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What do we have here?

The first step in many scientific and engineering problems is often
signal analysis. Given measurements or observations of some
physical process, we ask the simple question “what do we have
here?” For instance,

I Is there any information in my measurements, or are they just
noise?

I Is my signal in category A or B?

I What is the signal underlying my noisy measurements?

Answering this question can be particularly challenging when

I measurements are corrupted by noise or errors

I the physical process is“transient” or its behavior changes over
time.
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Fourier analysis

In some contexts, these challenges can be addressed via Fourier
analysis, one of the major achievements in physics and
mathematics. It is central to signal theory and processing for
several reasons.
Recall the Fourier series:

x(t) =

∞∑
k=−∞

cke
−j2πfkt.

This is used for

I analysis of physical waves (acoustics, vibrations, geophysics,
optics)

I analysis of periodic processes (economics, biology, astronomy)
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Fourier analysis and filtering
Recall the Fourier transform

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt

and the convolution integral

y(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ

=

∫ ∞
−∞

H(f)X(f)ej2πftdf

which describes, for example, the result of sending a signal x
through a filter h. Two key facts:

I Convolution in time ⇐⇒ multiplication in frequency

I A stationary, zero-mean, Gaussian random process can be
represented as a white noise process passed through a linear,
time-invariant filter
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Limitations of Fourier analysis

The inverse Fourier transform

x(t) =

∫ ∞
−∞

X(f)ej2πftdf

reveals that any value x(t) of a signal at one time instant can be
regarded as an infinite superposition of complex exponentials –
everlasting and completely non-local waves.

Even though this mathematical representation can aid us in the
discovery of signal structure in certain cases (e.g. periodic
behavior) it can also distort the physical reality.
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In particular...

1. Many signals, especially those which are transient in nature,
are not well represented in terms of sinusoidal waves.

I e.g. Images contain edges which are not efficiently represented
with sinusoids.

I e.g. Suppose that the signal x(t) is exactly zero outside a
certain time interval (e.g. by switching a machine on and off).

Although this signal can still be studied by Fourier techniques,
the frequency domain representation has a very artificial
behavior. The time signal’s zero values are achieved by an
infinite superposition of virtual waves that interfere in such a
way that they cancel each other out.
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In particular...

2. often, it is the non-stationary or transient components of a
signal that carry the important information.

e.g. Imagine that you are on a beach, watching the waves roll
in to shore. Your peaceful state is broken as dolphins begin to
evacuate earth to make way for an intergalactic superhighway.
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In particular...

3. As we have seen, stationary
Gaussian processes are
intimately linked with
Fourier analysis. However,
many signals in which we
are interested (e.g. speech,
images) are not well
modeled as stationary and
Gaussian
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In this course, we will move beyond Fourier analysis and focus on

Statistical Digital Signal Processing

Statistical based on probabilistic models for signals and noise

Digital discrete-time, sampled, quantized

Signal waveform, sequence of measurements or observations

Processing analyze, modify, synthesize

Examples of digital signals

I sampled speech waveform

I pixelized image

I Dow-Jones index

I stream of internet packets

I vector of medical predictors
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A major difficulty
In many DSP applications, we don’t have complete or perfect
knowledge of the signals we wish to precess. We are faced with
many unknowns and uncertainties.
Examples:

I Unknown signal parameters (delay of radar return, pitch of
speech signal)

I Environmental noise (multipath signals in wireless
communications, ambient electromagnetic waves, radar
jamming)

I Sensor noise (grainy images, old phonograph recordings)

I Variability inherent in nature (stock market, internet)

How can we process signals in the face of such uncertainty? Can
we model the uncertainty and incorporate this model into the
processing?
Statistical Signal Processing is the study of answers to these

questions.
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Modeling uncertainty

There are many ways to model these sorts of uncertainties. In this
course we will model them probabilistically. Let p(x|θ) denote a
probability distribution parameterized by θ. The parameter θ could
represent characteristics of errors or noise in the measurement
process or govern inherent variability in the signal itself. For
example, if x is a scalar measurement then we could have

p(x|θ) = 1√
2π

exp(−(x− θ)2/2),

a model which says that typically x is close to the value of θ and
rarely is very different.
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Why Probabilistic Models?

The observations or measurements we make are seldom perfect;
often they are impure and contaminated by effects unknown to us.
We call these effects noise. Our models are seldom perfect. Even
the best choice of θ may not perfectly predict new observations.
We call these modeling errors bias.

How do we model noise and bias, these uncertain errors? We need
a calculus for uncertainty, and among many that have been
proposed and used, the probabilistic framework appears to be the
most successful, and in many situations it is physically plausible as
well.

12 / 31



Uses of probabilistic models

I sensor noise modeled as an additive Gaussian random variable

I uncertainty in the phase of a sinusoidal signal modeled as a
uniform random variable on [0, 2π)

I uncertainty in the number of photons striking a CCD per unit
time modeled as a Poisson random variable.
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Components of Statistical Signal Processing:
Modeling, Measurement, and Inference

Step 1: Postulate a probability model (or collection of models) that
can be expected to reasonably capture the uncertainties in the
data

Step 2: Collect data.

