
3. Review of Probability and Statistics
ECE 830, Spring 2017

Probabilistic models will be used throughout the course to
represent noise, errors, and uncertainty in signal processing

problems. This lecture reviews the basic notation, terminology
and concepts of probability theory.
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Basic Probability Theory
Probability theory begins with three basic components. The set of
all possible outcomes, denoted Ω. The collection of all sets of
outcomes (events), denoted A. And a probability measure P.
Specification of the triple (Ω,A,P) defines the probability space
which models a real-world measurement or experimental process.

Example:

Ω = {all outcomes of the roll of a die}
= {1, 2, 3, 4, 5, 6}

A = {all possible sets of outcomes}
= {{1}, . . . , {6}, {1, 2}, . . . , {5, 6}, . . . , {1, 2, 3, 4, 5, 6}}

P = probability of all sets/events

What is the probability of a given ω ∈ Ω, say ω = 3?
What is the probability of the event ω ∈ {1, 2, 3}?
The basic physical model here is that all six outcomes are equally
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Boolean Algebra:

A ∪B = {ω : ω ∈ A or ω ∈ B} (union)

A ∩B = {ω : ω ∈ A and ω ∈ B} (intersection)

Ā = {ω : ω /∈ A} (complement)

A ∪B = {Ā ∩ B̄}

Events are mutually exclusive if

A ∩B = ∅ (empty set)
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Probability Measures

A probability measure is a positive measure P satisfying

P(A) ≥ 0 ∀A ∈ Ω

P(∅) = 0 ∀A ∈ Ω

P(Ω) = 1

if P(A ∩B) = ∅, then P(A ∪B) = P(A) + P(B)

Show that the last condition also implies:

Union bound

In general
P(A ∪B) ≤ P(A) + P(B)

an inequality sometimes called the union bound.
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Example: Dice

Ω = {1, 2, 3, 4, 5, 6}
P({ω = i}) = 1/6 for i = 1, 2, 3, 4, 5, 6

P(ω ∈ {1, 2}) = P({ω = 1} ∪ {ω = 2})
= P({ω = 1}) + P({ω = 2}) = 1/3
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Conditional Probability
Given two events, A and B, what is the probability that A will
occur given that B has occurred?

P(A|B) =
P(A ∩B)

P(B)
, P(B) 6= 0

Example:

Ω = {1, 2, 3, 4, 5, 6}
A = {1, 2}
B = {2, 3}

The probability that A occurs, without knowledge of whether B
has occurred, is 1/3 (i.e. P(A) = 1/3). But

P(A|B) =
P(A ∩B)

P(B)
=

P({2})
P({2, 3})

=
1/6

1/3
= 1/2
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Independence
Two events are said to be independent if

P(A|B) = P(A)

Equivalently, A and B are independent if

P(A ∩B) = P(A) · P(B)

Example: Dice

Suppose we have two dice. Then

Ω = {all pairs of outcomes of the roll two dice}
= {(1, 1), (1, 2), . . . , (6, 6)}

Let A = {1st die is 1} and B = {2nd die is 1}. P(A) = 1/6.

P(A|B) =
P({(1, 1)})
P({1})

=
1/36

1/6
= 1/6

The value of one die does not influence the other.
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Bayes’ Rule

P(A|B) =
P(A ∩B)

P(B)

P(B|A) =
P(A ∩B)

P(A)

=⇒ P(B|A) =
P(A|B) · P(B)

P(A)

Example: Genetic testing

Geneticists have determined that a particular genetic defect is
related to a certain disease. Many people with the disease also
have this defect, but there are disease-free people with the defect.
The geneticists have found that 0.01% of the general population
has the disease and that the defect is present in 50% of these cases.
They also know that 0.1% of the population has the defect. What
is the probability that a person with the defect has the disease?
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Example: Genetic testing (cont.)

This is a simple application of Bayes’ Rule. We are interested in
two events: ‘defect’ and ‘disease’. We know:

P(disease) =0.0001

P(defect|disease) =0.5

P(defect) =0.001.

