

defined as the ratio between two quantities, where Ratio ¼ minðn1 ;n2Þ
maxðn1 ;n2Þ.

To estimate joint frequency, one can start with frequency estimates of
individual numbers. We took these from Benford's law: p¼ log10 (nþ1) –
log10(n), which describes the probability of encountering written (Indo-
Arabic) digits as they appear in the left-most position of a given number
(Benford, 1938). The lattermost assumption is introduced to account for
the fact that larger written numbers tend to be rounded to the nearest
decade, century, etc., and rounded values follow frequency patterns that
closely mirror those seen for singleton digits (1, 2, …9). For data that
nicely conform to Benford's law from more modern lexical corpi
(including the rounding assumption), as well as a detailed treatment and
discussion of the source of Benford's law, see Dehaene and Mehler
(1992). In short, Benford's law gives one the probability of encountering
a given digit, which decreases in a power-law manner as quantity in-
creases. One can then estimate joint frequency by multiplying the
probabilities of two quantities together. Fig. 1c illustrates the joint fre-
quency matrix for 1–9. This matrix can then be vectorized and used to
predict pairwise similarity values, just as with Ratio.5

Two additional numerical properties are commonly assessed in the
literature: numerical Size and Distance, where Size ¼ meanðn1; n2Þ, and
Distance ¼ absðn1 � n2Þ. It is important to note that Size is strongly
negatively correlated with Frequency (r¼�.84 for quantities 1–9), as is
Distance with Ratio (r¼�.84 for quantities 1–9). For this reason, while
5 Frequency and Ratio predictors were correlated at �.41, though this degree
of collinearity is not extreme by most accounts: The variance inflation factor
(VIF) associated with these two vectors is 1.21, which is well within the
acceptable range of VIF<10 (Kutner et al., 2004), and even the more conser-
vative range of VIF<5 (Sheather, 2009). Furthermore, our primary theoretical
interest was less with comparing Frequency and Ratio than with comparing the
relative fits across formats (comparing symbolic fit against analog fit for, say,
Frequency).
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we include results for Size and Distance in Supplementary Information
(Figures S1-S3, Tables S6-S7), we would expect results to be highly
similar (just reversed) for Frequency and Size, and for Ratio and Distance.
This is indeed the case, though careful scrutiny reveals slightly higher
overall (absolute) fit in most regions for Frequency relative to Size, and
for Ratio relative to distance, indicating that indeed Frequency and Ratio
may be the optimal means of characterizing categorical and tuning-
curve-based quantity coding, respectively.

Results

Regions responsive to quantity (univariate results)

We identified regions that were systematically sensitive to relative
quantity in both symbolic and analog formats. First, using a whole-brain
approach, we identified regions that showed amain effect of quantity in a
2(Format: symbolic, analog)� 9(Quantity: 1–9) ANOVA at the whole-
brain level (p< .005, α< .01). Second, within each ROI, we then veri-
fied that this main effect was characterized by a significant linear
contrast effect for each format separately. In this way, we ensured that a
given ROI showed linearly increasing activity as quantity increased, and
that this effect was present for both symbolic and analog formats.

Regions showing a whole-brain main-effect of quantity are shown in
Fig. 2; regions are colored to reflect the delineations described in the
Methods section, and match the ROI-specific color-scheme used in the
remaining figures showing univariate and RSA results (Figs. 3–8). Region
details are summarized in Table 1. Though not of immediate relevance
given the main goals of this paper, it is perhaps interesting that only one
region showed a significant Format�Quantity interaction at the whole-
brain level: left PreSMA (Talairach: �6, 12, 46; 27 voxels). Perhaps most
remarkable is the relative dearth of regions showing an interaction,
especially given 9 levels of Quantity in the model. This suggests that, for
the majority of the brain, wherever one finds modulation of activity
based on quantity for one format, one is likely to find similar modulation
for the other format as well.

ROI verification
Because a main effect with multiple levels (nine, in the case of

quantity) may be driven by a wide range of patterns, within each of the
ROIs identified in the previous section (Fig. 2, Table 1), we tested for a
significant linear contrast effect of quantity. This pattern would indicate
systematic sensitivity to quantity with neural responses increasing (or
possibly decreasing) with increasing quantity. To ensure that each ROI
was sensitive to quantity in both formats (symbolic and analog), we
assessed linear contrast effects in each format separately. ROI analyses
were conducted by averaging activity estimates for each condition across
all voxels in the ROI for each participant, with statistics computed across
subjects (N¼ 33). Linear contrast results are given in Table 2. Mean ac-
tivity values along with linear trend-lines are plotted in Fig. 3.

As can be seen in Table 2, there was a significant linear contrast effect

https://osf.io/d645p/


Table 2
Linear contrast results for each ROI, given as effect-sizes (Cohen's d). Values significant at p< .0027 are in bold.

