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The Bayesian Paradigm

Given a parameter θ, we assume observations are generated
according to p(y|θ). In our work so far, we have treated the
parameter θ like a fixed, deterministic, but unknown quantity while
the observation y is the realization of a random process.

We will now consider probabilistic models for θ in addition to our
data.

I This allows us to incorporate prior information we have about
θ (i.e. information about likely values of θ we have before
collecting any data).

I It also allows us to make statements about our confidence in
different estimates of θ.
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Example: Unfair coin

Suppose you toss a single coin 6
times and each time it comes up
“heads.” It might be reasonable
to say that we are 98% sure that
the coin is unfair, biased towards
heads.

Formally, we can think about this in a hypothesis testing framework
using a binomial probabilistic model. Let y := number of “heads”.

H0 : P(heads) ≡ θ > 0.5

p(y|θ) =

(
n

y

)
θy(1− θ)n−y

p(θ > 0.5|y) = ?
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Example: (cont.)

The problem with this is that

p(θ ∈ H0|x)

implies that θ is a random, not deterministic, quantity.

So, while “confidence” statements are very reasonable and in fact
a normal part of “everyday thinking,” this idea can not be
supported from the classical perspective.

All of these “deficiencies” can be circumvented by a change in how
we view the parameter θ.
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Example: Image processing

In many imaging problems, we have a good sense of what
“natural” images should look like.

Likely Unlikely

This prior information can be exploited to improve image
denoising, deblurring, reconstruction, and analysis.
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Bayes Rule
If we view θ as the realization of a random variable with density
p(θ), then we can work with the generative (or forward) model

p(θ)︸︷︷︸
prior

→ θ∗ → p(y|θ∗)︸ ︷︷ ︸
likelihood

→ y.

We are interested in the inverse problem

y → p(θ|y)→ θ̂.

Bayes Rule (Bayes, 1763) shows that

p(θ|y) =
p(y|θ) p(θ)

p(y)
=

p(y|θ) p(θ)∫
p(y|θ̃) p(θ̃) dθ̃

Once we can compute this posterior distribution, confidence
measures such as p(θ ∈ H0|y) are perfectly legitimate quantities to
ask for.
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Example: Coin toss

Suppose you toss a single coin 6 times and each time it comes up
“heads.” Mathematically, we can model the problem as follows. Let
θ = P(Heads). The data (the number of heads y in n = 6 tosses) follows
a binomial distribution p(y|θ) =

(
n
y

)
θy(1− θ)n−y. The mathematical

equivalent of the question “is the coin probably biased” is the probability
P(θ > 0.5|y = 6).
Suppose we assume p(θ) = Unif(0, 1) (all values of θ are equally probable
before we begin to flip the coin, and P(θ > 1

2 ) = 1
2 ). Now compute

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

=
θ6∫
θ6dθ

=
θ6

1
7θ

7|10
= 7 θ6 .

Then

P
(
θ >

1

2
| y = 6

)
=

∫ 1

1
2

7θ6dθ = θ7|11
2

= 1− 2−7 = 0.984 .

(If we chose a different prior we would get a different answer!)

7 / 70



Bayesian statistical models

Definition: Bayesian statistical model

A Bayesian statistical model is composed of a data generation
model, p(y|θ), and a prior distribution on the parameters, p(θ).

The prior distribution (or “prior” for short) models the uncertainty
in the parameter. More specifically, p(θ) models our knowledge -
or a lack thereof - prior to collecting data.

Notice that

p(θ|y) =
p(y|θ) p(θ)

p(y)
∝ p(y|θ) p(θ)

Hence, p(θ|y) is proportional to the likelihood function multiplied
by the prior.
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Example: DC level in AWGN

yi = A+ νi , n = 1, · · · , N
νi ∼ N (0, σ2) iid

Â =
1

n

n∑
i=1

yi MLE estimate

Now suppose that we have prior knowledge that −A0 ≤ A ≤ A0.
We might incorporate this by forming a new estimator

Ã =


−A0 , Â < −A0

Â , −A0 ≤ Â ≤ A0

A0 , Â > A0

This is called a truncated sample mean estimator of A.
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Example: (cont.)

Is Ã a better estimator of A than the sample mean Â? Let pMLE

denote the density of Â. Since Â = 1
n

∑
yi,

pMLE = N (A, σ2/n).

