
ECE 830 / CS 761 Spring 2016 Instructors: R. Willett & R. Nowak

Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors,
ROC curves, and sufficient statistics

1 Executive summary

In the last lecture we saw that the likelihood ratio statistic was optimal for testing between
two simple hypotheses. The test simply compares the likelihood ratio to a threshold.
The “optimal” threshold is a function of the prior probabilities and the costs assigned
to different errors. The choice of costs is subjective and depends on the nature of the
problem, but the prior probabilities must be known.

In practice, we face several questions:

1. Unfortunately, often the prior probabilities are not known precisely, and thus the
correct setting for the threshold is unclear. How should we proceed?

2. What are the tradeoffs among different measures of error (e.g. probability of false
alarm, probability of miss, etc.)?

3. Is the LRT still optimal for different error criteria?

4. Do we really need to store all the observed data, or can we get by with some
summary statistics?

We will address these questions in these notes.
To explore these questions, we will look at a simple example.

Example: Detecting ET

We observe a sampled radio signal from outer space. Is this just cosmic radiation /
noise, or are we receiving a message from extra-terrestrial intelligence (ETI)?

null hypothesis (no ETI) H0 : xi
iid∼ N (0, σ2), i = 1, . . . , n (1)

alternative hypothesis (ETI) H1 : xi
iid∼ N (µ, σ2), µ > 0, i = 1, . . . , n. (2)

Assume that σ2 > 0 is known. The first hypothesis is simple. It involves a fixed and
known distribution. The second hypothesis is simple if µ is known. However, if all we
know is that µ > 0, then the second hypothesis is the composite of many alternative
distributions, i.e., the collection {N(µ, σ2)}µ>0. In this case, H1 is called a composite
hypothesis.
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The likelihood ratio test takes the form∏n
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The inequalities are preserved if we apply a monotonic transformation to both sides,
so we can simplify the expression by taking the logarithm, giving us the log-likelihood
ratio test
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Assuming µ > 0, this is equivalent to
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2
.

2 Sufficient Statistics

Our test statistic t :=
∑n

i=1 xi is called the sufficient statistic for the mean of a normal
distribution. Let’s rewrite our hypotheses in terms of the sufficient statistic:

H0 :t ∼ N (0, nσ2), (3)

H1 :t ∼ N (nµ, nσ2), µ > 0 (4)

We call t a sufficient statistic because t is sufficient for performing our likelihood ratio
test. More formally, a sufficient statistic is defined as follows:

Definition: Sufficient statistic

LetX be an n-dimensional random vector and let θ denote a p-dimensional parameter
of the distribution of X. The statistic t := T (x) is a sufficient statistic for θ if and
only if the conditional distribution of X given T (X) is independent of θ.

More details are available at http://willett.ece.wisc.edu/wp-uploads/2016/02/04-
SuffStats.pdf.

If our data is drawn from an exponential family probability model parameterized by
θ with the form

pθ(x) = exp[a(θ)b(x) + c(x) + d(θ)]

then t(x) =
∑n

i=1 b(xi) is a sufficient statistic. Thus if we are faced with a hypothesis
test of the form

H0 :xi
iid∼ pθ0(x) (5)

H1 :xi
iid∼ pθ1(x) (6)

then our test statistic is a simple function of the data, and we do not need to know the
functions a, c, and d to compute it (though we may need these functions to choose an
appropriate threshold).

http://willett.ece.wisc.edu/wp-uploads/2016/02/04-SuffStats.pdf
http://willett.ece.wisc.edu/wp-uploads/2016/02/04-SuffStats.pdf
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3 Choosing thresholds

Recall that our ideal threshold is ν = σ2

µ
ln γ + nµ

2
. However, in our ETI setting we have

no way of knowing prior probabilities π0, π1 to set γ, AND we have no way of knowing a
good value for µ.

To deal with this, consider an alternative design specification. Let’s design a test
that minimizes one type of error subject to a constraint on the other type of error. This
constrained optimization criterion does not require knowledge of prior probabilities nor
cost assignments. It only requires a specification of the maximum allowable value for one
type of error, which is sometimes even more natural than assigning costs to the different
errors. A classic result due to Neyman and Pearson shows that the solution to this type
of optimization is again a likelihood ratio test.