ROI Symbolic Analog ROI Symbolic Analog

d p d p d p d p

RIPSa .580 3E-04 .713 2E-06 ACCdp .553 7E-04 .772 9E-08
LIPSa .534 .001 .656 2E-05 PreSMA .487 .004 .721 1E-06
RIPSp .588 3E-04 .764 1E-07 RINSa .558 6E-04 .677 1E-05
LIPSp .556 6E-04 .710 3E-06 RMFGa .630 6E-05 .597 2E-04
RPOJ .649 3E-05 .695 5E-06 LMFGa .583 3E-04 .556 6E-04
LPOJ .577 4E-04 .658 2E-05 RIFJ .596 2E-04 .736 7E-07
ROCCp .640 5E-05 .670 1E-05 LIFJ .458 .006 .725 1E-06
LOCCp .644 4E-05 .748 4E-07 RFEF .452 .007 .721 1E-06
RTOJv .699 4E-06 .591 2E-04 LFEF .641 4E-05 .708 3E-06
LTOJv .712 2E-06 .578 3E-04
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for all regions and in both formats. Indeed, contrast effects were highly
significant p< .0027 in all regions with the exception of LIFJ, PreSMA
and RFEF for symbols (ps¼ .004, .006 and .007, respectively). Fig. 3
shows that all trends were in the positive direction. While overall greater
activity tended to be observed for analog quantities, the positive linear
trend nevertheless held for both formats with roughly similar slopes
across formats. In sum, ROI verification demonstrated that all 19 ROIs
were indeed sensitive to quantity in both formats such that relative ac-
tivity was modulated via a positive deflection as the input quantity
increased. Focusing on these regions thus simplifies our functional
interpretation of the subsequent RSA results: the patterns of neural
coding we observe there can be said to obtain in regions thus known to be
sensitive to relative differences in quantity. In the next sections, we turn
to RSA to characterize the similarity spaces for symbolic and analog
quantities.
6 The effect was significant only at the more liberal threshold of .05. The
probability of 1 or more significant effects at this threshold with 19 comparisons
(ROIs) by chance is .623.
Characterizing symbolic and analog similarity spaces

In this section, we sought to characterize the similarity spaces of
symbolic and analog quantities by computing the correlations between
neural activity patterns (in a given ROI) for each pair of quantities in our
stimulus set (1–9). In the first section (Within-Format Encoding), we
focus on characterizing the properties that best define Symbolic and
Analog similarity spaces, respectively. In the subsequent sections, we
focus on characterizing how the different formats relate to one another:
(1) how do the similarity spaces of symbolic and analog quantities relate to
one another; and (2) how do the neural patterns for specific quantities
relate to one another between formats? Note that due to space con-
straints, the following sections report statistical results directly pertinent
to the hypotheses being tested; complete correlation matrices for all 19
ROIs are provided in Supplementary Information. For each analysis,
corresponding means and standard errors (across subjects) can also be
found in Supplementary Information (Tables S1–S5). Complete voxel-
wise data for all 19 ROIs can be found found at https://osf.io/d645p/.

Within-Format Encoding
Within each format, we assessed whether the neural similarity space

was predicted by numerical Ratio and/or Frequency. Moreover, we were
particularly interested in the direction (sign) of these predictions: does
neural similarity increase as Ratio gets closer or further from one; does
neural similarity increase as Frequency increases or decreases? Recall
that an overlapping-tuning-curves account predicts similarity should in-
crease as Ratio gets closer to one. A categorical, frequency-based account
predicts similarity should be largely insensitive to Ratio and that it
should increase as Frequency increases. The similarity matrices predicted
by Ratio and Frequency are given in Fig. 1b–c.

For each format and in each region, we computed the pairwise sim-
ilarity matrix (a canned example is given in Fig. 1a). Similarity matrices
are symmetrical around the main diagonal, so we took either the upper or
lower triangle [outlined in blue (symbolic) and red (analog) in Fig. 1a],
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vectorized and Fisher z-transformed it, and then computed the degree to
which Ratio and Frequency each predicted this vector of similarities. The
results was 33 r-values (one for each subject), which were z-transformed
and then compared against 0 using a one-sample t-test across subjects
(N¼ 33). This was done separately for all 19 ROIs from the previous
section that were shown to be linearly responsive to relative quantity.

Ratio. Results are shown in Fig. 4 (see also Table S-1). Analog similarity
space was strongly positively predicted by Ratio in the majority of re-
gions. All 10 posterior regions, including all IPS regions, showed signif-
icant effects of Ratio, as did 6 of the 9 prefrontal regions (excepting
RINSa and bilateral MFGa). By contrast, Ratio largely failed to predict
Symbolic similarity space, with the lone exception a weak6 negative ef-
fect in LIPSp. Fig. 4b shows that Ratio was a significantly stronger pos-
itive predictor of Analog relative to Symbolic encoding in the clear
majority of regions (15 of 19, the probability of which occurring by
chance is 9.8E-17). In sum, results were more consistent with an
overlapping-tuning-curves account for Analog quantity encoding, such
that pairs of quantities with Ratio closer to 1 tended to showmore similar
neural processing. Results for symbolic quantities, on the other hand,
were more consistent with a categorical account of quantity encoding in
which tuning curves do not vary as a function of quantity.