The density of the truncated sample mean (TSM) Ã is given by

pTSM =P(Â ≤ −A0) δ(a+A0) + pMLEI{−A0≤a≤A0}

+P(Â ≥ A0) δ(a−A0)

pMLE pTSM
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Now consider the MSE of the sample mean Â:

MSE(Â) =

∫ ∞
−∞

(a−A)2 pMLE(a) da

=

∫ −A0

−∞
(a−A)2 pMLE(a) da+

∫ A0

−A0

(a−A)2 pMLE(a) da

+

∫ ∞
A0

(a−A)2 pMLE(a) da

>

∫ −A0

−∞
(−A0 −A)2 pMLE(a) da+

∫ A0

−A0

(a−A)2 pMLE(a) da

+

∫ ∞
A0

(A0 −A)2 pMLE(a) da

=(−A0 −A)2 P(Â ≤ −A0) +

∫ A0

−A0

(a−A)2 pMLE(a) da

+ (A−A0)2 P(Â ≥ A0)

=MSE(Ã)

MSE(Â) > MSE(Ã)
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Note

1. Ã is biased

2. Although Â is the MLE, Ã is better in the MSE sense

3. Prior information is aptly described by regarding A as a
random variable with a prior distribution.

uniform(−A0, A0)

⇒ We know −A0 ≤ A ≤ A0, but otherwise A is arbitrary.
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Elements of Bayesian Analysis

(a) Joint distribution

p(y, θ) = p(y|θ)p(θ)

(b) Marginal distributions

p(y) =

∫
p(y|θ)p(θ)dθ

p(θ) =

∫
p(y|θ)p(θ)dy (“prior”)

(c) Posterior distribution

p(θ|y) =
p(y, θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dy

13 / 70



Example: Binomial + Beta

p(y|θ) =

(
n

y

)
θy(1− θ)n−y, 0 ≤ θ ≤ 1

= binomial likelihood

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

= Beta prior distribution

where Γ(α) =

∫ ∞
0

yα−1e−ydy is the Gamma function
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Example: (cont.)

I Joint Density

p(y, θ) =

[ (
n
y

)
B(α, β)

]
θα+y−1(1− θ)n−y+β−1

I Marginal Density

p(y) =

[(
n

y

)
1

B(α, β)

]
B(α+ y, β + n− y)

I Posterior Density

p(θ|y) =

θα+y−1(1− θ)β+n−y−1

B(α+ y, β + n− y)︸ ︷︷ ︸
beta density with parameters

α′ = α+ y
β′ = β + n− y
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Bayesian Estimation

We are interested in estimating θ given the observation y within a
Bayesian framework. Naturally, then, any estimation strategy will
be based on the posterior distribution p(θ|y).

However, we need a criterion for assessing the quality of potential
estimators.

16 / 70



Loss

Definition: Loss

The quality of an estimate θ̂ is measured by a real-valued loss (or
cost) function

L(θ, θ̂).

For example, squared error or quadratic loss is simply

L(θ, θ̂(y)) = (θ − θ̂(y))>(θ − θ̂(y)) = ‖θ − θ̂(y)‖2.

Definition: Bayes Risk

The quality of an estimator is measured by the expected loss,
known as the Bayes risk:

R(θ̂) := Ey,θ
[
L(θ, θ̂(y))

]
.

(When write R(θ̂), we mean risk relative to a particular strategy (i.e. way

of choosing θ̂), not a particular value of θ̂)
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Note that the expectation is with respect to both y and θ.

For example, if y and θ are jointly continuous, then

R(θ̂) =

∫∫
L(θ, θ̂(y))p(θ, y)dydθ

=

∫∫
L(θ, θ̂(y))p(y|θ)p(θ)dydθ

= Ey
[
Eθ|y

[
L(θ, θ̂(y))|y = y

]]
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In general, Bayesian estimation seeks the “Bayes estimator”

θ̂ = arg min
θ̃

R(θ̃)

= arg min
θ̃

Ey,θ
{
L
(
θ, θ̃(y)

)}
= arg min

θ̃

Ey
{
Eθ|y

{
L
(
θ, θ̃(y)

)
|y = y

}}
that minimizes the Bayes risk. Thus, given the data y, the “best”
or optimal estimator under a given loss function is given by

θ̂(y) = arg min
θ̃

E
[
L
(
θ, θ̃
)
|y
]
.

This is called the “posterior expected loss”; it depends only on the
loss function and the posterior distribution.
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Bayesian estimation with squared error loss

Measure the loss as L(θ, θ̂) = ‖θ − θ̂‖2. Now note

Eθ|y=y[(θ − θ̂(y))>(θ − θ̂(y))]

= Eθ|y[(θ − E[θ|y] + E[θ|y]− θ̂(y))>(θ − E[θ|y] + E[θ|y]− θ̂(y))]

= Eθ|y[(θ − E[θ|y])>(θ − E[θ|y])] + 2Eθ|y[(θ − E[θ|y])>(E[θ|y]− θ̂(y))]

+Eθ|y[(E[θ|y]− θ̂(y))>(E[θ|y]− θ̂(y))]

The first term is independent of θ̂(y) and the second term is 0.
The third term can be minimized by taking