4 Neyman-Pearson Lemma

Assume that we observe a random variable distributed according to one of two distribu-
tions.

H0 : X ∼ p0

H1 : X ∼ p1

In many problems, H0 is consider to be a sort of baseline or default model and is called the
null hypothesis. H1 is a different model and is called the alternative hypothesis. If a test
chooses H1 when in fact the data were generated by H0 the error is called a false-positive
or false-alarm, since we mistakenly accepted the alternative hypothesis. The error of
deciding H0 when H1 was the correct model is called a false-negative or miss.

Let T denote a testing procedure based on an observation of X, and let RT denote the
subset of the range of X where the test chooses H1. The probability of a false-positive is
denoted by

P0(RT ) :=

∫
RT

p0(x) dx .

The probability of a false-negative is 1− P1(RT ), where

P1(RT ) :=

∫
RT

p1(x) dx ,

is the probability of correctly deciding H1, often called the probability of detection.
Consider likelihood ratio tests of the form

p1(x)

po(x)

H1

≷
H0

λ .

The subset of the range of X where this test decides H1 is denoted

RLR(λ) := {x : p1(x) > λp0(x)} ,

and therefore the probability of a false-positive decision is

P0(RLR(λ)) :=

∫
RLR(λ)

p0(x) dx =

∫
{x:p1(x)>λp0(x)}

p0(x) dx
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This probability is a function of the threshold λ; the set RLR(λ) shrinks/grows as λ
increases/decreases. We can select λ to achieve a desired probability of error.

Neyman-Pearson Lemma

Consider the likelihood ratio test

p1(x)

po(x)

H1

≷
H0

λ

with λ > 0 chosen so that P0(RLR(λ)) = α. There does not exist another test T with
P0(RT ) ≤ α and P1(RT ) > P1(RLR(λ)). That is, the LRT is the most powerful
test with probability of false-negative less than or equal to α.

Proof. Let T be any test with P0(RT ) = α and let NP denote the LRT with λ chosen
so that P0(RLR(λ)) = α. To simplify the notation we will denote use RNP to denote the
region RLR(λ). For any subset R of the range of X define

Pi(R) :=

∫
R

pi(x) dx,

This is simply the probability of X ∈ R under hypothesis Hi. Note that

Pi(RNP ) = Pi(RNP ∩RT ) + Pi(RNP ∩Rc
T )

Pi(RT ) = Pi(RNP ∩RT ) + Pi(R
c
NP ∩RT )

where the superscript c indicates the complement of the set. By assumption P0(RNP ) =
P0(RT ) = α, therefore

P0(RNP ∩Rc
T ) = P0(R

c
NP ∩RT ) .

Now, we want to show
P1(RNP ) ≥ P1(RT )

which holds if
P1(RNP ∩Rc

T ) ≥ P1(R
c
NP ∩RT ) .

To see that this is indeed the case,

P1(RNP ∩Rc
T ) =

∫
RNP∩RcT

p1(x) dx

≥ λ

∫
RNP∩RcT

po(x) dx

= λPo(RNP ∩Rc
T )

= λPo(R
c
NP ∩RT )

= λ

∫
RcNP∩RT

po(x) dx

≥
∫
RcNP∩RT

p1(x) dx

= P1(R
c
NP ∩RT ).
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The probability of a false-positive is also called the probability of false-alarm, which
we will denote by PFA in the following examples. We will also denote the probability of
detection (1− probability of a false-negative) by PD. The NP test maximizes PD subject
to a constraint on PFA.

Example: Detecting a DC Signal in Additive White Gaussian Noise

Return to our ETI example from earlier. Assuming µ > 0, our LRT amounts to

n∑
i=1

xi
H1

≷
H0

ν ,

with ν = σ2

µ
ln γ + nµ

2
, and since γ was ours to choose, we can equivalently choose ν

to trade-off between the two types of error.
Let’s now determine PFA and PD for the log-likelihood ratio test.

PFA =

∫ ∞
ν

1√
2nπσ2

e−
t2

2nσ2 dt = Q

(
ν√
nσ2

)
,

where Q(z) =
∫
u≥z

1√
2π
e−u

2/2 du, the tail probability of the standard normal distri-
bution. Similarly,

PD =

∫ ∞
ν

1√
2nπσ2

e−
(t−nµ)2

2nσ2 dt = Q

(
ν − nµ√
nσ2

)
.

