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The Bayesian Paradigm

Given a parameter θ, we assume observations are generated
according to p(y|θ). In our work so far, we have treated the
parameter θ like a fixed, deterministic, but unknown quantity while
the observation y is the realization of a random process.

We will now consider probabilistic models for θ in addition to our
data.

I This allows us to incorporate prior information we have about
θ (i.e. information about likely values of θ we have before
collecting any data).

I It also allows us to make statements about our confidence in
different estimates of θ.
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Example: Unfair coin

Suppose you toss a single coin 6
times and each time it comes up
“heads.” It might be reasonable
to say that we are 98% sure that
the coin is unfair, biased towards
heads.

Formally, we can think about this in a hypothesis testing
framework using a binomial probabilistic model. Let k :=

∑6
i=1 yi.

H0 : prob heads ≡ θ > 0.5

p(y|θ) =

(
n

k

)
θk(1− θ)n−k

p(θ > 0.5|y) =?
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Example: (cont.)

The problem with this is that

p(θ ∈ H0|x)

implies that θ is a random, not deterministic, quantity.

So, while “confidence” statements are very reasonable and in fact
a normal part of “everyday thinking,” this idea can not be
supported from the classical perspective.

All of these “deficiencies” can be circumvented by a change in how
we view the parameter θ.
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Example: Image processing

In many imaging problems, we have a good sense of what
“natural” images should look like.

Likely Unlikely

This prior information can be exploited to improve image
denoising, deblurring, reconstruction, and analysis.
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Bayes Rule
If we view θ as the realization of a random variable with density
p(θ), then we can work with the generative (or forward) model

p(θ)︸︷︷︸
prior

→ θ∗ → p(y|θ∗)︸ ︷︷ ︸
likelihood

→ y.

We are interested in the inverse problem

y → p(θ|y)→ θ̂.

Bayes Rule (Bayes, 1763) shows that

p(θ|y) =
p(y|θ) p(θ)

p(y)
=

p(y|θ) p(θ)∫
p(y|θ̃) p(θ̃) dθ̃

Once we can compute this posterior distribution, confidence
measures such as p(θ ∈ H0|y) are perfectly legitimate quantities to
ask for.
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Example: Coin toss

Suppose you toss a single coin 6 times and each time it comes up
“heads.” Mathematically, we can model the problem as follows. Let
θ = P(Heads). The data (the number of heads y in n = 6 tosses) follows
a binomial distribution p(y|θ) =

(
n
y

)
θy(1− θ)n−y. The mathematical

equivalent of the question “is the coin probably biased” is the probability
P(θ > 0.5|y = 6).
Suppose we assume p(θ) = Unif(0, 1) (all values of θ are equally probable
before we begin to flip the coin, and P(θ > 1

2 ) = 1
2 ). Now compute

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

=
θ6∫
θ6dθ

=
θ6

1
7θ

7|10
= 7 θ6 .

Then

P
(
θ >

1

2
| y = 6

)
=

∫ 1

1
2

7θ6dθ = θ7|11
2

= 1− 2−7 = 0.984 .

(If we chose a different prior we would get a different answer!)
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Bayesian statistical models

Definition: Bayesian statistical model

A Bayesian statistical model is composed of a data generation
model, p(y|θ), and a prior distribution on the parameters, p(θ).

The prior distribution (or “prior” for short) models the uncertainty
in the parameter. More specifically, p(θ) models our knowledge -
or a lack thereof - prior to collecting data.

Notice that

p(θ|y) =
p(y|θ) p(θ)

p(y)
∝ p(y|θ) p(θ)

Hence, p(θ|y) is proportional to the likelihood function multiplied
by the prior.
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Example: DC level in AWGN

yi = A+ νi , n = 1, · · · , N
νi ∼ N (0, σ2) iid

Â =
1

n

n∑
i=1

yi MLE estimate

Now suppose that we have prior knowledge that −A0 ≤ A ≤ A0.
We might incorporate this by forming a new estimator

Ã =


−A0 , Â < −A0

Â , −A0 ≤ Â ≤ A0

A0 , Â > A0

This is called a truncated sample mean estimator of A.
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Example: (cont.)