θ̂PM(y) = E[θ|y] =

∫
θp(θ|y)dθ

which is the posterior mean. (In signal processing this is also called
the “Bayesian minimim mean squared error estimator”.)
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Example: DC Level in AWGN

yi = A+ νi

i = 1, · · · , n, νi ∼ N (0, σ2). Prior for unknown parameter A:

p(A) = Unif[−A0, A0]

p(y|A) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi −A)2

}

p(A|y) =


1

2A0(2πσ2)n/2
exp

{
− 1

2σ2

∑n
i=1(yi −A)2

}∫ A0

−A0

1
2A0(2πσ2)n/2

exp
{
− 1

2σ2

∑n
i=1(yi − a)2

}
da

if |A| ≤ A0

0 if |A| > A0
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Example: (cont.)

Bayes Minimum MSE Estimator:

Â = E [A|y] =

∫ ∞
−∞

Ap(A|y)dA

=

∫ A0

−A0
A · 1

2A0(2πσ2)n/2
exp

{
− 1

2σ2

∑n
i=1(yi −A)2

}
dA∫ A0

−A0

1
2A0(2πσ2)n/2

exp
{
− 1

2σ2

∑n
i=1(yi − a)2

}
da

Notes:
1. No closed-form estimator

2. As A0 →∞, Â→ 1
n

∑n
i=1 yi

3. For smaller A0, truncated integral produces an Â that is a
function of y, σ2, and A0

4. As n increases σ2/n decreases and posterior p(A|y) becomes
tightly clustered about 1

n

∑
i yi

⇒ Â→ 1
n

∑
yi as n→∞ (the data ”swamps out” the

prior)
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Other Common Loss Functions

Absolute Error Loss (Laplace, 1773):

L(θ, θ̂) = ‖θ − θ̂‖1 :=

p∑
i=1

|θi − θ̂i|

Scalar case:

E
[
L(θ, θ̂)|y

]
=

∫ ∞
−∞
|θ − θ̂|p(θ|y)dθ

=

∫ θ̂

−∞
(θ̂ − θ)p(θ|y)dθ +

∫ ∞
θ̂

(θ − θ̂)p(θ|y)dθ

The optimal estimator under this loss is referred to the “minimum
mean absolute error” (MMAE) estimator.
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To see what estimator minimises this loss, we differentiate

E
[
L(θ, θ̂)|y

]
with respect to θ̂ (using Leibnitz’s rule) to get

∂

∂θ̂
E
[
L(θ, θ̂)|y

]
= P (θ̂(y)|y)− (1− P (θ̂(y)|y)),

where P (θ|y) is the posterior cumulative distribution function of θ
given y. Setting this equal to zero, this implies P (θ̂(y)|y) = 1/2 or

P(θ < θ̂|y) = P(θ > θ̂|y).

The optimal θ̂ under absolute error loss is the posterior median.
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Uniform Loss:

L(θ, θ̂) = I{‖θ̂−θ‖>ε} =

{
1 if ‖θ − θ̂‖ > ε

0 otherwise

where ε > 0 is small. The posterior expected loss is

E
[
L(θ, θ̂)|y

]
= E

[
I{‖θ̂−θ‖>ε}|y

]
= P(‖θ̂ − θ‖ > ε|y)

which is the posterior probability that θ deviates from θ̂(y) by
more then ε. To minimize this uniform loss we must choose θ̂ to
be the value of θ with highest posterior probability. Taking the
limit as ε −→ 0 gives:

The optimal estimator θ̂ under uniform loss is the posterior mode.
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Definition

Maximum A Posteriori (MAP) estimator - the value of θ where
p(θ|y) is maximized:

θ̂MAP(y) = arg max
θ̃

p(θ̃|y) = arg max
θ̃

p(y|θ̃)p(θ̃)
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θ

θ

p(θ|x)

p(θ|x)

(a) General posterior PDF

(b) Gaussian posterior PDF

If the posterior is symmetric and unimodal, then

θ̂MMSE = θ̂MMAE = θ̂MAP
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Computation

Both θ̂PM and θ̂MMAE require integrating with respect to p(θ|y).
Often this calculation will be intractable. How can we approximate
these estimators numerically?
One common approach: if we can simulate θ1, . . . , θM from p(θ|y),
then we can apply the following Monte Carlo estimates:

θ̂PM(y) ≈ 1

M

M∑
i=1

θi

θ̂MMAE(y) ≈ median {θ1, . . . , θM}

If the posterior mode cannot be determined analytically, then
numerical approaches can be applied.
Which of the three loss functions is used is often dictated by
computational considerations.
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Choosing a Prior

Two approaches:

1. Informative (or “subjective”) priors:
I design/choose priors that are compatible with prior knowledge

of unknown parameters
I can be impractical in complicated problems with many

parameters
I injecting subjective opinion into analysis contrary to making

scientific analysis as objective as possible.