In both cases the expression in terms of the Q function is the result of a simple change
of variables in the integration. The Q function is invertible, so we can solve for the
value of ν in terms of PFA, that is ν =

√
nσ2Q−1(PFA). Using this we can express

PD as

PD = Q

(
Q−1(PFA)−

√
nµ2

σ2

)
,

where
√

nµ2

σ2 is simply the square root of the signal-to-noise ratio (
√
SNR). Since

Q(z)→ 1 as z → −∞, it is easy to see that the probability of detection increases as
µ and/or n increase.

Example: Detecting a Change in Variance

Consider the binary hypotheses

H0 : X1, . . . , Xn
iid∼ N (0, σ2

0)

H1 : X1, . . . , Xn
iid∼ N (0, σ2

1) , σ1 > σ0
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The log-likelihood ratio test is

n

2
log

(
σ2
0

σ2
1

)
+
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1

2σ2
0

− 1

2σ2
1

) n∑
i=1

x2i
H1
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Some simple algebra shows
n∑
i=1

x2i
H1
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ν

with ν = 2
(

σ2
1σ

2
o

σ2
1−σ2

0

)
(log(γ) + n ln(σ1

σo
)). Note that t :=

∑n
i=1 x

2
i is the sufficient

statistic for variance of a zero-mean normal distribution.
Now recall that if X1, . . . , , Xn

iid∼ N(0, 1), then
∑n

i=1X
2
i ∼ χ2

n (chi-square dis-
tributed with n degrees of freedom). Let’s rewrite our null hypothesis test using the
sufficient statistic:

H0 : t =
n∑
i=1

x2i
σ2
0

∼ χ2
n

The probability of false alarm is just the probability that a χ2
n random variable

exceeds ν/σ2
0. This can be easily computed numerically. For example, if we have

n = 20 and set PFA = 0.01, then the correct threshold is ν = 37.57σ2
0.

5 Receiver Operating Characteristic (ROC) curves

The binary hypothesis test

H0 : X = W

H1 : X = S +W

where W ∼ N(0, σ2In×n) and S = [s1, s2, . . . , sn]T is the known signal.

P0(X) =
1

(2πσ2)
n
2

exp

(
− 1

2σ2
XTX

)
P1(X) =

1

(2πσ2)
n
2

exp

[
− 1

2σ2
(X − S)T (X − S)

]
Apply the likelihood ratio test (LRT):

log Λ(x) = log
P1(X)

P0(X)
= − 1

2σ2
[−2XTS + STS]

H1

≷
H0

γ′

After simplification, we have

XTS
H1

≷
H0

σ2γ′ +
STS

2
= γ

The test statistic XTS is usually called a “matched filter”. The LR detector “filters”
data by projecting them onto the signal subspace.
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5.1 Quality of the classifier

Question: How can we assess the quality of a detector?

Example:

H0 : X ∼ N(0, 1)

H1 : X ∼ N(2, 1)
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PFA and PD characterize the performance of the detector. As γ increases, PFA
decreases (good) and PD decreases (bad).

Definition: Receiver Operating Characteristic (ROC) Curve

An ROC curve is a plot that illustrates the performance of a detector (binary clas-
sifier) by plotting its PD vs. PFA at various threshold settings.

First use: In World War II. The ROC curve was first developed by electrical engineers
and radar engineers during for detecting aircrafts from radar signals after the attack on
the Pearl Harbor.

To compute the ROC curve, vary the threshold level γ and compute PFA and PD.
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• Starts from (0, 0) and ends at (1, 1) (unless pi(±∞) > 0).

• The diagonal line from (0, 0) to (1, 1) corresponds to random guesses.

• Depends on signal strength, noise strength, noise type, etc.