Is Ã a better estimator of A than the sample mean Â? Let pMLE

denote the density of Â. Since Â = 1
n

∑
yi,

pMLE = N (A, σ2/n).

The density of the truncated sample mean (TSM) Ã is given by

pTSM =P(Â ≤ −A0) δ(a+A0) + pMLEI{−A0≤a≤A0}

+ P(Â ≥ A0) δ(a−A0)

pMLE pTSM
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Now consider the MSE of the sample mean Â:

MSE(Â) =

∫ ∞
−∞

(a−A)2 pMLE(a) da

=

∫ −A0

−∞
(a−A)2 pMLE(a) da+

∫ A0

−A0

(a−A)2 pMLE(a) da

+

∫ ∞
A0

(a−A)2 pMLE(a) da

>

∫ −A0

−∞
(−A0 −A)2 pMLE(a) da+

∫ A0

−A0

(a−A)2 pMLE(a) da

+

∫ ∞
A0

(A0 −A)2 pMLE(a) da

=(−A0 −A)2 P(Â ≤ −A0) +

∫ A0

−A0

(a−A)2 pMLE(a) da

+ (A−A0)2 P(Â ≥ A0)

=MSE(Ã)

MSE(Â) > MSE(Ã)
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Note

1. Ã is biased

2. Although Â is the MLE, Ã is better in the MSE sense

3. Prior information is aptly described by regarding A as a
random variable with a prior distribution.

uniform(−A0, A0)

⇒ We know −A0 ≤ A ≤ A0, but otherwise A is arbitrary.
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Elements of Bayesian Analysis

(a) Joint distribution

p(y, θ) = p(y|θ)p(θ)

(b) Marginal distributions

p(y) =

∫
p(y|θ)p(θ)dθ

p(θ) =

∫
p(y|θ)p(θ)dy(“prior”)

(c) Posterior distribution

p(θ|y) =
p(y, θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dy
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Example: Binomial + Beta

p(y|θ) =

(
n

y

)
θy(1− θ)n−y, 0 ≤ θ ≤ 1

= binomial likelihood

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

= Beta prior distribution

where Γ(α) =

∫ ∞
0

yα−1e−ydy is the Gamma function
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Example: (cont.)

I Joint Density

p(y, θ) =

[ (
n
y

)
B(α, β)

]
θα+y−1(1− θ)n−y+β−1

I Marginal Density

p(y) =

[(
n

y

)
1

B(α, β)

]
B(α+ y, β + n− y)

I Posterior Density

p(θ|y) =
θα+y−1(1− θ)β+n−y−1

B(α+ y, β + n− y)︸ ︷︷ ︸
beta density with parameters

α′ = α+ y
β′ = β + n− y
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Bayesian Estimation

We are interested in estimating θ given the observation y within a
Bayesian framework. Naturally, then, any estimation strategy will
be based on the posterior distribution p(θ|y).

However, we need a criterion for assessing the quality of potential
estimators.
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Loss

Definition: Loss

The quality of an estimate θ̂ is measured by a real-valued loss (or
cost) function

L(θ, θ̂).

For example, squared error or quadratic loss is simply

L(θ, θ̂) = (θ − θ̂(y))>(θ − θ̂(y)) = ‖θ − θ̂(y)‖2.

Definition: Bayes Risk

The quality of an estimator is measured by the expected loss,
known as the Bayes risk:

R(θ̂) := Ey,θ
[
L(θ, θ̂)

]
.
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Note that the expectation is with respect to both y and θ.