2. Non-informative priors:
I attempt to remove subjectiveness from Bayesian procedures
I designs are often based on invariance arguments
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Selecting an Informative Prior

Clearly, the most important objective is to choose the prior p(θ)
that best reflects the prior knowledge available to us.

In general, however, our prior knowledge is imprecise and any
number of prior densities may aptly capture this information.

Moreover, usually the optimal estimator can’t be obtained in
closed-form.

Therefore, sometimes it is desirable to choose a prior density that
models prior knowledge and is nicely matched in functional form to
p(y|θ) so that the optimal estimator (and posterior density) can be
expressed in a simple fashion.
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Conjugate Priors
Idea: Given p(y|θ), choose p(θ) so that p(θ|y) ∝ p(y|θ) p(θ) has a
simple functional form.
Conjugate priors: choose p(θ) ∈ P, where P is a family of
densities (e.g., Gaussian family) so that the posterior density also
belongs to that family.

Definition

p(θ) is a conjugate prior for p(y|θ) if

p(θ) ∈ P ⇒ p(θ|y) ∈ P

Example: Conjugate priors for exponential random variables

y1, . . . , yn
iid∼ exponential(θ)

p(y|θ) =

n∏
i=1

θe−θyi = θne−θt

where t :=
∑
yi.
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Example: (cont.)

Let θ ∼ Gamma(α, β), so that p(θ) = βα

Γ(α)θ
α−1e−βθ for θ ∈ [0,∞).

Then

p(y, θ) =

θne−θt
βα

Γ(α)
θα−1e−βθ

p(y) =

∫
p(y, θ)dθ =

∫ ∞
0

θne−θt
βα

Γ(α)
θα−1e−βθdθ

=

βα

Γ(α)

∫ ∞
0

θN+α−1e−θ(β+t)dθ

=

βα

Γ(α)

Γ(N + α)

(β + t)N+α

p(θ|y) =
p(y, θ)

p(y)

=

(β + t)N+α

Γ(N + α)
θN+α−1e−θ(β+t)

=

Gamma(N + α, β + t)

Thus the Gamma prior is conjugate for the exponential distribution!
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Example: Constant in AWGN

yi = A+ νi , i = 1, · · · , n; νi
iid∼ N (0, σ2)

Rather than modeling A ∼ Uniform(−A0, A0) (which did not yield
a closed-form estimator) consider

p(A) =
1√

2πσA2
exp

{
− 1

2σA2
(A− µ)2

}
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Example: (cont.)

With µ = 0 and σA = 1
3A0 this Gaussian prior also reflects prior

knowledge that it is unlikely for |A| ≥ A0.
The Gaussian prior is also conjugate to the Gaussian likelihood

p(y|A) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(yi −A)2

]

so that the resulting posterior density is also a simple Gaussian, as
shown next. First note that

p(y|A) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

y2
i

]
· exp

[
− 1

2σ2
(nA2 − 2nAȳ)

]

where ȳ = 1
n

∑n
i=1 yi.
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Example: (cont.)

p(A|y) =
p(y|A) p(A)∫
p(y|a) p(a) da

=
exp

[
− 1

2

(
1
σ2 (nA2 − 2nAȳ) + 1

σA2 (A− µ)2
)]

∫∞
−∞ exp

[
− 1

2

(
1
σ2 (na2 − 2naȳ) + 1

σA2 (a− µ)2
)]
da

=
e−

1
2Q(A)∫∞

−∞ e−
1
2Q(a)da

where

Q(A) =
n

σ2
A2 − 2nAȳ

σ2
+

A2

σA2
− 2µA

σA2
+

µ2

σA2

Now let

σ2
A|y :=

1
n
σ2 + 1

σA2

µ2
A|y :=

(
n

σ2
ȳ +

µ

σA2

)
σ2
A|y
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Example: (cont.)

Then by “completing the square” we have

Q(A) =
1

σ2
A|y

(
A2 − 2µA|yA+ µ2

A|y

)
−
µ2
A|y

σ2
A|y

+
µ2

σA2

=
1

σ2
A|y

(
A2 − µA|y

)2 − µ2
A|y

σ2
A|y

+
µ2

σA2

Hence

p(A|y) =

exp

[
− 1

2σ2
A|y

(A− µA|y)2

]
exp

[
− 1

2

(
µ2

σA2 −
µ2
A|y
σ2
A|y

)]
∫∞
−∞ exp

[
− 1

2σ2
A|y

(a−µA|y)2

]
︸ ︷︷ ︸
“unnormalized” Gaussian density

exp

[
− 1

2

(
µ2

σA
2−

µ2
A|y
σ2
A|y

)]
︸ ︷︷ ︸

Constant, indep. of a

da

=
1√

2πσ2
A|y

exp

[
− 1

2σ2
A|y

(A− µA|y)2

]

A|y ∼ N (µA|y, σ
2
A|y)
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Example: (cont.)