Example: ROC and SNR

H0 : X ∼ N(0, σ2I)

H1 : X ∼ N(S, σ2I)

The likelihood ratio test gives

XTS
H1

≷
H0

γ

XTS is also Gaussian distributed. Recall if X ∼ N(µ,Σ), then Y = AX ∼
N(Aµ,AΣAT ). So we can get

H0 : XTS ∼ N(0TS, STσ2IS) = N(0, σ2‖S‖22)
H1 : XTS ∼ N(STS, STσ2IS) = N(‖S‖22, σ2‖S‖22)

We can also compute

PFA = Q(
γ − 0

σ‖S‖2
)

PD = Q(
γ − ‖S‖22
σ‖S‖2

) = Q(
γ

σ‖S‖2
− ‖S‖2

σ
)

Since Q function is invertible, we can get γ
σ‖S‖2 = Q−1(PFA). Therefore,

PD = Q(Q−1(PFA)− ‖S‖2
σ

),

where ‖S‖2
σ

is the square root of Signal-to-Noise Ratio(
√
SNR).
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‖S‖2/σ = 0.5
‖S‖2/σ = 1

‖S‖2/σ = 2

‖S‖2/σ = 4

5.2 The AWGN Assumption

AWGN is gaussian distributed as

W ∼ N(0, σ2I)

Is real-world noise really additive, white and Gaussian? Noise in many applications (e.g.
communication and radar) arise from several independent sources, all adding together at
sensors and combining additively to the measurement.

Central Limit Theorem

If x1, . . . , xn are independent random variables with means µi and variances σ2
i <∞

,then Zn = 1√
n

∑n
i=1

xi−µi
σi
→ N(0, 1) in distribution as n→∞.

Thus, it is quite reasonable to model noise as additive and Gaussian in many appli-
cations. However, whiteness is not always a good assumption.

5.3 Colored Gaussian Noise

Example: Correlated noise

W = S1 + S2 + · · · + Sk, where S1, S2, . . . Sk are interferring signals that are not of
interest, and each of them is structured/correlated in time.

W ∼ N(0,Σ) is called correlated or “colored” noise, where Σ is a structured covariance
matrix.

Consider the binary hypothesis test in this case.

H0 : X = S0 +W

H1 : X = S1 +W
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where W ∼ N(0,Σ) and S0 and S1 are know signal. So we can rewrite the hypothesis as

H0 : X ∼ N(S0,Σ)

H1 : X ∼ N(S1,Σ)

The probability density of each hypothesis is

Pi(X) =
1

(2π)
2
n (Σ)

1
2

exp

[
−1

2
(X − Si)TΣ−1(X − Si)

]
, i = 0, 1

The log likelihood ratio is

log

(
P1(X)

P2(X)

)
= −1

2

[
(X − S1)

TΣ(X − S1)− (X − S0)
TΣ−1(X − S0)

]
= XTΣ−1(S1 − S0)−

1

2
ST1 Σ−1S1 +

1

2
ST0 Σ−1S0

H1

≷
H0

γ′

Equivalently,

(S1 − S0)
TΣ−1X

H1

≷
H0

γ′ +
ST1 Σ−1S1

2
− ST0 Σ−1S0

2
= γ

Let t(X) = (S1 − S0)
TΣ−1X, we can get

H0 : t ∼ N((S1 − S0)
TΣ−1S0, (S1 − S0)

TΣ−1(S1 − S0))

H1 : t ∼ N((S1 − S0)
TΣ−1S1, (S1 − S0)

TΣ−1(S1 − S0))

The probability of false alarm is

PFA = Q

(
γ − (S1 − S0)

TΣ−1S0

[(S1 − S0)TΣ−1(S1 − S0)]
1
2

)

In this case it is natural to define

SNR = (S1 − S0)
TΣ−1(S1 − S0)

Example: ROC with colored Gaussian noise

S1 = [
1

2
,
1

2
], S0 = [−1

2
,−1

2
],

Σ =

[
1 ρ
ρ 1

]
, Σ−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
.
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The test statistics is

y = (S1 − S0)
TΣ−1X

= [1, 1]
1

1− ρ2

[
1 −ρ
−ρ 1

] [
x1
x2

]
=

1

1 + ρ
(x1 + x2)

The testing problem is equivalent to

H0 : y ∼ N(− 1

1 + ρ
,

2

1 + ρ
)

H1 : y ∼ N(+
1

1 + ρ
,

2

1 + ρ
)

The probabilities of false alarm and detection are

PFA = Q(
γ + 1

1+ρ√
2

1+ρ

)

PD = Q(
γ − 1

1+ρ√
2

1+ρ

)
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