Step 3: Formulate statistics that allow us to interpret or understand
our probability models.
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Probability and statistics

Probability laws describe the uncertainty in the signals we might
observe.

Statistics describe the salient features of the signals we do observe,
and allow us to draw conclusions (inferences) about which
probability model actually reflects the true state of nature.
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Statistics

A statistic is a function of observed data, and may be scalar or
vector valued.

Example: Statistics

Supposed we observe n scalar values x1, . . . , xn. The following are
statistics:

I sample mean x = 1
n

∑n
i=1 xi

I the data itself [x1, . . . , xn]
T

I an order statistic min{x1, . . . , xn}
I an arbitrary function [x21 − x2 sin(x3), e−x1x3 ]T

A statistic cannot depend on unknown quantities.
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Four main problems

There are four fundamental inference problems in statistical signal
processing that will be the focus of this course.

Example: Detection

Suppose that θ takes one of two possible values, so that either
p(x|θ1) or p(x|θ2) fit the data x the best. Then we need to
“decide” whether p(x|θ1) is a better model than p(x|θ2). More
generally, θ may be one of a finite number of values {θ1, . . . , θM}
and we must decide among the M models.
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A Detection Example

Consider a binary communication system. Let s = [s1, . . . , sn]
denote a digitized waveform. A transmitter communicates a bit of
information by sending s or −s (for 1 or 0, respectively). The
receiver measures a noisy version of the transmitted signal.
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A detection example (cont.)

We model our observations as

xi = θsi + εi , i = 1, . . . , n

The parameter θ is either +1 or −1, depending on which bit the
transmitter is sending. The {εi} represent errors incurred during
the transmission process. So we have two models, or hypotheses,
for the data:

H0 : xi = +si + εi , i = 1, . . . , n

H1 : xi = −si + εi , i = 1, . . . , n

How well does {si} match {xi}? How well does {−si} match
{xi}?
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This comparison can be made by computing a function of the data
or a statistic. A natural statistic in this problem is the correlation
statistic:

t =

n∑
i=1

sixi

= θ

n∑
i=1

s2i +

n∑
i=1

siεi

If the errors are noise-like and don’t resemble the signal {si}, then∑n
i=1 siεi ≈ 0. So a reasonable way to decide which value of the

bit was sent is to decide that 0 was sent if t < 0 and that 1 was
sent if t > 0. To quantify the performance of this test we need a
mathematical model for the errors {εi}.
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Four main problems

Example: Parameter Estimation

Suppose that θ belongs to an infinite set. Then we must decide or
choose among an infinite number of models. In this sense,
estimation may be viewed as an extension of detection to infinite
model classes. This extension presents many new challenges and
issues and so it is given its own name.
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A Parameter Estimation Example
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Four main problems

Example: Signal Estimation/Prediction

In many problems we wish to predict the value of a signal x given
an observation of another related signal y. We can model the
relationship between x and y using a joint probability distribution,
p(x, y). The conditional distribution of x given y, denoted by
p(x|y), can be derived from the joint distribution and the
prediction problem can then be viewed as determining a value of x
that is highly probable given y.
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A Signal Estimation Example

Imagine that you are
collaborating with biologists
who are interested in imaging
biological systems using a new
type of microscopy. The
imaging system doesn’t produce
perfect images: the data
collected is distorted and noisy.
As a signal processing expert,
you are asked to develop an
image processing algorithm to
“restore” the image.

http://www.nature.com/srep/2013/130828/srep02523/full/srep02523.html
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A Signal Estimation Example (cont.)

Let us assume that the distortion is a linear operation. Then we
can model the collected data by the following equation.

y = Hx+ w

where

I x is the ideal image we wish to recover (represented as a
vector, each element of which is a pixel),

I H is a known model of the distortion (represented as a
matrix), and

I w is a vector of noise.
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A Signal Estimation Example (cont.)

It is tempting to ignore w and simply attempt to solve the system
of equations y = Hx for x. There are two problems with this
approach.

1. The system of equations may not admit a unique solution,
depending on the physics of the imaging system. If a unique
solution exists, the problem is said to be well-posed, otherwise
it is called ill-posed.

2. Even if the system of equations is invertible, it may be
ill-conditioned, which means that small perturbations due to
noise and numerical methods can lead to large errors in the
restoration of x.
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Four main problems

Example: Learning

Sometimes we don’t know a good model the relationship between
x and y, but we do have a number of “training examples”, say
{xi, yi}ni=1, that give us some indication of the relationship. The
goal of learning is to design a good prediction rule for y given x
using these examples, instead of p(y|x).
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The Netflix problem
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The Netflix prize
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Example: Predicting Netflix ratings

Here x contains the measured
movie ratings and y are the
unknown movie ratings we wish
to predict.
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Example: Predicting Netflix ratings (cont.)

One probabilistic model says the underlying matrix of “true”
ratings can be factored into the product of two smaller matrices.
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Example: Predicting Netflix ratings (cont.)

One probabilistic model says the underlying matrix of “true”
ratings can be factored into the product of two smaller matrices.
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