Now

Â = E [A|y] = µA|y =
n
σ2 ȳ + µ

σA2

n
σ2 + 1

σA2

=

(
σA

2

σA2 + σ2/n

)
ȳ +

(
σ2/n

σA2 + σ2/n

)
µ

= αȳ + (1− α)µ

where

0 < α =
σA

2

σA2 + σ2/n
< 1

Interpretation

1. When there is little data (σ2
A � σ2

n ), α is small and Â ≈ µ.

2. When there is a lot of data (σ2
A � σ2

n ), α ≈ 1 and Â ≈ ȳ.

Interplay between data and prior knowledge: small n⇔ Â favors prior,
large n⇔ Â favors data
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Overview

So far...

I Bayesian methods assume the unknown parameter θ is
stochastic and we have a prior probabilistic model for θ

I Given the prior p(θ) and data y ∼ p(y|θ), we can compute the
posterior

p(θ|y) =
p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ).

I Given the posterior, we can estimate θ multiple different ways.
Popular examples:

I Posterior mean: θ̂ = E[θ|y] =
∫
θp(θ|y)dθ.

I Maximum a posteriori (MAP): θ̂ = arg maxθ p(θ|y).

I Choosing conjugate priors ensures the posterior has a nice
functional form.
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Ahead

The multivariate Gaussian linear model...

I ... with a multivariate Gaussian prior =⇒ ridge regression

I ... with a multivariate Laplace prior =⇒ LASSO (least
absolute shrinkage and selection operator) regression

These models and methods appear in a wide variety of modern
machine learning and signal processing settings.
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The Multivariate Gaussian Model

We consider the following linear statistical model

y = Xθ + ν

where

y is observed, n× 1
X is known, n× p
ν ∼ N (0,Σν), is n× 1

Σν ∈ Sn (the set of all n × n positive semi-
definite real-valued matrices) is known
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Examples
This linear model appears throughout science, engineering, and
machine learning.

I y measures the US census count over n years.
X is a Vandermonde matrix representing an
order-p polynomial approximation, and θ
contains the p polynomial coefficients.

I y is an n-pixel blurry image we take with our
camera, X models the blurring process, and θ
is the desired blur-free image (here p = n).

I Each element of y is your heart rate at n
different times of the day. Each of the p
columns of X measures one of your activities
(e.g. alcohol consumption, nap time(s),
exercise, proximity to attractive people) at the
same times in the day. θ characterizes how
much each of these activities contributes to
your heart rate.
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A Gaussian prior
Consider the following Bayesian linear statistical model

y = Xθ + ν

where

y is observed, n× 1
X is known, n× p
ν ∼ N (0,Σν), is n× 1

Σν ∈ Sn (the set of all n × n positive semi-
definite real-valued matrices) is known
and full-rank

θ ∼ N (µθ,Σθ)
θ is unknown, p×1 (p unknown parameters)
µθ is known, p× 1
Σθ ∈ Sp is known and full-rank

θ and ν are independent

This model amounts to a Gaussian prior on θ and a Gaussian
conditional distribution of y given θ.
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What is the posterior?

First, note the y and θ are jointly Gaussian:[
θ
y

]
=

[
0 Ip
Ip X

] [
ν
θ

]
.

Since [
ν
θ

]
∼ N

([
0
µθ

]
,

[
Σν 0
0 Σθ

])
,

we have[
θ
y

]
∼ N

(

[
µθ
Xµθ

]

,

[
Σθ ΣθX

>

XΣθ XΣθX
> + Σν

]

)
.
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Lemma

If [
Z1

Z2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

then
Z1|Z2 = z2 ∼ N

(
µ′,Σ′

)
where

µ′ := µ1 + Σ12Σ−1
22 (z2 − µ2)

Σ′ := Σ11 − Σ12Σ−1
22 Σ21.

We next apply this lemma to

[
Z1

Z2

]
=

[
θ
y

]
.
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Gauss-Markov Theorem

The posterior distribution of θ|y is

θ|y ∼ N (µθ|y,Σθ|y)

where

µθ|y = µθ + ΣθX
>
(
XΣθX

> + Σν

)−1
(y −Xµθ)

= µθ +
(
X>Σ−1

ν X + Σ−1
θ

)−1
X>Σ−1

ν (y −Xµθ)

Σθ|y = Σθ − ΣθX
>
(
XΣθX

> + Σν

)−1
XΣθ

=
(
X>Σ−1

ν X + Σ−1
θ

)−1
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The second version of each expression is a result of the following:

Matrix Inversion Lemma
(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1.

