
Stochastic Filters
ECE 830, Spring 2017

Rebecca Willett

1 / 44

Dynamic Filtering
In many applications we want to track a time-varying (dynamic)
phenomenon.

Example: Tracking temperature or humidity in a museum
room with an inaccurate device

Key: Temperature changes slowly with time so we should be able
to average across time to obtain better estimates. How to do this?
Model dynamics of temperature changes and
noise/uncertainties in measurement.

2 / 44

Dynamical State Equation (Prior)

Let x1, x2, . . . denote the quantity (“state”) of interest. The state
is changing over time and we will model this variation stochastically
as follows. The state at time n depends causally on the past.

Let
p(xn|xn−1, xn−2, . . . , x1)

denote the conditional distribution of the state at time n given all
the past states. This distribution is a n-variate function, and as n
grows it becomes more and more complex (to specifiy, to compute,
etc).

A reasonable simplifying assumption is to assume that the
probability distribution of the state at time n depends only on
value of the state at time n− 1.

3 / 44

Defintion: Markovian assumption

p(xn|xn−1, . . . , x1) = p(xn|xn−1) .

Note that p(xn|xn−1) is bivariate and therefore much simpler than
the general causal model.

To define the state process we must to specify

1. p(x1), the “initial state” distribution

2. p(xn|xn−1), n = 2, 3, . . ., the state transition probability
density functions

This is illustrated in the following example.

4 / 44

Example: Santa Tracker

On December 25th, legend has it that Santa Claus makes his way
around the globe, delivering toys to all the good girls and boys.
Tracking Santa’s delivery trip has attracted considerable interest
by the signal processing research community in recent years, see
http://www.noradsanta.org/. Here is a simple approach to the
problem.

x(t) = Santa’s position at time t on Christmas Eve

∂x(t)

∂t
= v(t), velocity

∂v(t)

∂t
= u(t), acceleration

We can sample Santa’s position once every second, producing a
sequence of position values x1, x2, His velocity is also
represented by a discrete-time process v1, v2,

5 / 44

http://www.noradsanta.org/

Example: (cont.)

We use the following model for Santa’s dynamics:[
xn+1

vn+1

]
=

[
1 ∆
0 1

] [
xn
vn

]
+

[
0
σ2

]
un,

un ∼N (0, 1), ∆ small

Also, Santa’s initial position is the North Pole, denoted by x0. So
we take p(x1) = δ(x1 − x0 −∆v0). In words, Santa’s position at
time xn+1 is equal to his position at time n plus a small step
proportional to his velocity. His velocity is modeled as a Gaussian
white noise process, representing the fact that he randomly speeds
up and slows down as he makes his stops around the world.

6 / 44

Observation Model (Likelihood)

Usually we cannot observe xn directly. Instead we observe
z1, z2, . . . , which are noisy and/or indirect measurements related
to the states.

Example: Observation processes

zn = xn + wn , wn ∼ N (0, σ2) , simple signal+noise model

zn = A

[
xn
xn−1

]
+ wn , where A is a 2× 2 matrix (e.g. blur)

zn = f(xn) + wn , f is a non-linear function

7 / 44

Let p(zn|xn) denote the likelihood of xn based on observation zn.
We can combine the likelihoods and the priors p(xn|xn−1) to
compute the posterior distribution of x = (x1, . . . , xn) given
z = (z1, . . . , zn)

p(x|z) ∝ p(z|x)p(x) =

n∏
i=1

p(zi|xi)p(xi|xi−1) .

The posterior can be computed efficiently in an incremental fasion
by exploiting Markovian structure of state transitions (prior). This
incremental procedure is called Density Propagation.

8 / 44

Density Propagation
Density Propagation is an incremental procedure for efficiently
computing p(xn|z1, . . . , zn). First let’s establish some notation:
Prior: (S is for State)

Sn(xn|xn−1) := p(xn|xn−1), P1(x1) = p(x1)

Likelihood: (L is for Likelihood)

Ln(zn|xn) := p(zn|xn)

Posterior: (F is for Filter)

Fn(xn) := p(xn|z1, . . . , zn)

Prediction: (P is for Prediction or Prior)

Pn(xn) := p(xn|z1, . . . , zn−1)

Pn(xn) is the prediction of the value of xn using only observations
up to time n− 1, and this will play a key role in the Density
Propagation algorithm.