We have everything we need to apply Bayes’ Rule:

P(disease|defect) =
P(defect|disease)P(disease)

P(defect)

=
0.5× 0.0001

0.001
= 0.05

In other words, if a person has the defect then the chance they
have the disease is 5%. In the general population, on the other
hand, the chance that a person has the disease is 0.01%. So this
“genetic marker” is quite informative.
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Random Variables and Probability Distributions
A random variable X is a mapping of Ω to the real or complex
numbers.

Example: Digital Thermometer

Ω = {weather patterns}
X = mercury level on a thermometer

For instance, real-valued random variable is a mapping
X : Ω→ Rn, which means that for every ω ∈ Ω there is a
corresponding value X(ω) ∈ Rn. Since P specifies the probability
of every subset of Ω, it also induces probabilities on events
expressed in terms of X. For example, if X is a real-valued scalar
(i.e. n = 1) random variable, then this is an event:

{X ≥ 0} ≡ {ω : X(ω) ≥ 0}
Therefore we can compute the probability of this event:

P(X ≥ 0) = P({ω : X(ω) ≥ 0})
10 / 56



Probability Distribution Function and Cumulative
Distribution Function

When X takes values in the real numbers, the probability
distribution function is completely described by the cumulative
distrubtion function:

PX(x) := P(X ≤ x) ≡ P(ω : X(ω) ≤ x)

If PX(x) is differentiable, then the probability density function
pX(x) is its derivative. Since PX is a monotonic increasing
function, pX(x) ≥ 0. By the Fundamental Theorem of Calculus we
have

PX(x) =

∫ x

−∞
pX(x)dx.

Note also that limx→∞ PX(x) =
∫∞
−∞ pX(x) = 1, since with

probability 1 the variable X takes on a finite value. Observe that
P(x1 < X ≤ x2) =

∫ x2
x1
pX(x)dx, which explains the term

“density.”
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Example: Uniform on [0, 1]

P (x) =


0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

p(x) = I[0,1](x) ≡
{

1, 0 ≤ x ≤ 1
0, otherwise
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Standard Normal (Gaussian)

mean 0, variance 1: p(x) =
1√
2π
e−x

2/2 ∼ N (0, 1)

mean µ, variance σ2: p(x) =
1√

2πσ2
e−(x−µ)

2/2σ2 ∼ N (µ, σ2)

Example: Comm problem from Lecture 2

Recall the test statistic from the communication problem in
Lecture 1

t =

n∑
i=1

sixi = θ‖s‖22 +
n∑
i=1

siεi

If the errors are noise-like then we expect z :=
∑n

i=1 siεi ≈ 0.
Moreover as n increases it is reasonable to suppose that the
approximation becomes more and more accurate since the
individual errors may be randomly positive or negative and tend to
cancel each other out.
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Example: Comm problem from Lecture 2 (cont.)

A reasonable probability density model for z is then

p(z) :=
1√
2πn

e−
1
2
z2/n

As n gets larger the probability mass is more concentrated about 0.

Since t is just a shifted version of z (shifted by the constant

θ‖s‖22), the density for t is t ∼ N (θ‖s‖22, n−1), or

p(t) =
1√
2πn

e−
1
2
(t−θ‖s‖22)2/n

This density is peaked about ‖s‖22 when θ = +1 and about −‖s‖22
when θ = −1, so our test of whether t was larger or less than 0 is
reasonable. Assuming this model we can easily calculate the
probabilities of an incorrect decisions about which bit was sent;
i.e., P(X < 0|θ = +1) and P(X > 0|θ = −1).
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CDF of Standard Normal
The cumulative distribution when X ∼ N (µ, σ2) is

P (x) =
1√

2πσ2

∫ x

−∞
e−(t−µ)

2/2σ2
dt.