Specifically, first apply the matrix inversion lemma to

Σθ|y = Σθ − ΣθX
> (XΣθX

> + Σν

)−1
XΣθ to get

Σθ|y =
(
X>Σ−1

ν X + Σ−1
θ

)−1
.

Now let G := ΣθX
> (XΣθX

> + Σν

)−1
, so that

µθ|y =µθ +G(y −Xµθ)
Σθ|y =Σθ −GXΣθ.
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Now using the formula above Σθ|y = Σθ −GXΣθ, we have

GXΣθ =Σθ − Σθ|y = Σθ|y(Σ
−1
θ|yΣθ − I)

=Σθ|y

[(
X>Σ−1

ν X + Σ−1
θ

)
Σθ − I

]
=Σθ|yX

>Σ−1
ν XΣθ.

That last gives the identity

G =Σθ|yX
>Σ−1

ν =
(
X>Σ−1

ν X + Σ−1
θ

)−1
X>Σ−1

ν

as desired.
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Observations

I The posterior distribution is Gaussian, which is symmetric and
unimodal. Therefore, the posterior mean and MAP estimators
are both

θ̂(y) = µθ|y = µθ + ΣθX
>(XΣθX

> + Σν)−1(y −Xµθ)
= µθ + (X>Σ−1

ν X + Σ−1
θ )−1X>Σ−1

ν (y −Xµθ)

I θ̂(y) is an affine function of y.

I θ̂(y) is itself multivariate Gaussian.
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Special case 1: The noncommittal prior

Consider the case where µθ = 0, Σθ = σ2Ip and σ2 −→∞. This
can be thought of as a “noncommittal” prior. Then Σ−1

θ −→ 0p
and

θ̂(y) = µθ|y =

(X>Σ−1
ν X)−1X>Σ−1

ν y

Furthermore, if Σν = σ2In, then

θ̂(y) =

(X>X)−1X>y

which is

the least squares estimator and MLE!
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Special case 2: Uncorrelated prior

Consider the case where µθ = 0, Σθ = σ2
θIp, and Σν = σ2

νIn. Then

θ̂(y) = µθ|y =

(X>Σ−1
ν X + Σ−1

θ )−1X>Σ−1
ν y

=

(
1

σ2
ν

X>X +
1

σ2
θ

Ip)
−1 1

σ2
ν

X>y

=

(X>X +
σ2
ν

σ2
θ

Ip)
−1X>y

This is referred to as ridge regression.

Note that even when X>X is poorly conditioned or not invertible,

the sum X>X + σ2
ν

σ2
θ
Ip can be well conditioned even for small

values of σ2
ν

σ2
θ

. As a result, this estimator, while biased, can have far

less variance than the least squares estimator.

50 / 70



Example:

y = θ + ν ∈ Rn , ν ∼ N (0, σ2In)

p(θ) = N (0,Σθθ) indep. of ν

E [y] =

E [θ] + E [ν] = 0

E
[
yy>

]
=

E
[
θθ>

]
+ E

[
θν>

]
+ E

[
νθ>

]
+ E

[
νν>

]

=

Σθθ + σ2I

E
[
yθ>

]
= E

[
θθ>

]
+ E

[
νθ>

]
=

Σθθ = E
[
θy>

]

[
y
θ

]
∼ N

([
0
0

]
,

[
Σyy Σθθ

Σθθ Σθθ

])

We can invoke the Gauss-Markov theorem to get

θ̂ =

Σθθ(Σθθ + σ2In)−1y = (I + σ2Σ−1
θθ )−1y
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Example: (cont.)

(Alternative derivation:) From our Bayesian perspective, we are
interested in p(θ|y).

p(θ|y) =

(2π)−N/2 (2π)−N/2 |Σ|−1/2 exp

{
− 1

2 [y>θ>]Σ−1

[
y
θ

]}
(2π)−N/2 |Σyy|−1/2 exp

{
− 1

2y
>Σ−1

yy y
}

In this formula we are faced with

Σ−1 =

[
Σyy Σyθ
Σθy Σθθ

]−1

The inverse of this covariance matrix can be written as[
Σyy Σyθ
Σθy Σθθ

]−1

=

[
Σ−1
yy 0
0 0

]
+

[
−Σ−1

yy Σyθ
I

]
Q−1

[
−ΣθyΣ−1

yy I
]

where Q := Σθθ − Σθy Σ−1
yy Σyθ is the Schur complement of Σθθ.

(Verify this formula by applying RHS above to Σ to get I.)
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Example: (cont.)

Furthermore,
det Σ = det Σyy detQ.