For example, if y and θ are jointly continuous, then

R(θ̂) =

∫∫
L(θ, θ̂(y))p(θ, y)dydθ

=

∫∫
L(θ, θ̂(y))p(y|θ)p(θ)dydθ

= Ey
[
Eθ|y

[
L(θ, θ̂(y))|y = y

]]
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In general, Bayesian estimation seeks the estimator

θ̂ = arg min
θ̃

R(θ̃)

= arg min
θ̃

Ey,θ
{
L
(
θ, θ̃(y)

)}
= arg min

θ̃

Ey
{
Eθ|y

{
L
(
θ, θ̃(y)

)
|y = y

}}
minimizing the Bayes risk. Thus, given the data y, the “best” or
optimal estimator under a given loss function is given by

θ̂(y) = arg min
θ̃

E
[
L
(
θ, θ̃
)
|y
]
.

This is called the “posterior expected loss”; it depends only on the
loss function and the posterior distribution.
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Bayesian estimation with squared error loss

Measure the loss as L(θ, θ̂) = ‖θ − θ̂‖2. Now note

Eθ|y=y[(θ − θ̂(y))>(θ − θ̂(y))]

= Eθ|y[(θ − E[θ|y] + E[θ|y]− θ̂(y))>(θ − E[θ|y] + E[θ|y]− θ̂(y))]

= Eθ|y[(θ − E[θ|y])>(θ − E[θ|y])] + 2Eθ|y[(θ − E[θ|y])>(E[θ|y]− θ̂(y))]

+Eθ|y[(E[θ|y]− θ̂(y))>(E[θ|y]− θ̂(y))]

The first term is independent of θ̂(y) and the second term is 0.
The third term can be minimized by taking

θ̂PM(y) = E[θ|y] =

∫
θp(θ|y)dθ

which is the posterior mean. (In signal processing this is also called
the “Bayesian minimim mean squared error estimator”.)
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Example: DC Level in AWGN

yi = A+ νi

i = 1, · · · , n, νi ∼ N (0, σ2). Prior for unknown parameter A:

p(A) = Unif[−A0, A0]

p(y|A) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi −A)2

}

p(A|y) =


1

2A0(2πσ2)n/2
exp

{
− 1

2σ2

∑n
i=1(yi −A)2

}∫ A0

−A0

1
2A0(2πσ2)n/2

exp
{
− 1

2σ2

∑n
i=1(yi − a)2

}
da

if |A| ≤ A0

0 if |A| > A0
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Example: (cont.)

Bayes Minimum MSE Estimator:

Â = E [A|y] =

∫ ∞
−∞

Ap(A|y)dA

=

∫ A0

−A0
A · 1

2A0(2πσ2)n/2 exp
{
− 1

2σ2

∑n
i=1(yi −A)2

}
dA∫ A0

−A0

1
2A0(2πσ2)n/2 exp

{
− 1

2σ2

∑n
i=1(yi − a)2

}
da

Notes:
1. No closed-form estimator

2. As A0 →∞, Â→ 1
n

∑n
i=1 yi

3. For smaller A0, truncated integral produces an Â that is a
function of y, σ2, and A0

4. As n increases σ2/n decreases and posterior p(A|y) becomes
tightly clustered about 1

n

∑
i yi

⇒ Â→ 1
n

∑
yi as n→∞

(the data ”swamps out” the prior)
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Other Common Loss Functions

Absolute Error Loss (Laplace, 1773):

L(θ, θ̂) = ‖θ − θ̂‖1 :=

p∑
i=1

|θi − θ̂i|

Scalar case:

E
[
L(θ, θ̂)|y

]
=

∫ ∞
−∞
|θ − θ̂|p(θ|y)dθ

=

∫ θ̂

−∞
(θ̂ − θ)p(θ|y)dθ +

∫ ∞
θ̂

(θ − θ̂)p(θ|y)dθ

The optimal estimator under this loss is referred to the “minimum
mean absolute error” (MMAE) estimator.
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To see what estimator minimises this loss, we differentiate

E
[
L(θ, θ̂)|y

]
with respect to θ̂ (using Leibnitz’s rule) to get

∂

∂θ̂
E
[
L(θ, θ̂)|y

]
= P (θ̂(y)|y)− (1− P (θ̂(y)|y)),

where P (θ|y) is the posterior cumulative distribution function of θ
given y. Setting this equal to zero, this implies P (θ̂(y)|y) = 1/2 or

P(θ < θ̂|y) = P(θ > θ̂|y).