9 / 44

Density Propogation Algorithm
n = 1: predict x1:

x1 ∼ p1(x1)

observe z1 and compute posterior:

F1(x1) = p(x1|z1) =
p(z1|x1)p(x1)

p(z1)
∝ L1(z1|x1)p1(x1)

n = 2: predict x2:

p(x1, x2|z1) =
p(x1, x2, z1)

p(z1)

=
p(x2|x1, z1)p(x1|z1)p(z1)

p(z1)

= p(x2|x1)F1(x1)

= S2(x2|x1)F1(x1)

p(x2|z1) =

∫
S2(x2|x1)F1(x1)dx1

=: P2(x2)

10 / 44

n = 2 (cont.): observe z2 and compute posterior:

F2(x2) = p(x2|z1, z2)

=
p(x2, z1, z2)

p(z1, z2)

=
p(z2|x2)p(x2|z1)p(z1)

p(z1, z2)

∝ L2(z2|x2)P2(x2)

11 / 44

at time step n: predict xn:

Pn(xn) = p(xn|z1, . . . , zn−1)

=

∫
Sn(xn|xn−1)Fn−1(xn−1)dxn−1

observe zn and compute posterior:

Fn(xn) = p(xn|z1, . . . , zn)

∝ Ln(zn|xn)Pn(xn)

12 / 44

Block Diagram

Figure: Block diagram of dynamic filtering.

13 / 44

Filtering

Fn(xn) ∝ Ln(zn|xn)Pn(xn)

Figure: The filtering or “focus” portion of the dynamical filtering block
diagram.

14 / 44

Prediction

Pn+1(xn+1) =

∫
Sn(xn+1|xn)Fn(xn)dxn

+1

Figure: The prediction or “diffusion” portion of the dynamical filtering
block diagram.

15 / 44

Estimating xn
We have many possibilities. Given

Fn(xn) = p(xn|z1, . . . , zn)

we can minimize various risk functions based on a loss and the
posterior distribution Fn.
`2:

x̂n = arg min
x̃

EFn [(xn − x̃)2]

=

∫
xnFn(xn)dxn

`1:
x̂n = arg min

x̃
EFn [|xn − x̃|]

`0/1:
x̂n = arg max

x
Fn(xn)

16 / 44

Gauss-Markov Model

Definition: Gauss-Markov Model

A random process of the form

xn = Axn−1 +Bun

where A ∈ Rp×p and B ∈ Rp×q, un is a sequence of uncorrelated,
independent jointly Gaussian vectors with E[un] = 0, and the
initial state x0 ∼ N (µx, Cx).

A simple model for xn which allows us to specify the correlation
between samples is the first-order Gauss-Markov process model:

xn = axn−1 + un, n = 1, 2, · · ·
un ∼ N (0, σ2u) (White Gaussian noise process)

17 / 44

To initialize the process we take x0 to be the realization of a
Gaussian random variable:

x0 ∼ N (0, σ2x)

un is called the driving or excitation noise. The model

xn = axn−1 + un

is called the dynamical or state model. The current output xn
depends only on the state of the system at the previous time, or
xn−1, and the current input un.

x1 = ax0 + u0

x2 = ax1 + u1 = a(ax0 + u0) + u1

= a2x0 + au0 + u1
...

xn = anx0 +

n−1∑
k=0

akun−k

18 / 44

What can we say about the statistics of xn?

First note

E [xn] = anE [x0] +

n−1∑
k=0

akE [un−k] = 0.

The correlation can be computed by noting

E [xmxn] = E

[(
amx0 +

m−1∑
k=0

akum−k

)
×

(
anx0 +

n−1∑
l=0

alum−l

)]

E [xmxn] = E
[
am+nx20

]
+ E

[
m−1∑
k=0

n−1∑
l=0

ak+lum−kun−l

]

E [um−kun−l] =

{
σ2
u, if m− k = n− l

0, otherwise

19 / 44

If m > n, then

E [xmxn] = am+nσ2x + am−nσ2u

n−1∑
k=0

a2k

If |a| > 1, then it’s obvious that the process diverges (variance
−→∞). So, let’s assume |a| < 1 and hence a stable system.
Thus as m and n get large

am+nσ2x → 0

Now let m− n = τ . Then for m and n large we have

E [xmxn] = aτσ2u

n−1∑
k=0

a2k︸ ︷︷ ︸
1−a2n
1−a2

=
aτ (1− a2n)σ2u

1− a2

This shows us how correlated the process is.

|a| → 1 =⇒ heavily correlated (or anticorrelated)

|a| → 0 =⇒ weakly correlated

20 / 44

Vector case

Let’s look at a more general formulation of the problem at hand.
Suppose that we have a vector-valued dynamical equation

xn+1 = Axn +Bun

where

xn is p× 1

x0 ∼ N (µ0, C0)

A is p× p
B is p× q
un is q × 1

un ∼ N (0, Iq) iid (white Gaussian excitation)

This reduces to the case we just looked at when p = q = 1.