Frequency. Results are shown in Fig. 5 (see also Table S-2). For symbolic
similarity space, a significant positive effect was found in 7 of the 10
posterior regions. The probability of finding an effect in 7 of 19 regions
(at p< .05) by chance is 2.3E-05; the probability of finding a significant
effect in 7 of the 10 posterior regions by chance is 8.2E-09. Note that a
positive effect here implies that quantities which are expected to co-occur
more frequently show a higher degree of neural similarity. For Symbols
then, results are consistent with the view that symbolic quantities are
encoded in a manner sensitive to lexical Frequency. In contrast, the
majority (14 of 19 at p< .05, with a joint probability of 5.6E-15) of re-
gions showed a significant negative effect for Analog quantities. As joint
Frequency is strongly inversely related to numerical size, and because
analog tuning curves increase in width as quantity increases, we see this
latter result as simply further converging evidence that Analog quantities
are encoded according to the tuning-curves account (for evidence highly
consistent with this interpretation, see Supplementary Information
where we explicitly modeled numerical Size). Fig. 5b shows that Sym-
bolic similarity space was more positively (or less negatively in some
cases) fit by Frequency in the majority of regions (14 of 19 overall,
p¼ 5.6E-15, and in 10 of 10 posterior regions). In sum, results were more
consistent with the view that Symbolic quantities are encoded according
to the relative (joint) frequencies with which they are encountered.

https://osf.io/d645p/


Fig. 3. Shows mean activity values and linear trend-lines for each ROI in response to [a] Symbolic and [b] Analog quantities. ROIs are color-coded in the same
manner as Fig. 2 (see also Fig. 2 for abbreviations). Dashed-lines: right-hemisphere, dotted-lines: left-hemisphere; dash-dot-lines: mid-line regions.
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Analog quantities are encoded in a manner inversely related to fre-
quency, which is likely a reflection of the greater influence of broader
tuning curves for larger quantities.

Correspondence between symbolic and analog similarity spaces
In the previous section, we saw that, even though a range of brain

regions show sensitivity to relative quantity in both symbolic and analog
formats, the underlying similarity spaces for each format appear to be
organized according to different properties. Symbolic quantities are
encoded more as discrete categories and Analog quantities are encoded
with respect to approximate tuning curves. This suggests that the simi-
larity spaces characterizing each format are qualitatively different from
one another. However, another test of this assertion would be to simply
correlate these similarity spaces with one another. In a given region, the
similarity matrix of one format might be positively correlated with the
other, suggesting a structural-level link between the two formats in that
region. The matrices may be uncorrelated, suggesting independent
structures. Or, if a negative relation were observed, this would suggest
the two formats are structurally related, but in an opposing manner. To
assess this, for each region and each subject, we vectorized and z-trans-
formed the blue and red portions of the similarity matrices in Fig. 1a,
computed the correlation between these z-transformed matrices, and
then tested whether the (z-transformed) average correlation (across
subjects, N¼ 33) was different from 0 (and if so, in which direction).

Results are shown in Fig. 6 (see also Table S-3). Significant negative
effects were found in RIPSp and LPOJ, along with a lone positive effect in
RIFJ. That said, none of these effects passed the more stringent
(p< .0027) threshold. The probability that 1 of 19 effects would show a
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positive effect by chance at p< .05 is .623; the probability that two ef-
fects would show a negative effect by chance at p< .05 by chance is .245.
Thus, it is perhaps most accurate to state that the overall pattern of results
supports the view that, in regions sensitive to relative quantity, the
relational structures for symbolic and analog quantities are largely in-
dependent of one another.

Between-format encoding
A key question concerns the extent to which Symbolic and Analog

quantities are directly related, in that they may share common patterns of
distributed neural activity. From the univariate analyses, we saw that all
19 brain regions showed systematic sensitivity to relative quantity in
both formats. However, subsequent RSA analyses demonstrated that the
nature of Symbolic and Analog coding is substantially different, and the
last section showed that the similarity spaces of the two formats are
largely unrelated to one another. Thus, Symbolic and Analog numbers
appear to operate in distinct ways, but that does not preclude individual
quantities from different formats from sharing common neural repre-
sentation and/or processing. Moreover, common representation/pro-
cessing may depend on whether the quantities are within or outside the
subitizing range.