No closed-form expression! However, many people write the CDF
in terms of the error function:

erf(x) ≡ 2√
π

∫ x

0
e−u

2
du

To see how the CDF can be expressed using the error function, set

s ≡ t− µ√
2σ2

t =
√

2σ2s+ µ

dt =
√

2σ2ds

t = x =⇒ s =
x− µ√

2σ2
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We then have

P (x) =
1√

2πσ2

∫ x

−∞
e−(t−µ)

2/2σ2

dt

=

√
2σ2

√
2πσ2

∫ (x−µ)/
√
2σ2

−∞
e−s

2

ds

= 1/2 +
1√
π

∫ (x−µ)/
√
2σ2

0

e−s
2

ds

= 1/2 + erf((x− µ)/
√

2σ2)
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Probability Mass Functions

Discrete random variables: mapping Ω to an enumerable set of
values, such as {1, 2, . . . }. These are characterized by a probability
mass function (pmf), which has the same interpretation as the
density.

If X takes values in a set {x1, x2, . . . } (which may be finite or
infinite), then the pmf of X is given by

pX(x) =
∑
i

P(X = xi)1x=xi ,

where 1x=xi is the indicator function that takes a value 1 if x = xi
and 0 otherwise. Note that pX(x) = P(X = x).
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Example: Binomial distribution

Suppose you toss a coin n times and count k heads. This number
is a random variable X taking a value between 0 and n, and
dependent on p, the probability of observing a head in a single toss.
The binomial distribution gives the probability of observing k heads
in the n trials, for k ∈ {0, . . . , n}, and has the following form:

pX(x) =

n∑
k=1

(
n

k

)
pk(1− p)n−k︸ ︷︷ ︸
P(X=k)

1x=k

I
(
n
k

)
= n!

k!(n−k)! sequences of heads and tails that have exactly
k heads,

I pk(1− p)n−k is the probability of each such sequence

Shorthand: X ∼ Bi(n, p).
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Example: Poisson random variable

Imagine standing by a street counting the number of cars go by in
a 10-minute interval. The number of cars is a random variable X
taking values between 0 and ∞ and dependent on λ, the average
number of cars per 10-minute interval. The Poisson distribution
gives the probability of observing k cars and has the following form:

P(X = k) = pX(k) =
λk

k!
e−λ, λ > 0, k = 0, 1, . . .

Note that pX = limn→∞ Bi(n, λ/n).
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Expectation

The expected value of a random variable X is defined to be

E[X] =

∫ ∞
−∞

xp(x)dx (continuous case)

or
E[X] =

∑
j

xjp(xj) (discrete case).

More generally, if f is an arbitrary function, then

E[f(X)] =

∫ ∞
−∞

f(x)p(x)dx (continuous case)

E[X] =
∑
j

f(xj)p(xj) (discrete case).
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Example: Second moment

f(x) = x2 −→ E[X2]

Example: Characteristic function (Fourier transform of density)

f(x) = ejωx −→ E[ejωX ]

Example: Indicator Function

f(x) = IA(x) =

{
1, x ∈ A
0, x /∈ A −→ E[IA(X)] = P(X ∈ A)

Cauchy-Schwarz Inequality:

E[|X · Y |] ≤
(
E[X2] · E[Y 2]

)1/2
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Convex function

A function φ is convex if

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y)

for all x, y ∈ R and for all λ ∈ [0, 1].

x y

Jensen’s Inequality

Suppose φ is a convex function. Then E[φ(X)] ≥ φ(E[X]).

Example: Second moment

φ(x) = x2 =⇒ E[X2] ≥ (E[X])2. (The second moment is always
larger than the first moment squared.)

22 / 56



Jointly distributed random variables
Joint distribution:

P (x, y) = P ({X ≤ x} ∩ {Y ≤ y})

Joint density:

P (x, y) =

∫ x

−∞

∫ y

−∞
p(x, y)︸ ︷︷ ︸
density

dxdy

Statistically independent random variables:

P (x, y) = P (x) · P (y) or p(x, y) = p(x) · p(y)

Uncorrelated random variables:

E[X · Y ] = E[X] · E[Y ]

independent ⇒ uncorrelated
uncorrelated ; independent
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Conditional Densities

p(x|y) =
p(x, y)

p(y)

if X and Y are independent, then

p(x|y) = p(x)

Conditional Expectation:

E[X|Y ] =

∫ ∞
−∞

xp(x|y)dx

Note: E[X|Y ] is a function of y, the value that the random
variable Y takes.
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Smoothing property of conditional expectation

So if Y is random, then so is E[X|Y ], and it has the following
expected value:

E[E[X|Y ]] =

∫ [∫
xp(x|y)dx

]
p(y)dy

=

∫
x

[∫
p(x|y)p(y)dy

]
dx

=

∫
x

[∫
p(x, y)dy

]
dx

=

∫
xp(x)dx

= E[X]
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Example: Smoothing

Let L be a positive integer-valued random variable. Let X1, X2, . . .
be a sequence of independent, identically distributed (iid) random
variables each with mean m. Consider the partial sum:

SL =

L∑
i=1

Xi

What is the expected value of SL?

E[SL|L] = E

[
L∑
i=1

Xi|L

]

=
L∑
i=1

E[Xi] = Lm

E[SL] = E[E[SL|L]]

= E[Lm] = mE[L]
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Random Vectors

X =


X1

X2
...
Xn


Distribution:

P (x) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

Density:

P (x) =

∫ x1

−∞
· · ·
∫ xn

−∞
p(t)︸︷︷︸

density

dt1 . . . dtn

Expectation:

f : Rn −→ Rm

E[f(X)] =

∫
Rn

f(x)p(x)dx
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The Multivariate Normal Distribution

Notation: X ∼ N (µ,R).

p(x) =
1

(2π)n/2|R|1/2
e−

1
2
(x−µ)>R−1(x−µ) ∼ N (µ,R)

µ = E[X]

R = E[(x− µ)(x− µ)>] = covariance matrix

Note: Ri,j = E[(xi − µi)(xj − µj)].
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Example: 1d

R = σ2

p(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
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Example: 2d symmetric

R = σ2I2×2 =

[
σ2 0
0 σ2

]
A contour of this density is a circle. That is, if we find all x such
that p(x) = γ, then this is the set of all x such that ‖x−µ‖2 = γ′.
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Example: 2d axis-aligned ellipse

R =

[
σ21 0
0 σ22

]
Here the density contours are ellipses whose axes align with the
coordinate axes. To see this, note that

p(x) = γ ⇐⇒ (x1 − µ1)2

σ21
+

(x2 − µ2)2

σ22
= γ′

which is the equation for an ellipse.
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Example: 2d rotated ellipse

Here R is an arbitrary (positive definite) matrix. Here the density

contours are ellipses with arbitrary orientation. To see this, first

write R = V ΛV >; let x′ := V >x and µ′ := V >µ. Then

(x− µ)>R−1(x− µ) = (x− µ)>V Λ−1V >(x− µ)

= (x′ − µ′)>Λ−1(x′ − µ′) =
(x1′ − µ1′)2

λ1
+

(x2′ − µ2′)2

λ2

which defines an ellipse in a rotated coordinate system, where V
specifies the rotation.
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Example: Sensor networks

Imagine we have a sensor network monitoring a manufacturing
facility. The network consists of n nodes and its function it to
monitor for failures in the system. Let X = [X1, . . . , Xn]T denote
the set of scalar measurements produced by the network and
suppose that it can modeled as a realization of a N (µ,Σ) random
vector for a particular choice of µ and Σ. Furthermore, assume
that the set B ⊂ Rn denotes the set of all vectors indicative of
failures. Then the probability of failure is given by P(X ∈ B),
which can be calculated (numerically) by integrating the N (µ,Σ)
over the set B.
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Characteristic function of a Gaussian R.V.

