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1 Student’s t distribution and t-tests

Consider the following hypothesis testing problem:

H0 : xi
iid∼ N (µ0, σ

2), i = 1, . . . , n

H1 : xi
iid∼ N (µ, σ2), i = 1, . . . , n, µ > µ0 but otherwise unknown

We have discussed how to handle this test when σ2 is known. But how should we proceed
if it is unknown?

One option is the GLRT, discussed above. However, (a) we must estimate µ and (b)
Wilk’s theorem only tells us that the test statistic corresponding to maximum likelihood
estimates of σ2 and µ is asymptotically chi-squared. For small n, then, it can be difficult
to set a threshold to achieve a desired probability of false positives or type I error.

As alternative is the celebrated t-test. Specifically, let

x :=
1

n

n∑
i=1

xi

and note that under H0, x ∼ N (µ0, σ
2/n). So if we knew σ2, we could compute the

statistic x−µ0
σ/
√
n
∼ N (0, 1) and set a threshold as discussed in previous units. Since we do

not know σ2, we can estimate it from our data; specifically, let sn :=
√

1
n−1

∑n
i=1(xi − x)2

be the sample standard deviation. Then s/
√
n is called the standard error of the mean

and is an estimate of σ/
√
n. This leads us to the t-statistic:

t∗ =
x− µ0

s/
√
n
.

Ultimately we will perform our hypothesis test by thresholding t∗, and to set a thresh-
old guaranteed to yield a certain probability of false positives or type I error we must
undertand the distribution of t∗.

In 1908, Guinness statistician William Gosset published a paper characterizing this
distribution under the pseudonym “Student”, and subsequently the distribution has been
dubbed Student’s t-distribution. It is parameterized by ν, the number of degrees of
freedom in the distribution, and takes the form

pν(t) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)
(1 +

t2

ν
)−

ν+1
2 .
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The test statistic t∗ above is drawn from the t-distribution with ν = n − 1 degrees of
freedom.

As ν −→ ∞, pν(t) −→ N (0, 1). For smaller ν corresponding to smaller sample
sizes, though, the t-distribution has heavier tails, and its tail probabilities can be used to
determine appropriate thresholds for t-statistics.

1.1 Two-sample t-tests

In some settings we observe two different sets of data, data x1, . . . , xnx and y1, . . . , yny
and which to perform a test, say to see if they are drawn from distribtuions with the
same mean. For instance,

H0 :xi
iid∼ N (µ0, σ

2
x), i = 1, . . . , nx

yi
iid∼ N (µ0, σ

2
y), i = 1, . . . , ny.

A common approach is to consider a test statistic that is a function of x− y, as under
the null hypothesis this difference will have zero mean. We will construct and threshold
a t-statistic. This is called a two-sample t-test.

How should we compute a t-statistic in such a case? Generally we use the formula

t∗ =
x− y
s.e.

where s.e. is the standard error of the mean, as before. How should this standard error
be computed? There are two possibilities:

1. We assume the two distributions have equal variance (σ := σx = σy). In this case,
x− y ∼ N (0, σ2/nx + σ2/ny), and we estimate σ2 via

s2 =

∑nx
i=1(xi − x)2 +

∑ny
i=1(yi − y)2

nx + ny − 2

and then s.e. =
√
s2(1/nx + 1/ny). The resulting t-statistic has ν = nx + ny − 2

degrees of freedom.
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2. We do NOT assume the two distributions have equal variance. In this case, x−y ∼
N (0, σ2

x/nx + σ2
y/ny). We estimate σ2

x via

s2x =
1

nx − 1

nx∑
i=1

(xi − x)2

and similarly for σ2
y. Then the standard error is s.e. =

√
s2x/nx + s2y/ny. The

distribution of the resulting statistic is approximately a t-distribution with

ν =
(s2x/nx + s2y/ny)

2

(s2x/nx)
2/(nx − 1) + (s2y/ny)

2/(ny − 1)

degrees of freedom. (This is known as the Welch-Satterthwaite equation.)

2 p-values

So far we have considered making decisions or performing hypothesis testing by computing
a test statistic and thresholding it. Our aim is the answer the key question

Note: Does our data provide enough evidence for us to reject the null
hypothesis H0?

We saw that we can choose a threshold to minimize the probability of error or probability
of false positives or other measures of error. However, the result of such a test is always
a binary decision (H0 or H1) and not a measure of how strong our evidence is again H0.
p-values bridge this gap.

Specifically, for a given test statistic t∗, we could perform the test

t∗
H1

≷
H0

τα

where τα is a threshold associated with a type I error or false positive rate of α (the value
of τα depends on the distribution of t∗ under the null hypothesis). One can easily imagine
that there is a range of values of α which would all lead us to reject H0. The p-value is
essentially the smallest α (corresponding to the largest threshold τα) for which we would
reject H0 with our test statistic. More formally

Definition: p-value

The p-value is the smallest level at which we can reject H0:

p-value = inf{α : t∗ > τα}.

More generally, if Rα is the rejection region associated with a test at level α, then

p-value = inf{α : t∗ ∈ Rα}.
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Note: Notes on the p-value

• it measures the strength of the evidence against H0: a small p-value (e.g., below
0.05, ideally below 0.01) indicates strong evidence against H0.

• a large p-value is NOT evidence in favor of H1 (it’s possible we just have a
low-power test)

• the p-value should NOT be thought of as P(H0|data).

Theorem: Computation of the p-value

Let p0 denote the distribution of the test statistic under H0. If we have a test of the
form reject H0 if and only if t∗ ≥ τα, then

p-value = P(T ≥ t∗|T ∼ p0).

In other words, the p-value is the probability under H0 of observing a test statistic
at least as extreme as what was observed.

Distribution of the p-value

If the test statistic has a continuous distribution, then under H0 the p-value is
uniformly distributed between 0 and 1. Thus if we reject H0 whenever a p-value is
less than α, that test as a type I error or probability of false positives of α.

Example: GPA distributions

We sample n = 15 students and look at their GPAs. The sample mean GPA among
these students was x = 3.15, and the sample standard deviation was

s =

√√√√ 1

14

n∑
i=1

(xi − x)2 = 0.3.

We want to test whether the mean GPA is µ0 = 3 or µ > 3; that is

H0 : xi
iid∼ N (µ0, σ

2), i = 1, . . . , n

H1 : xi
iid∼ N (µ, σ2), i = 1, . . . , n, µ > µ0 but otherwise unknown.

We can compute a t-statistic of t∗ = x−µ0
s/
√
n

= 1.94, which follows a t-distribution with

ν = n− 1 = 14 degrees of freedom.
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What is the p-value for this statistic? We must compute

p-value = P(T ≥ t∗|T ∼ p14(t)) = 1− P(T < t∗|T ∼ p14(t)); (1)

the last expression can be computed by evaluating the CDF of the t-distribution at t∗

(e.g. using tcdf in matlab), yielding a p-value of 0.037 – thus we have strong (though
not very strong) evidence for rejecting the null hypothesis that the mean GPA is 3.
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