Relations between neural patterns for symbolic and analog quantities. To test
for relations between neural patterns across formats, we examined the
cross-format section of the similarity matrix in Fig. 1a (outlined in green
and turquoise). The cells on the off-diagonal section of the between-
format matrix shaded green indicate the correlation between the
different quantities in different formats (e.g., between ‘3’ and ●, ‘3’ and



Fig. 4. Shows the degree to which numerical Ratio predicts the neural similarity spaces for Symbolic and Analog quantities [a]. The difference between fits across
formats (Analog – Symbolic) is shown in [b]. Results are given as effect-sizes (Cohen's d). Horizontal grey lines indicate statistical significance given the current
sample size (N¼ 33); dashed lines denote p< .05, and solid lines denote p< .0027.

7 Neither effect obtained at the more stringent (corrected for multiple-
comparisons) threshold and the probability of obtaining 2 of 19 significant ef-
fects at p< .05 is .245.
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●●, ‘3’ and●●●●, and so on). The cells in this section are thus seen as
indicative of more general between-format processing. The cells on the
main diagonal of the between-format matrix that are shaded turquoise
indicate the correlation between the same quantity in different formats
(e.g., ‘3’ and●●●). The cells in this section are potentially (to the extent
that they show higher average similarity than the off-diagonal – green –

cells) indicative of quantity-specific cross-format representation.
In each region and participant, same-quantity (average of turquoise

cells in Fig. 1a) and different-quantity (average of green cells in Fig. 1a)
correlations were z-transformed and tested against 0 across participants
(N¼ 33). The results of this analysis are given in Fig. 7a (see also Table S-
4).

The a priori criterion for a given region to demonstrate at least
generic between-format similarity was significant cross-format similarity
for both different-quantity and same-quantity correlations – because
common processing across formats should be agnostic as to whether the
quantities are the same or different. Results showed strong evidence in
favor of generic between-format similarity in the majority of regions,
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including 9 of the 10 posterior regions and 6 of the 9 frontal regions.
Thus, even though we saw in previous sections that the relational
structures of Symbolic and Analog numbers are largely independent of
one another, the two formats clearly show evidence of common neural
processing across a range of brain areas, including key parietal regions.
The next question, then, is whether we see evidence that this between-
format similarity also implies quantity-specific representation.

To test for quantity-specific between-format representation, we asked
whether a given region showed significantly greater same-quantity than
different-quantity similarity (significantly higher outlined than solid bars
in Fig. 7a). The results of this contrast are shown in Fig. 7b. There was
weak7 evidence for common same-quantity between-format representa-
tion in IPSp and POJ; however, effects only reached significance in the



Fig. 5. Shows the degree to which lexical Frequency predicts the neural similarity spaces for Symbolic and Analog quantities [a]. The difference between fits across
formats (Analog – Symbolic) is shown in [b]. Results are given as effect-sizes (Cohen's d). Horizontal grey lines indicate statistical significance given the current
sample size (N¼ 33); dashed lines denote p< .05, and solid lines denote p< .0027.
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right hemisphere, and even that was at the lower p< .05 threshold. Or to
put it another way, 17 of the 19 regions showed no significant evidence
in favor of same-quantity between-format representation (with strong
contrary evidence in RMFGa). Thus, while there is perhaps some evi-
dence for same-quantity between-format representation in posterior pa-
rietal areas, this is not nearly as strong as that demonstrating more
general between-format processing.

In sum, results provide strong evidence for general between-format
processing across a wide range of areas. However, the preponderance of
evidence clearly showed that the neural commonalities between sym-
bolic and analog quantities are not quantity-specific – i.e., not indicative
of a common, abstract representation that transcends formats.

The role of subitizing in between-format similarity. Here we assessed
whether the strength of between-format similarity depends on whether
quantities can be represented discretely in both formats – i.e., whether
quantities are within (1–4) or beyond (6–9) the subitizing range. Though
the previous section showed an overall lack of support for same-quantity
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cross-format processing in the previous section, we first checked for an
interaction by dividing the cross-format (green) matrix into Small (1–4)
and Large (6–9) regions (purple and orange sections in Fig. 1a), as well as
by Same/Different-quantities as in the previous section (from Fig. 1a:
small-same¼ pink, small-different¼ purple, large-same¼ yellow, large-
different¼ orange). Data were then entered into a 2 (Type: same,
different)� 2(Size: large, small) ANOVA (N¼ 33). Only LFEF showed a
significant (p¼ .024) interaction. However, this effect was driven by
greater different-than same-quantity similarity for small quantities
(p¼ .007), and no difference for large quantities (p¼ .575). Moreover,
the familywise probability of a single significant interaction effect at
p< .05 is .623. Furthermore, none of the 19 regions showed significantly
(p< .05) greater similarity for same-relative to different-quantity pro-
cessing when we looked separately at either small quantities (1–4, pink
versus purple sections of Fig. 1a) or large quantities (6–9, yellow versus
orange sections of Fig. 1a). Hence, we simplified subsequent analyses of
the effect of Size on between-format similarity by collapsing across same-
and different-quantity neural similarity estimates. Small (average of



Fig. 6. Shows the degree to which the neural similarity spaces for Symbolic and Analog quantities related to one another. Results are given as effect-sizes (Cohen's d).
Horizontal grey lines indicate statistical significance given the current sample size (N¼ 33); dashed lines denote p< .05, and solid lines denote p< .0027.
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purple and pink regions in Fig. 1a) and Large (average of orange and
yellow regions in Fig. 1a) correlations were z-transformed and tested
against 0. Results are shown in Fig. 8a as effect-sizes (see also Table S-5).