If X ∼ N (µ,R), then its characteristic function is

φ(ω) = E[ejωX ] = exp

{
−(jω>µ+

1

2
ω>Rω)

}
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Linear Transformations of Gaussian Vectors

Suppose that we transform a multivariate normal vector X by
applying a linear transformation (matrix) A:

Y = AX

(X,Y random, A deterministic). Now the characteristic function

of Y is

φ(ω) = E[e−jω
>Y ] = E[e−jω

>AX ]

= exp

{
jω>Aµ− 1

2
ω>ARA>ω

}
︸ ︷︷ ︸

characteristic function of a N (Aµ,ARA>) random vector

=⇒ Y ∼ N (Aµ,ARA>)
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Example: Weighted sum of Gaussian r.v.s

I X is vector of Gaussian r.v.s

I a is vector of weights

I a>X is weighted sum

Y = a>X

Y ∼ N (a>µ, a>Ra)
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Example: White noise in linear system

Suppose that we have a linear system driven by a Gaussian white
noise process. That is, a sequence of independent N(0, 1)
variables, denoted X1, . . . , Xn is the input to the linear system.
The output of the system can be expressed as Y = HX, where H
is a n× n matrix describing the action of the system on the input
sequence X = [X1, . . . , Xn]>. The joint distribution of X is
N (0, I), where I denotes the n× n identity matrix. The joint
distribution of the output Y is N (0, HH>). The output is
correlated due to the action of the system.
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Covariance Diagonalization

Let X ∼ N (µ,R) and let v1, . . . , vn be the eigenvectors of R
(Note: R is symmetric, positive semidefinite matrix)
Define V = [v1, . . . , vn].

V >X ∼ N (V >µ, V >RV︸ ︷︷ ︸
D=diag(λ1,...,λn)

)

The transformation V diagonalizes the covariance matrix. Since
the cross-correlations between elements of the transformed vector
are identically zero and jointly Gaussian distributed, they are
statistically independent.
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Karhunen-Loève transform
Thus, the transformation V decomposes the random vector X into
a sum of independent components:

X =

n∑
i=1

(v>i x) · vi

where the coefficients v>i x are independent Gaussian random
variables

v>i x ∼ N (v>i µ, λi)

This basic transformation is called the Karhunen-Loève transform,
and it is a fundamental tool that is useful for decomposing random
signals into key components.

Example:

We may interpret the component with the largest variance,
maxi λi, as the most important component in X.
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Principal Components Analysis

Definition: Principal components analysis

The first r eigenvectors are called the first r principal components
of X, and X’s projection on these principal components is

Xr =

r∑
i=1

(v>i X)vi.

Note that this approximation involves only r scalar random
variables {(v>i X)}ri=1 rather than n. In fact, it is easy to show
that among all r-term linear approximations of X in terms of r
random variables, Xr has the smallest mean square error; that is if
we let Sr denote all r-term linear approximations to X, then

E[‖X −Xr‖2] = min
Yr∈Sr

E[‖X − Yr‖2]
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Convergence of Sums of Independent Random
Variables

Example: Synthia

A biologist is studying the new artificial lifeform called synthia.
She is interested to see if the synthia cells can survive in cold
conditions. To test synthia’s hardiness, the biologist will conduct n
independent experiments. She has grown n cell cultures under
ideal conditions and then exposed each to cold conditions. The
number of cells in each culture is measured before and after
spending one day in cold conditions. The fraction of cells surviving
the cold is recorded. Let x1, . . . , xn denote the recorded fractions.
The average

p̂ :=
1

n

n∑
i=1

xi

is an estimator of the survival probability.
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Understanding behavior of sums of independent random variables
is extremely important. For instance, the biologist in the example
above would like to know that the estimator is reasonably
accurate. Let X1, . . . , Xn be independent and identically
distributed random variables with variance σ2 <∞ and consider
the average µ̂ := 1

n

∑n
i=1Xi.

I E[µ̂] = E[X] – same as RVs

I The variance of µ̂ is σ2/n – reduced by a factor of n

Lower variance means less uncertainty. So it is possible to reduce
uncertainty by averaging. The more we average, the less the
uncertainty (assuming, as we are, that the random variables are
independent, which implies they are uncorrelated).
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What about the distribution of the average µ̂?

Central Limit Theorem

If Xi, i = 1, . . . , n, are n independent and identically distributed
random variables with mean µ and variance σ2 <∞, then

lim
n→∞

1

n

n∑
i=1

Xi ∼ N (µ, σ2/n).

regardless of the form of the distribution of the variables.