21 / 44

p-th order Gauss-Markov processes

xn+1 = a1xn + a2xn−1 + · · ·+ apxn−p+1 + un

Define

xn =


xn−p+1

xn−p+2
...

xn−1

xn


Then

xn+1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
a1 a2 · · · ap−1 ap


︸ ︷︷ ︸
A = state transition matrix


xn−p+1

xn−p+2
...

xn−1

xn


︸ ︷︷ ︸

xn

+


0
0
...
0
1


︸ ︷︷ ︸

B

un

22 / 44

Since xn is a linear combination of Gaussian vectors:

xn = Anx0 +

n∑
k=1

Ak−1Bun−k

we know that xn is also Gaussian distributed with mean 0 and
covariance Cn = E[xnx

T
n]:

xn ∼ N (0, Cn)

The covariance can be recursively computed from the basic state
equation:

Cn+1 = ACnA
T +BBT

23 / 44

Density Propagation
The density propagation algorithm discussed earlier involves the
following ingredients and operates according to the block diagram
below.

24 / 44

Observation:

Ln(zn|xn) :=p(zn|xn)

Prior:

P1(x1) :=p(x1) prior probability on initial x1

Sn(xn|xn−1) :=p(xn|xn−1) 1st order Markov model

Posterior:

Fn(xn) :=p(xn|z1, ..., zn)

Prediction Distribution:

Pn(xn) :=p(xn|z1, ..., zn−1)

25 / 44

The Kalman Filter

The Kalman filter is the most famous instantiation of density
propagation. It assumes linear dynamics and Gaussian
distirbutions, which lead to very simple linear-algebraic operations.

Kalman filter setup

Observation Model:

zn = C xn + Dvn , vn
iid∼ N (0, I`)

where C ∈ Rp×d, D ∈ Rp×` zn ∈ Rp, and xn ∈ Rd.
Prior:

xn = Axn−1 +Bun

with
un

iid∼ N (0, Ik) and x1 ∼ N (µP1 , VP1)

where A ∈ Rd×d and B ∈ Rp×k

26 / 44

Now in this case P1(x1), Sn(xn|xn−1) and Ln(zn|xn) are all
multivariate Gaussian, so it follows that Fn(xn) and Pn(xn) are
also Gaussian (since products and convolutions of Gaussians are
also Gaussian). Therefore Fn(xn) is N (µFn , VFn) and Pn(xn) is
N (µPn , VPn), and we only need to determine the means and
covariances which have simple closed-form linear algebraic
expressions.

27 / 44

Example:

It is clear that the convolution of two Gaussian densities is
Gaussian (this follows from the fact that the sum of two
independent Gaussians is Gaussian, and the density of the sum is
the convolution of the two individual densities). The fact that
products of Gaussian densities have a Gaussian form is less
obvious. Here is a simple scalar example showing that the product
of two Gaussian densities is also Gaussian in form.

28 / 44

Example: (cont.)

Suppose

Pn(xn) =
1√
2π
e−

x2n
2

Ln(zn|xn) =
1√
4π
e
−(xn−zn)2

4

The posterior is then

Fn(xn) ∝ Pn(xn)Ln(zn|xn) ∝ e−
x2n
2
− (xn−zn)2

4

= e
−
(

2x2n+x2n−2xnzn+z2n
4

)
= e

−
(

3x2n−2xnzn+z2n
4

)

= e

−


(√

3xn− zn√
3

)2
+const

4


∝ e

−


(√

3xn− zn√
3

)2
4



= e
−
(
(xn− zn3)2

4
3

)

Therefore, the posterior distribution Fn(xn) is N (zn3 ,
2
3). 29 / 44

Kalman Filter (special case of density propogation)

Start with prediction density Pn(xn).

1. Correction/Update: After observing zn compute Fn(xn):

Kn := VPnC
T (CVPnC

T +DTD)−1

µFn = µPn +Kn(zn − CµPn)

VFn = (I −KnC)VPn

2. Estimation: Estimate xn using BMMSE estimation:

x̂n = E[xn|zn] = µFn .