For subitizable quantities, there was very strong evidence of general
between-format similarity: significant effects were seen in 19 of 19 ROIs,
including highly significant effects in 10 of 10 posterior and 7 of 9 frontal
regions. By contrast, regions showing significant general between-format
similarity for large quantities were notably fewer, with significant effects
in 12 of 19 regions (including only 1 of the 4 IPS regions) and highly
significant effects in just 7 of 19 regions.

To formally test whether between-format similarity was significantly
greater for subitizable relative to large quantities, we contrasted large-
and small-quantity similarity values (Large – Small). Results are shown in
Fig. 8b. Between-format similarity was significantly greater for small
quantities (negative contrast effects) in all 6 parietal regions (IPS and
POJ), with highly significant effects in all 3 right-hemisphere regions.
There was a general trend toward greater small than large similarity in
the other regions, though this obtained significance only in ROCCp. No
regions showed a significant effect in the opposite direction
(Large> Small).

In sum, we see that similarity in between-format neural processing is
overall enhanced for quantities within the subitizing range, an effect that
was particularly strong in parietal regions. This pattern of results is
consistent with the notion that between-format neural processing is
enhanced when quantities can be represented discretely in both formats.
Notably, however, even within the subitizing range, we did not find
evidence indicating a common, abstract representation that transcends
formats. Instead, results were more consistent with the notion that
between-format processing of subitizable quantities is enhanced in a more
general manner, in that it is agnostic with respect to the specific quantity
or format of the input so long as the quantities fall within that range.

Discussion

We assessed how the brain processes discrete, symbolic representa-
tions and approximate, analog (continuous, perceptually grounded)
representations – as well as the potential interrelations between the two –
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in the numerical domain. From a univariate perspective, brain areas that
showed systematic (linear) sensitivity to relative quantity in one format
did so in the other. Within these regions, however, representational
similarity analysis (RSA) of patterns of neural activity showed qualitative
differences in the neural coding of quantity between formats. On the one
hand, the structure of the similarity space for analog quantities was well
predicted by ratio (higher similarity when ratios were closer to 1), which
is consistent with an overlapping tuning-curves account of analog
quantity representation. On the other hand, the structure of the similarity
space for symbolic quantities was unrelated to ratio in most areas and
positively related to frequency (higher similarity for pairs of quantities
with higher joint frequency) in a range of posterior areas, including the
IPS. Results in these areas are thus consistent with a categorical,
frequency-based account of symbolic quantity representation. Moreover,
the neural similarity spaces for the two formats were largely independent
of one another, which is all the more striking given that all regions under
consideration showed sensitivity to relative quantity in both formats. In
other words, a wide range of frontal and posterior regions – not just the
IPS – code for both symbolic and nonsymbolic relative quantity, but the
quantity-to-quantity relations that define the relational structure of each
system is fundamentally different. Analysis of the link between symbolic
and analog quantities showed strong evidence for between-format neural
similarity in a range of regions across frontal, parietal and occipital
cortices. However, this similarity was qualified in two important ways.
First, it was primarily not quantity-specific, indicating similarity in gen-
eral (input-agnostic) processing as opposed to similarity of representa-
tion. Second, between-format similarity tended to be strongest for
quantities within the subitizing range (1–4), a result that was particularly
strong in parietal areas, including the IPS. This latter finding is highly
consistent with the view that symbolic and analog quantity processing is
linked most strongly within the range of quantities that can be processed
discretely in both systems.

As part of the broader question about the nature of symbolic repre-
sentation, a detailed mapping of the inter-relations between symbolic
and analog quantities in the brain presents both a challenge and a major
opportunity. In particular, it can address several key questions posed by
competing perspectives on the nature of symbolic representation in the



Fig. 7. Shows neural similarity between formats [a] for same-quantities (e.g., ‘3’ and ●●●) and different-quantities (e.g., ‘3’ and ●●), and [b] the difference
between the two. Results are given as effect-sizes (Cohen's d). Horizontal grey lines indicate statistical significance given the current sample size (N¼ 33); dashed lines
denote p< .05, and solid lines denote p< .0027.
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brain. One such question concerns the properties that define the
respective neural similarity spaces of symbolic and analog quantities, and
in particular whether those of symbolic quantities retain a similar
structure as that of their analog counterparts.