Can we say something about the distribution even for finite values of n?
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One approach is to calculate the distribution of the average
explicitly. Recall that if the random variables have a density pX ,
then the density of the sum

∑n
i=1Xi is the n-fold convolution of

the density pX with itself.

(Again this hinges on the assumption that the random variables are
independent; it is easy to see by considering the characteristic
function of the sum and recalling that multiplication of Fourier
transforms is equivalent to convolution in the inverse domain).

However, this exact calculation can be sometimes difficult or
impossible, if for instance we don’t know the density pX , and so
sometimes probability bounds are more useful.
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Let Z be a non-negative random variable and take t > 0.

Markov’s Inequality

E[Z] ≥ E[Z 1Z≥t]

≥ E[t1Z≥t] = tP(Z ≥ t)

Now we can use this to get a bound on the probability ‘tails’ of Z.

Chebyshev’s Inequality

P(|Z − E[Z]| ≥ t) = P ((Z − E[Z])2 ≥ t2)

≤ E[(Z − E[Z])2]

t2

=
Var(Z)

t2
,

where Var(Z) denotes the variance of Z.
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If we apply this to the average µ = 1
n

∑n
i=1Xi, then we have

P(|µ̂− µ| ≥ t) ≤ σ2

nt2

where µ and σ2 are the mean and variance of the random variables
{Xi}. This shows that not only is the variance reduced by
averaging, but the tails of the distribution (probability of observing
values a distance of more than t from the mean) are smaller.

Can we say more?

The tail bound given by Chebyshev’s Inequality is loose, and much
tighter bounds are possible under slightly stronger assumptions.
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In particular, if the random variables {Xi} are bounded or
sub-Gaussian (meaning the tails of the probability distribution
decay at least as fast as Gaussian tails), then the tails of the
average converge exponentially fast in n. The simplest result of
this form is for bounded random variables.

Hoeffding’s Inequality

Let X1, X2, ..., Xn be independent bounded random variables such
that Xi ∈ [ai, bi] with probability 1. Let Sn =

∑n
i=1Xi. Then for

any t > 0, we have

P(|Sn − E[Sn]| ≥ t) ≤ 2 e
− 2t2∑n

i=1
(bi−ai)

2

If the random variables {Xi} are binary-valued, then this result is
usually referred to as the Chernoff Bound.

The proof of Hoeffding’s Inequality, which relies on a clever
generalization of Markov’s inequality and some elementary
concepts from convex analysis, is given in the last slides.
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Now suppose that the random variables in the average
µ̂ = 1

n

∑n
i=1Xi are bounded according to a ≤ Xi ≤ b. Let

c = (b− a)2. Then Hoeffding’s Inequality implies

P(|µ̂− µ| ≥ t) ≤ 2 e−
2nt2

c

In other words, the tails of the distribution of the average are
tending to zero at an exponential rate in n, much faster than
indicated by Chebeyshev’s Inequality. Similar exponential tail
bounds hold for averages of iid sub-Gaussian variables. Using tail
bounds like these we can prove the so-called laws of large numbers.
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Weak Law of Large Numbers

Let X1, X2, ..., Xn be iid random variables with E[|Xi|] <∞.
Then µ̂n := 1

n

∑n
i=1Xi converges in probability to µ := E[Xi];

that is, for any ε > 0,

lim
n→∞

P[|µ̂n − µ| > ε] = 0.

Strong Law of Large Numbers

Let X1, X2, ..., Xn be iid random variables with E[|Xi|] <∞. Then
µ̂n := 1

n

∑n
i=1Xi converges almost surely to µ := E[Xi]; that is,

P( lim
n→∞

µ̂n = µ) = 1.
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Example: Synthia revisited

The biologist has collected n observations, x1, . . . , xn, each
corresponding to the fraction of cells that survived in a given
experiment. Her estimator of the survival rate is 1

n

∑n
i=1 xi. How

confident can she be that this is an accurate estimator of the true
survival rate? Let us model her observations as realizations of n iid
random variables X1, . . . , Xn with mean p and define
p̂ = 1

n

∑n
i=1Xi. We say that her estimator is probability

approximately correct with non-negative parameters (ε, δ) if

P(|p̂− p| > ε) ≤ δ

The random variables are bounded between 0 and 1 and so the
value of c in Hoeffding’s inequality is equal to 1. For desired
accuracy ε > 0 and confidence 1− δ, how many experiments will
be sufficient?
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Example: Synthia revisited (cont.)