Substituting this expression into p(θ|y) we get

p(θ|y) = (2π)−N/2 |Q|−1/2

× exp

{
−1

2
(θ − ΣθyΣ−1

yy y)>Q−1(θ − ΣθyΣ−1
yy y)

}
θ|y ∼ N

(
ΣθyΣ−1

yy y,Q
)

Thus the posterior mean of θ is

θ̂ = ΣθyΣ
−1
yy y

and the posterior variance is

Q = Σθθ − ΣθyΣ
−1
yy Σyθ
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Example: DC Level in AWGN

yi = A+ νi, i = 1, . . . , n

where A is an unknown scalar to be estimated and

A ∼ N (µA, σA
2)

νi
iid∼ N (0, σν

2) , indep. of y

This problem falls within the Gaussian linear model with

X = 1 (n× 1)

θ = A (1× 1)

µθ = µA (1× 1)

Σθ = σ2
A (1× 1)

Σν = σ2In (1× 1)
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Example: (cont.)

Using the second formula for µA|x, we obtain

Â(y) = µA|x =

µA +

(
1

σ2
ν

1>1 +
1

σ2
A

)−1

1>
1

σ2
ν

(y − 1µA)

=

µA +

(
n

σ2
ν

+
1

σ2
A

)−1 1

σ2
ν

(∑
i

yi −NµA

)

=

µA +
1

n
σ2
ν

+ 1
σ2
A

n

σ2
2

(y − µA)

=

µA +
σ2
A

σ2
A + σ2

ν
n

(y − µA)
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Example: (cont.)

In other words,
Â(y) = (1− α)µA + αy

where

α =

σ2
A

σ2
A + σ2

ν
n

controls the tradeoff between prior knowledge and data. Limiting
cases:

n→∞ =⇒ α→

1

=⇒Â→

y

n = 0 =⇒ α =

0

=⇒Â =

µA

σ2
A →∞ =⇒ α→

1

=⇒Â→

y

σ2
A = 0 =⇒ α =

0

=⇒Â =

µA
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Tikhinov regularization

We can also compute the MAP estimator directly. Assume here
that Σν = σ2

νIn and µθ = 0, and define Γ such that Σ−1
θ = Γ>Γ.

(If we have the eigendecomposition Σθ = V ΛV >, then

Σθ = V Λ−1V > = V Λ−1/2 Λ−1/2V >︸ ︷︷ ︸
Γ

.) Then

− log p(y|θ) ∝ 1

2σ2
ν

‖y −Xθ‖22

− log p(θ) ∝ 1

2
‖θ>Σ−1

θ θ‖22

=
1

2
‖Γθ‖22

θ̂MAP = arg min
θ
{− log p(y|θ)− log p(θ)}

=

arg min
θ

{
1

2
‖y −Xθ‖22 +

σ2
ν

2
‖Γθ‖22

}

=

(X>X + σ2
νΓ>Γ)−1X>y

(If Γ = σθIp we arrive at the ridge regression expression.)
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Tikhinov regularization (cont.)
Consider again the estimate

θ̂MAP = arg min
θ

1

2
‖y −Xθ‖22 +

σ2
ν

2
‖Γθ‖22

The first term measures how well θ fits our observed data. The
second term reflects our prior knowledge – essentially we seek θ for
which Γθ has a small norm.

As σν increases and we must cope with more noise in our data, we
increase our dependence on this prior.

Furthermore, our choice of Γ (and hence Σθ) can determine which
θs our estimator will be biased towards.

Example: Smooth θ

If we think θ should vary smoothly from one element to the next,
we might choose Γ so that (Γθ)i = θi − θi−1.
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Simultaneously Diagonalizable Covariance Matrices
Consider the problem of estimating a signal in AWGN:

y = θ + ν

where y is the observed signal, θ is the clean signal, and ν is the
noise. This can be modeled using a general linear model using
θ = θ and X = In. We can adopt a Gaussian prior for θ:

θ ∼ N (0,Σθθ).

The Bayesian estimate of θ is then

θ̂ = Σθθ (Σθθ + Σνν)−1 y.

Now suppose that Σθθ and Σνν are simultaneously diagonalizable,
meaning there exists an orthogonal matrix U such that

Σθθ = UΛθU
>

Σνν = UΛνU
>

with Λθ,Λν diagonal. For example, consider Σνν = σ2I and Σθθ

arbitrary.
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Then the estimator becomes

θ̂ = Σθθ (Σθθ + Σνν)−1 y

= UΛθU
>
(
UΛθU

> + UΛνU
>
)−1

y

= UΛθU
>
(
U(Λθ + Λν)U>

)−1
y

= U
[
Λθ(Λθ + Λν)−1

]︸ ︷︷ ︸
Λ

U>y

where

Λ =



λ
(θ)
1

λ
(θ)
1 +λ

(ν)
1

0 · · · 0

0
λ
(θ)
2

λ
(θ)
2 +λ

(ν)
2

· · · 0

...
...