3. Prediction: Compute the updated prediction Pn+1(xn+1):

µPn+1 = AµFn

VPn+1 = AVFnA
T +BTB

30 / 44

A word on notation

The notation used in these notes is a little different from that used
in many texts. The key differences are described here:

These notes “Standard”

Variables: µFn ŝn|n

VFn Mn|n

µPn ŝn|n−1

VPn Mn|n−1

Prediction: µPn+1
= AµFn ŝn|n−1 = Aŝn−1|n−1

VPn+1
= AVFnA

T
+ B

T
B Mn|n−1 = AMn−1|n−1 + B

T
B

Kalman gain: Kn := VPnC
T
(CVPnC

T
+D

T
D)
−1

Kn = Mn|n−1H
T
(D

T
D + CMn|n−1C

T
)
−1

Filtering: µFn = µPn +Kn(zn − CµPn) ŝn|n = ŝn|n−1 +Kn(xn − Cŝn|n−1)

VFn = (I −KnC)VPn Mn|n = (I −KnH)Mn|n−1

31 / 44

Example: First-order Gauss-Markov process

Setup:

s0 ∼ N (0, σ2s)

un ∼ N (0, σ2u)

sn+1 = asn + un

σs = σu = 0.1

a = 0.99⇒ highly correlated process

(A = a , B = σu)

Measurements/observation model:

xn = sn + wn

wn ∼ N (0, σ2w)

σw = 0.5

(C = 1, D = σ2w)
32 / 44

Example: (cont.)

1. Initialize: Start with initial prediction density P0(s0) ∼ N (0, 0.1).
I.e. µP0

= 0, VP0
= 0.1

2. Correction/Update: Observe xn, then compute

Kn =
VPn−1

VPn−1 + σ2
w

µFn
= µPn−1

+Kn(zn − µPn−1
)

VFn
= (1−Kn)VPn−1

3. Minimum MSE Estimation: x̂n = µFn

4. Prediction: Compute the updated prediction Pn(sn):

µPn
= aµFn−1

VPn = a2VFn−1 + σ2
u

33 / 44

Code

34 / 44

Output

35 / 44

The Extended Kalman Filter
The Extended Kalman Filter (EKF) can handle nonlinear
observation models and dynamics by linearizing the current
estimates at each step. The EKF is used routinely in GPS systems.
Prior:

xn = φ(xn−1) +Bun

Likelihood:
zn = ψ(xn) +Dvn

where φ, ψ nonlinear
Linearization:

zn ≈ ψ(µPn) +∇ψ(µPn)(xn − µPn)︸ ︷︷ ︸
Taylor series approximation of ψ(xn) at µPn

+Dvn

xn ≈ φ(µFn) +∇φ(µFn)(xn − µFn)︸ ︷︷ ︸
Taylor series approximation of φ(xn) at point µFn

+Bun

36 / 44

Alternatives to the Extended Kalman Filter (EKF)

1. The Unscented Kalman Filter is based on nonlinear
transformations, rather than linearization

2. Point-mass filters replace continuous distributions with
discrete point mass function approximations. All updates can
be computed as sums. The problem is that this can be very
computationally demanding in high dimensions.

3. Gaussian-Mixture Approximations can be used instead of
ideal densities, and updates in terms of Gaussian mixtures are
relatively easy to compute.

4. Particle Filters are a Monte Carlo version of the point-mass
filtering idea.

37 / 44

Particle Filters
Particle Filters also employ discrete approximations of the
underlying continuous distributions, but the discretization points
are drawn randomly from the distributions (rather than on a
deterministic grid).
Example Particles for Pn(xn).

38 / 44

Condensation Alogorithm (Isard & Blake 1998)

Start with samples from Pn(xn)

39 / 44

Resample accodrding to importance weights (i.e., generate more
new particles at points of larger likelihood) and simulate the
dynamics for each. The key is that simulating the dynamics is
usually very simple.

40 / 44

I Essentially, the particles form a Monte Carlo sample that
”tracks” the underlying densities.

I There are asymptotic (large numbers of particles) and
non-asymptotic analyses that show particle filters can work
very well.

I They are today’s method of choice for nonlinear density
propagation.

I The choice of resampling method is critical. Poor choices lead
to “particle degeneracy”, where all the particles except on
have weights close to zero.

41 / 44

Example: Orange Tracker (thanks to Rui Castro!)

Prior:

xn =

[
Pn
Vn

]
position
velocity

time n (4× 1 state)

xn =Axn +Bµn

=

[
I ∆
0 I

] [
Pn
Vn

]
+

[
0
σ2

]
µn , µn

iid∼ N (0, 1)

Observation:
zn = ψ(xn)

where zn is an m×m image of the ”orange” color at every pixel
and ψ(xn) is a highly nonlinear function of xn since the orange can
be occluded, move out of the scene, or be confused with the other
orange.

42 / 44

Original

43 / 44

orange.avi
Media File (video/avi)

Tracking results

44 / 44

orange_tracking.avi
Media File (video/avi)