For analog quantities, the vast majority (16 of 19) brain regions that
showed sensitivity to relative quantity were also characterized by neural
similarity spaces that were closely aligned with numerical ratio: the
closer ratio was to 1, the higher the degree of neural similarity between
to analog quantities. This is precisely the pattern predicted by an account
of quantity encoding characterized by analog (approximate, probabi-
listic) neural tuning, wherein the imprecision of this tuning and overlap
between neighboring quantities increase systematically as the quantities
in question increase (e.g., Piazza et al., 2004; Nieder, 2005; Merten and
Nieder, 2009; Lyons et al., 2015a; Castaldi et al., 2016). We are by no
means the first to present evidence of this for analog, nonverbal
(nonsymbolic) quantity inputs (for a review, see Knops, 2017). However,
much of the previous work has focused on the IPS (e.g., Piazza et al.,
2004; Lyons et al., 2015a; though see also Harvey and Dumoulin, 2017).
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Here, we show that this pattern obtains not just in the IPS, but in a range
of other posterior and prefrontal regions (Fig. 4).

By contrast, in these same brain regions, the neural similarity space
for symbolic quantities was unrelated to ratio in 18 of 19 regions, with
the lone exception in fact an inverse relation in LIPSp. This result is
consistent with recent work showing that the presence of behavioral ratio
effects (worse performance as ratio approaches 1) for symbolic quantities
is far less reliable at the individual level than that for analog (nonsym-
bolic) quantities (Lyons et al., 2015b). Recall that the strong ratio effect
for analog quantities is predicted because of numerical tuning curves that
systematically widen (and thus increase to a greater to degree) as
quantity increases. If, on the other hand, symbolic quantities are repre-
sented more as discrete categories, then their respective ‘tuning curves’
should be equally precise across quantities; this in turn implies the
structure of symbolic similarity space should be unrelated to ratio, which
is precisely what we found. Thus, our data are more consistent with the
idea that symbolic quantities are represented in the brain not in a
probabilistic, analog manner, but instead as discrete categories.



Fig. 8. Shows cross-format neural similarity [a] for small (1–4) and large (6–9) quantities, and [b] the difference between the two. Results are given as effect-sizes
(Cohen's d). Horizontal grey lines indicate statistical significance given the current sample size (N¼ 33); dashed lines denote p< .05, and solid lines denote p< .0027.
Note that values here ignore whether similarity values are same- or different-quantity; see Fig. 7 and main text for details.
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Furthermore, for symbolic quantities, the majority (7 of 10) of pos-
terior regions, including 3 of the 4 IPS regions showed a positive relation
with lexical frequency (Fig. 5a). As frequency and numerical size are
inversely related, this implies that neural similarity between smaller
symbolic quantities was higher than that between larger quantities (see
Supplementary Information for an analysis directly confirming this pre-
diction using Size as a predictor of similarity). Crucially, this pattern of
results is literally the opposite of was seen for analog quantities. What
might explain this result for symbolic quantities, especially if – as we
discussed in the previous paragraph – evidence is more consistent with
the notion that symbolic quantities operate more as discrete categories?
Verguts et al. (2005) in fact developed a model of exact number repre-
sentation, wherein quantities operated as discrete (i.e., exact) categories.
Crucially, they found that size effects emerged only when the models
were trained such that they ‘encountered’ different numbers with vary-
ing frequency. This frequency reflected the relative frequency with which
quantities are encountered in lexical corpi, with smaller quantities
encountered most often, and frequency then falling off with increasing
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quantity as a power-law function (Dehaene and Mehler, 1992). Thus,
frequency may play a key role in shaping symbolic quantity representa-
tion. In particular, when we learn to count, we usually start with smaller
quantities (Wynn, 1990), and thus ordinal relations between smaller
quantities are rehearsed more frequently than those between larger
quantities (Lyons and Ansari, 2015). The relations between smaller
quantities – primarily due to more practice and higher rates of
co-occurrence – should therefore be stronger than those between larger
quantities. Our results are consistent with this view. Interestingly, this
pattern was restricted to posterior regions, suggesting a degree of
regional specificity. That said, though a relation with frequency was
found in canonical ‘number’ regions such as the IPS, this effect was also
seen in right inferior temporal and occipital regions (RTOJv, ROCCp),
regions previously associated with recognition of complex visual shapes
such as written numbers (Shum et al., 2013; Grotheer et al., 2016a; b). It
may thus be possible that the associative structure of symbolic quantities
– especially as it reflects frequency of exposure – is present even in the
ventral visual processing stream, an interpretation consistent with work



I.M. Lyons, S.L. Beilock NeuroImage 178 (2018) 503–518
by Daitch et al. (2016) showing a link between ventral temporal and
lateral parietal cortex during processing of numerals in an arithmetic
context. In sum, evidence suggests that symbolic quantities operate more
as discrete categories whose relational structure is determined more by
associative frequency – at least in posterior and parietal brain regions.