. . .

0 0 · · · λ
(θ)
n

λ
(θ)
n +λ

(ν)
n


.
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Interpretation:

I U is a change of basis matrix

I θ = U>y are coefficients of y in new basis

I z = Λθ is a coordinate-wise rescaling of θ

I θ̂ = Uz is a reconstruction of θ from z.

How should we interpret the weights

λi :=
λ

(θ)
i

λ
(θ)
i + λ

(ν)
i

?

Notice that

U>y = U>θ + U>ν

U>θ ∼ N (0, U>ΣθθU) = N (0,Λθ)

U>ν ∼ N (0, U>ΣννU) = N (0,Λν).
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Writing
U =

[
u1 u2 · · · un

]
we have

u>i θ ∼ N (0, λ
(θ)
i )

u>i ν ∼ N (0, λ
(ν)
i )

Thus, λi reflects the proportion of the projection onto ui that is
due to the signal.
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A Laplacian prior
Consider the following Bayesian linear statistical model

y = Xθ + ν

where

y is observed, n× 1
X is known, n× p
ν ∼ N (0,Σν), is n× 1

Σν ∈ Sn (the set of all n × n positive semi-
definite real-valued matrices) is known
and full-rank

θ is unknown, p×1 (p unknown parameters)
θ ∼ Laplace(λ)

p(θ) =
∏p
i=1

λ
2 exp(−λ|θi|)

λ is known scalar
θ and ν are independent

This model amounts to a Laplacian prior on θ and a Gaussian
conditional distribution of y given θ.
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Using the Laplacian prior
With the Laplacian prior we do not get the same simple expression
for the posterior distribution.

However, we can still examine the MAP estimate where
Σν = σ2

νIn:

− log p(y|θ) ∝ 1

2σ2
ν

‖y −Xθ‖22

− log p(θ) ∝ λ
p∑
i=1

|θi| ≡ λ‖θ‖1

θ̂MAP = arg min
θ
{− log p(y|θ)− log p(θ)}

=

arg min
θ

{
1

2
‖y −Xθ‖22 +

σ2
νλ

2
‖θ‖1

}

This estimate is called the LASSO (least absolute shrinkage and
selection operator) estimate.
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Ridge vs. LASSO

θ̂Ridge = arg min
θ

{
1

2
‖y −Xθ‖22 +

σ2
ν

2σ2
θ

‖θ‖22
}

θ̂LASSO = arg min
θ

{
1

2
‖y −Xθ‖22 +

σ2
νλ

2
‖θ‖1

}
In both cases, we attempt to find a θ which (a) is a good fit to our
data and (b) adheres to prior information captured by either the `2
or `1 norm of θ.

When should we use one vs. the other?

In general, the LASSO estimator favors sparser θ – i.e., θ with
more zero-valued elements. There is no closed-form expression for
the LASSO estimate.
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Example: Deblurring

θ is a p-pixel image. X is a blur operator. y = Xθ + ν is a p-pixel
blurry, noisy image. Some of the eigenvalues of X are very close to
zero, so

(X>X)−1

has some huge elements, meaning the least squares estimate

θ̂ = (X>X)−1X>y = (X>X)−1X>(Xθ+ν) = θ+(X>X)−1X>ν

will contain θ plus amplified noise.
We will compare the least-squares estimate, the ridge estimate,
and the LASSO estimate.
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Example: Deblurring
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Example: Deblurring

68 / 70



Proof of lemma

Note that the conditional distribution must be a Gaussian, so we
just need to calculate the mean and covariance of this Gaussian to
fully characterize the distribution.
Let A := −Σ12Σ−1

22 and t := z1 +Az2. Then

cov[t, z2] = cov(z1 +Az2, z2) = Σ12 +AΣ22 = Σ12 − Σ12Σ−1
22 Σ22 = 0

which means that t and z2 are uncorrelated, and since they’re
Gaussian this implies that they are also independent. Thus

E[z1|z2] =E[t−Az2|z2] = E[t|z2]−AE[z2|z2]

=E[t]−Az2 = µ1 +A(µ2 − z2)

=µ1 + Σ12Σ−1
22 (z2 − µ2)
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Proof of lemma (cont.)

We now use the fact that for two random vectors x and y,

var(x+ y) = var(x) + var(y) + cov(x, y) + cov(y, x).

Thus

var(z1|z2) =var(t−Az2|z2)

=var(t|z2) +Avar(z2|z2)A> − cov(t, Az2)− cov(Az2, t)

=var(t) = var(z1 +Az2)

=var(z1) +Avar(z2)A> +Acov(z1, z2) + cov(z2, z1)A>

=Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

=Σ11 − Σ12Σ−1
22 Σ21
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