The optimal θ̂ under absolute error loss is the posterior median.
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Uniform Loss:

L(θ, θ̂) = I{‖θ̂−θ‖>ε} =

{
1 if ‖θ − θ̂‖ > ε

0 otherwise

where ε > 0 is small. The posterior expected loss is

E
[
L(θ, θ̂)|y

]
= E

[
I{‖θ̂−θ‖>ε}|y

]
= P(‖θ̂ − θ‖ > ε|y)

which is the posterior probability that θ deviates from θ̂(y) by
more then ε. To minimize this uniform loss we must choose θ̂ to
be the value of θ with highest posterior probability. Taking the
limit as ε −→ 0 gives:

The optimal estimator θ̂ under uniform loss is the posterior mode.
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Definition

Maximum A Posteriori (MAP) estimator - the value of θ where
p(θ|y) is maximized:

θ̂MAP(y) = arg max
θ̃

p(θ̃|y) = arg max
θ̃

p(y|θ̃)p(θ̃)
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θ

θ

p(θ|x)

p(θ|x)

(a) General posterior PDF

(b) Gaussian posterior PDF

If the posterior is symmetric and unimodal, then

θ̂MMSE = θ̂MMAE = θ̂MAP
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Computation

Both θ̂PM and θ̂MMAE require integrating with respect to p(θ|y).
Often this calculation will be intractable. How can we approximate
these estimators numerically?
One common approach: if we can simulate θ1, . . . , θM from p(θ|y),
then we can apply the following Monte Carlo estimates:

θ̂PM(y) ≈ 1

M

M∑
i=1

θi

θ̂MMAE(y) ≈ median {θ1, . . . , θM}

If the posterior mode cannot be determined analytically, then
numerical approaches can be applied.
Which of the three loss functions is used is often dictated by
computational considerations.
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Choosing a Prior

Two approaches:

1. Informative (or “subjective”) priors:
I design/choose priors that are compatible with prior knowledge

of unknown parameters
I can be impractical in complicated problems with many

parameters
I injecting subjective opinion into analysis contrary to making

scientific analysis as objective as possible.

2. Non-informative priors:
I attempt to remove subjectiveness from Bayesian procedures
I designs are often based on invariance arguments
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Selecting an Informative Prior

Clearly, the most important objective is to choose the prior p(θ)
that best reflects the prior knowledge available to us.

In general, however, our prior knowledge is imprecise and any
number of prior densities may aptly capture this information.

Moreover, usually the optimal estimator can’t be obtained in
closed-form.

Therefore, sometimes it is desirable to choose a prior density that
models prior knowledge and is nicely matched in functional form to
p(y|θ) so that the optimal estimator (and posterior density) can be
expressed in a simple fashion.
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Conjugate Priors
Idea: Given p(y|θ), choose p(θ) so that p(θ|y) ∝ p(y|θ) p(θ) has a
simple functional form.
Conjugate priors: choose p(θ) ∈ P, where P is a family of
densities (e.g., Gaussian family) so that the posterior density also
belongs to that family.

Definition

p(θ) is a conjugate prior for p(y|θ) if

p(θ) ∈ P ⇒ p(θ|y) ∈ P

Example: Conjugate priors for exponential random variables

y1, . . . , yn
iid∼ exponential(θ)

p(y|θ) =

n∏
i=1

θe−θyi = θne−θt

where t :=
∑
yi.
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Example: (cont.)

Let θ ∼ Gamma(α, β), so that p(θ) = βα

Γ(α)θ
α−1e−βθ for θ ∈ [0,∞).