Another key question about the nature of symbolic and analog
quantities is whether the within-format similarity spaces that define each
format parallel one another or are largely independent. The fact that each
seems to be defined by different properties – per the discussion above –

suggests these spaces are in fact distinct. On the other hand, one might
suggest that both symbolic and analog quantities operate according to a
tuning-curves model, with the curves just substantially narrower overall
for symbolic quantities (see, e.g., Eger et al., 2009). Indeed, the lack of
relation we see here between symbolic similarity space and ratio (Fig. 4a)
would still fit this alternative view, as we might simply lack the fine-
grained resolution and/or statistical power to detect these very narrow
tuning curves. However, it is difficult to see how a tuning-curves account
could explain the positive relation seen here in the majority of parietal
and posterior regions between frequency and symbolic similarity space.
Recall that this relation implies higher similarity for smaller quantities (an
implication directly confirmed in Supplementary Information). Perhaps a
tuning-curves account could accommodate this result by positing wider
tuning-curves for smaller quantities; but we would argue that such a
model would be a sufficiently radical departure from standard tuning-
curve-based models to warrant a qualitative distinction be made.
Hence, it is important to emphasize here that we are arguing for a
qualitative division between symbolic and nonsymbolic quantity
encoding, as a categorical, frequency-based account – in the case of
symbols – is most consistent with the full body of data presented here.

Further evidence consistent with this view indicated that symbolic
and analog similarity spaces were largely unrelated, suggesting the ex-
istence of two independent systems for representing quantities (Fig. 6).
Only 1 of the 19 regions sensitive to relative quantity showed a positive
relation (RIFJ), and even then only at the lower significance threshold
(p¼ .05), the probability of which occurring by chance is .623. Two
parietal regions (RIPSp, LPOJ) in fact showed a negative relation between
symbolic and analog similarity spaces, suggesting directly opposing
associative structures, though these effects also failed to reach the higher
significance threshold, so caution may be warranted in interpreting these
effects as well. Regardless, the overwhelming majority of evidence (18 of
the 19 regions)8 indicated that the neural similarity spaces that define
symbolic and analog coding of quantity are either independent or in
direct opposition to one another. These results are perhaps all the more
remarkable because each of these regions showed systematic sensitivity
to relative quantity in both formats. Though each of these regions may be
modulated by both symbolic and nonsymbolic quantity, the underlying
manner in which they code for relations between quantities – the un-
derlying associative structure – is fundamentally different.

A third key question about the nature of symbolic and analog quan-
tities concerns the manner in which symbolic and analog quantity sys-
tems may be directly linked in terms of correlated distributed patterns of
neural activity. Results indicated strong support (significant effects in 15
8 16 of these regions showed a null effect, so to combat inference from the
null, we checked Bayes factors quantifying evidence for the null over the
alternative (B01): B01 values for all 16 regions were between 3 and 10, indicating
moderate evidence in favor of the null.
9 2 of 19 regions showed a significant effect at p< .05, the familywise prob-

ability of which is .243. 1 region showed a strong reverse effect (even at the
familywise corrected rate). Of the remaining 16 regions, 4 showed anecdotal
evidence in favor of the null (B01 between 1 and 3), and 12 regions showed
moderate evidence in favor of the null (B01 between 3 and 10). Or to put it
another way, 13 of the 19 regions (68%) showed moderate to strong evidence
against the notion that between-format similarity was specific to representation
of individual quantities, and evidence for the remaining 6 regions did not pass a
statistical threshold sufficient to warrant rejection of the null.
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of 19 regions) for common cross-format processing (Fig. 7a). How can it
be that symbolic and analog quantities comprise different similarity
spaces, but nevertheless show significant between-format similarity? One
important point is that we found very little evidence9 that this similarity
was quantity-specific, which argues against the notion of a common
representation underlying a given quantity in each format (e.g., a com-
mon sense of ‘three-ness’ underlying both ‘3’ and ●●●). This general
lack of evidence for common representation is also broadly consistent
with previous behavioral and neural evidence (Roggeman et al., 2007;
Lyons et al., 2012, 2015a; Bulth�e et al., 2014, 2015). Instead, this
input-agnostic between-format processing is perhaps more indicative of
the fact that other general processes, such as working memory, attention,
calculation, etc., operate over numerical inputs regardless of format
(symbolic or analog).