From Hoeffding’s inequality, we equate δ = 2 exp(−2nε2) which
yields n ≥ 1

2ε2
log(2/δ). Note that this requires no knowledge of

the distribution of the {Xi} apart from the fact that they are
bounded. The result can be summarized as follows. If
n ≥ 1

2ε2
log(2/δ), then the probability that her estimate is off the

mark by more than ε is less than δ.
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Proof of Hoeffding’s Inequality
Let X be any random variable and s > 0. Note that
P(X ≥ t) = P(esX ≥ est) ≤ e−stE[esX ] , by using Markov’s
inequality, and note that esx is a non-negative monotone increasing
function. For clever choices of s this can be quite a good bound.
Let’s look now at

∑n
i=1(Xi − E[Xi]):

P(

n∑
i=1

(Xi − E[Xi]) ≥ t) ≤ e−stE
[
es(

∑n
i=1(Xi−E[Xi]))

]
= e−stE

[
n∏
i=1

es(Xi−E[Xi])

]

= e−st
n∏
i=1

E
[
es(Xi−E[Xi])

]
,

where the last step follows from the independence of the Xi’s. To
complete the proof we need to find a good bound for
E
[
es(Xi−E[Xi])

]
.
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Lemma

Let Z be a r.v. such that E[Z] = 0 and a ≤ Z ≤ b with probability
one. Then

E
[
esZ
]
≤ e

s2(b−a)2

8 .

This upper bound is derived as follows. By the convexity of the
exponential function,

esz ≤ z − a
b− a

esb +
b− z
b− a

esa, for a ≤ z ≤ b .

Thus,

E[esZ ] ≤ E
[
Z − a
b− a

]
esb + E

[
b− Z
b− a

]
esa

=
b

b− a
esa − a

b− a
esb , since E[Z] = 0

= (1− λ+ λes(b−a))e−λs(b−a) , where λ =
−a
b− a
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Now let u = s(b− a) and define

φ(u) ≡ −λu+ log(1− λ+ λeu) ,

so that

E[esZ ] ≤ (1− λ+ λes(b−a))e−λs(b−a) = eφ(u) .
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We want to find a good upper-bound on eφ(u). Let’s express φ(u)
as its Taylor series with remainder:

φ(u) = φ(0) + uφ′(0) +
u2

2
φ′′(v) for some v ∈ [0, u] .

φ′(u) = −λ+
λeu

1− λ+ λeu
⇒ φ′(0) = 0

φ′′(u) =
λeu

1− λ+ λeu
− λ2e2u

(1− λ+ λeu)2

=
λeu

1− λ+ λeu
(1− λeu

1− λ+ λeu
)

= ρ(1− ρ) ,

where ρ = λeu

1−λ+λeu .
Now note that ρ(1− ρ) ≤ 1/4, for any value of ρ (the maximum is
attained when ρ = 1/2, therefore φ′′(u) ≤ 1/4. So finally we have

φ(u) ≤ u2

8 = s2(b−a)2
8 , and therefore

E[esZ ] ≤ e
s2(b−a)2

8 .
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Now, we can apply this upper bound to derive Hoeffding’s
inequality.

P(Sn − E[Sn] ≥ t) ≤ e−st
n∏
i=1

E[es(Xi−E[Xi])]

≤ e−st
n∏
i=1

e
s2(bi−ai)

2

8

= e−stes
2
∑n

i=1
(bi−ai)

2

8

= e
−2t2∑n

i=1
(bi−ai)

2

by choosing s =
4t∑n

i=1(bi − ai)2

The same result applies to the r.v.’s −X1, . . . ,−Xn, and
combining these two results yields the claim of the theorem.
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