Then

p(y, θ) = θne−θt
βα

Γ(α)
θα−1e−βθ

p(y) =

∫
p(y, θ)dθ =

∫ ∞
0

θne−θt
βα

Γ(α)
θα−1e−βθdθ

=
βα

Γ(α)

∫ ∞
0

θN+α−1e−θ(β+t)dθ

=
βα

Γ(α)

Γ(N + α)

(β + t)N+α

p(θ|y) =
p(y, θ)

p(y)

=
(β + t)N+α

Γ(N + α)
θN+α−1e−θ(β+t)

= Gamma(N + α, β + t)

Thus the Gamma prior is conjugate for the exponential distribution!
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Example: Constant in AWGN

yi = A+ νi , i = 1, · · · , n; νi
iid∼ N (0, σ2)

Rather than modeling A ∼ Uniform(−A0, A0) (which did not yield
a closed-form estimator) consider

p(A) =
1√

2πσA2
exp

{
− 1

2σA2
(A− µ)2

}
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Example: (cont.)

With µ = 0 and σA = 1
3A0 this Gaussian prior also reflects prior

knowledge that it is unlikely for |A| ≥ A0.
The Gaussian prior is also conjugate to the Gaussian likelihood

p(y|A) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(yi −A)2

]

so that the resulting posterior density is also a simple Gaussian, as
shown next. First note that

p(y|A) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

y2
i

]
· exp

[
− 1

2σ2
(nA2 − 2nAȳ)

]

where ȳ = 1
n

∑n
i=1 yi.
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Example: (cont.)

p(A|y) =
p(y|A) p(A)∫
p(y|a) p(a) da

=
exp

[
− 1

2

(
1
σ2 (nA2 − 2nAȳ) + 1

σA2 (A− µ)2
)]

∫∞
−∞ exp

[
− 1

2

(
1
σ2 (na2 − 2naȳ) + 1

σA2 (a− µ)2
)]
da

=
e−

1
2Q(A)∫∞

−∞ e−
1
2Q(a)da

where

Q(A) =
n

σ2
A2 − 2nAȳ

σ2
+

A2

σA2
− 2µA

σA2
+

µ2

σA2

Now let

σ2
A|y :=

1
n
σ2 + 1

σA2

µ2
A|y :=

(
n

σ2
ȳ +

µ

σA2

)
σ2
A|y
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Example: (cont.)

Then by “completing the square” we have

Q(A) =
1

σ2
A|y

(
A2 − 2µA|yA+ µ2

A|y

)
−
µ2
A|y

σ2
A|y

+
µ2

σA2

=
1

σ2
A|y

(
A2 − µA|y

)2 − µ2
A|y

σ2
A|y

+
µ2

σA2

Hence

p(A|y) =

exp

[
− 1

2σ2
A|y

(A− µA|y)2

]
exp

[
− 1

2

(
µ2

σA2 −
µ2
A|y
σ2
A|y

)]
∫∞
−∞ exp

[
− 1

2σ2
A|y

(a−µA|y)2

]
︸ ︷︷ ︸
“unnormalized” Gaussian density

exp

[
− 1

2

(
µ2

σA
2−

µ2
A|y
σ2
A|y

)]
︸ ︷︷ ︸

Constant, indep. of a

da

=
1√

2πσ2
A|y

exp

[
− 1

2σ2
A|y

(A− µA|y)2

]

A|y ∼ N (µA|y, σ
2
A|y)
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Example: (cont.)

Now

Â = E [A|y] = µA|y =
n
σ2 ȳ + µ

σA2

n
σ2 + 1

σA2

=

(
σA

2

σA2 + σ2/n

)
ȳ +

(
σ2/n

σA2 + σ2/n

)
µ

= αȳ + (1− α)µ

where

0 < α =
σA

2

σA2 + σ2/n
< 1

Interpretation

1. When there is little data (σ2
A � σ2

n ), α is small and Â ≈ µ.

2. When there is a lot of data (σ2
A � σ2

n ), α ≈ 1 and Â ≈ ȳ.
Interplay between data and prior knowledge
small n −→ Â favors prior, large n −→ Â favors data

37 / 37