This result may also help explain certain behavioral results that seem
to show a link between symbolic and analog quantity processing. For
instance, Park and Brannon (2013, 2014) showed that training in-
dividuals to do basic arithmetic using analog quantities transferred to
gains in symbolic arithmetic performance. However, training aimed at
improving the representational precision of specific analog quantities via
an analog quantity comparison task did not. This perhaps indicates that
the key to transfer was alignment in processing (arithmetic), rather than
quantity representation, a distinction that may have implications for
future design of training regimes that rely on transfer between analog
and symbolic systems. In a similar vein, common processing might help
explain why in the univariate analyses (Fig. 3) we saw similar sensitivity
to relative quantity for symbolic and analog quantities in a wide range of
brain areas. Recall that while participants were completing a numerical
matching task, our analysis focused on the portion of the time-series in
which participants simply held a given quantity in mind – which may be
seen as essentially maintenance in working memory (Miyake and Shah,
1999). Hence, it may be that the information processing that allows
quantities to be maintained in working memory is similar regardless of
whether the quantities are symbolic or analog. At a broader level, this
notion is consistent with the view that numerical cognition is not
modular in nature: it is subject to and interacts with many other neuro-
cognitive functions throughout the brain. For instance, based on our
results, we would predict that symbolic and analog quantities would
interact with – i.e., be processed by – other cognitive control functions
such as inhibition and updating in a similar manner (Miyake et al., 2000).
However, it is important to acknowledge that we did not include
non-numerical stimuli here, so further work is needed to test the precise
extent to which our results are indeed ‘input-agnostic’.

We should also emphasize we do not believe that our results as a
whole can be explained away as ‘just’ a working memory effect. Results
discussed above clearly show the similarity spaces of symbolic and
analog quantities are determined by different – sometimes even anti-
thetical – properties, these spaces are largely independent of one another,
and we find only minimal evidence for quantity-specific cross-format
processing. These results would be hard to reconcile with a purely
working memory based account. Instead, we believe that symbolic and
analog quantities comprise distinct numerical systems characterized by
distinct relational properties; however, quantities from these two systems
nevertheless can interact in similar ways with other cognitive processes –
calculation, working memory, inhibition, long-termmemory storage, etc.

An important caveat is that similar processing of symbolic and analog
quantities is stronger (especially in the IPS) when the analog quantities in
question can be processed in discrete fashion (that is, they are within the
subitizing range, 1–4). Large analog quantities may diverge more
dramatically from their symbolic counterparts in that the former will
tend to be processed in an ever-increasingly approximate fashion (i.e., as
quantity increases further and further beyond the subitizing range),
whereas large symbolic quantities continue to be processed in discrete,
categorical fashion. By contrast, small analog quantities (1–4) can be
subitized and so processed in discrete fashion, thereby lending them-
selves to processing mechanisms more similar to those utilized for
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symbolic quantities. This interpretation dovetails nicely with the view
put forth by Susan Carey (Carey, 2004, 2011) of how children first ac-
quire cardinal understanding of number words – that is, the numerical
meaning of what are likely the first number symbols (number words) that
children learn. This view posits that children first learn to map the
meaning of number words to the cardinality of sets of concrete
(nonsymbolic) items, but exclusively within the subitizing range (Le
Corre and Carey, 2007), because only within this range can nonsymbolic
quantities be represented in exact, discrete fashion (Trick and Pylyshyn,
1994; Revkin et al., 2008). Until children learn to count beyond the
subitizing range (which succeeds acquisition of symbol-cardinality
mappings within the subitizing range; Le Corre and Carey, 2007),
nonsymbolic quantities outside this range can be processed only in
approximate, analog fashion (Carey et al., 2017). This analog aspect of
larger quantities appears to be largely an anathema to the discrete, cat-
egorical nature of symbolic quantity representation, which thus argues
against the view that our understanding of larger symbolic quantities is
fundamentally grounded in our understanding of larger analog quanti-
ties. Perhaps instead, symbolic quantities come to assume an associative
structure that quickly outpaces their analog counterparts in terms of
complexity, scope and abstraction (Peirce, 1955; Deacon, 1997; Nieder,
2009; Lyons, 2015; Nú~nez, 2017).

Conclusion

Taken together, our results show that symbolic quantities operate
more like symbolic systems as they have been conceptualized by thinkers
such as Peirce (1955), Deacon (1997), and Nú~nez (2017), in that number
symbols are primarily defined by relations between the symbols within
the system, perhaps even at the expense of weakened links to their
perceptual analog counterparts. Our results are less consistent with the
view that symbolic quantities are firmly ‘grounded in’ or ‘embodied by’
their analog counterparts (e.g., Varela et al., 1991; Pulvermüller, 2013;
Dehaene, 1997, 2008; Feigenson et al., 2004, 2013; Lyons and Ansari,
2009; Nieder and Dehaene, 2009; Piazza et al., 2007). That said, while
our data are clearly more consistent with the view that symbolic and
analog quantities comprise distinct numerical systems characterized by
distinct relational properties, they also show that quantities from these
two systems may nevertheless interact via more general neurocognitive
processes. Though numerical symbols are of course only one type of
symbolic representation, our results may nevertheless contribute to
answering the deeper question of how the brain processes discrete,
symbolic inputs and approximate, analog (continuous, perceptually
grounded) inputs, as well as the potential interrelations between these
two forms.
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