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Preface 

The main topic of this essay is symbolic mathematics, or the method of 
symbolic construction. The symbolic conception of mathematics is not new; 
we have had it since the end of the sixteenth century when Franciscus Vieta 
invented the algebraic symbolism and started to use the word ‘symbolic’ in 
the relevant, non-ontological sense. The symbolic approach in mathematics 
has played an important rȏle for many of the great inventions in modern 
mathematics such as, for instance, the introduction of the decimal place-
value system of numeration, Descartes’ analytic geometry and Leibniz’s 
infinitesimal calculus. The symbolic view of mathematics was also of great 
importance in the rigorization movement in mathematics in the late nine-
teenth century, as well as in the mathematics of modern physics in the 20th 
century. 

The nature of symbolic mathematics has been concealed, and confused, 
however, by the strong influence of the heritage from the Euclidean and 
Aristotelian traditions, especially in the areas of the philosophy of mathemat-
ics and the foundations of mathematics. The purpose of this essay is to shed 
some light on what has been concealed, by approaching some of the crucial 
issues from a historical perspective. 

I am indebted to Aki Kanamori, Pär Segerdahl, Kim Solin and Anders 
Öberg for helpful comments on an earlier version of this essay. Special 
thanks to Pär Segerdahl who helped me to improve the final version of the 
manuscript. 
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1   Introduction: history and heritage 

The rise of symbolic mathematics in the 17th century was not just a more or 
less continuous course of development, or an extension, of ancient Greek 
and medieval mathematical thought. As the philosopher Jacob Klein has 
argued, it was a transformation, connected with the extensive cultural 
change that took place in the beginning of modern times. Many essential 
features of Greek mathematical thought came to an end through this trans-
formation and do therefore no longer belong to our mathematical heritage. 
New forms of mathematical thought were created through this transfor-
mation, especially due to the increased use of algebraic symbolism. 

The normal interest in history of mathematics (among mathematicians 
who write history of mathematics) is interest in our mathematical heritage. 
This interest therefore tends to be conditioned by the contemporary situation 
and is not always an interest in what actually happened in mathematics of 
the past regardless of the contemporary situation. Only history in the latter 
sense deserves to be called history.1 But history and heritage are often con-
fused and one consequence of this kind of confusion is that the transfor-
mation of mathematics at the beginning of modern times is concealed. Fea-
tures of modern mathematics are projected upon mathematics of the past, 
and the deep contrasts between ancient and modern mathematics are con-
cealed. As a consequence, the nature of modern mathematics as symbolic 
mathematics is not understood as the new beginning of mathematics that it 
was. 

By taking a closer look at some examples from the history of mathematics 
it will be argued that what actually happened in mathematics in the past sup-
ports the view that the essence of modern mathematics is symbolic mathe-
matics. 

                               
1 On the difference between history and heritage, see Grattan-Guiness (2004). 
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2   Are there proofs by mathematical induction 
in Euclid’s Elements? 

There is quite strong disagreement among historians of mathematics about 
the origin of proof by mathematical induction.2 This disagreement is con-
nected with the tendency to confuse history and heritage. Was there ever a 
proof by mathematical induction in ancient Greek mathematics? In Euclid’s 
Elements, for instance? Historians of mathematics with a heritage view tend 
to answer these questions affirmatively. 

Sabatai Unguru (1991, 1994) denies this categorically, on the ground that 
it is incompatible with the ancient Greek concept of number, according to 
which numbers are always determinate numbers of things as the units of a 
multitude. The multitudes are not seen as having, in general, in themselves 
or between themselves, a serial structure as being generated by a successor 
operation. A multitude always has, at least potentially, a manifestation as a 
multitude of independently given discrete things. In the arithmetical proofs 
in Euclid’s Elements numbers are always represented as lengths of line-
segments determined by their end-points.  

The mathematician Hans Freudenthal is one of those who have defended the 
opposite view about the origin of mathematical induction. In his article Zur 
Geschichte der vollständigen Induktion,3 he claims that the propositions IX, 
8; IX, 9 and IX, 20 of Euclid’s Elements (of which the last one is the propo-
sition about the infinity of the prime numbers) are all proved by mathemati-
cal induction. The mathematician Paul Ernst (1982) agrees with Freudenthal, 
and in particular that the proof that there are infinitely many prime numbers 
uses mathematical induction. Let us examine Ernst’s argument in some de-
tail. Ernst asserts categorically: 

Mathematical induction is implicit in some of Euclid's proofs, for example, in 
the proof that there exist infinitely many primes. This theorem is Proposition 
20 in Book IX of Euclid, and translated it states 

“Prime numbers are more than any assigned multitude of prime numbers.” 

                               
2 See the articles Bussey (1917), Cajori (1918), Freudenthal (1953), Rabinovitch (1970), 
Fowler (1994), Unguru (1991, 1994).  
3 Freudenthal, 1953. 
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Euclid proves the proposition by letting A, B, C be the assigned prime num-
bers, and showing that ABC + 1 has a new prime factor G. The conclusion of 
the proof reads:  

“Therefore the prime numbers A, B, C, G have been found which are more 
than the assigned multitude of A, B, C. Q.E.D.”  

Ernst claims, however, that there is a gap in the proof. Something is missing 
between the last sentence in the proof (which concerns the particular case of 
the three assigned prime numbers A, B and C) and the generality of the stat-
ed proposition which concerns any assigned multitude of prime numbers. 
According to Ernst, 

This gap is bridged by the principle of mathematical induction. What Euclid 
proves, in fact, is that the existence of three primes implies the existence of 
four primes. The method of the proof is general, and can be used to prove the 
existence of n + 1 primes from n primes. However, Euclid lacks the algebraic 
language necessary for this more general induction step, and instead repre-
sents it by a particular case. 

As pointed out by Mueller (1981), there is no indication that the multitudes 
in Euclid’s Elements were conceived as having a serial order, as being gen-
erated by something like a successor operation, 

 n+1.4  

But is Euclid’s proof really a particular case of an “induction step” if no 
serial order is presupposed? 

Quite contrary to what Ernst is suggesting, Euclid never writes ABC + 1, 
for instance. He did not have a sign for the operation of addition (and he 
avoided multiplying numbers). He argues geometrically by extending the 
line-segment ABC by the unit line-segment. This is not just a difference of 
notation. It means that Euclid didn’t have the notion of n+1 as an arithmeti-
cal operation, the successor operation as a symbol, which is a prerequisite 
for mathematical induction. A multitude, for Euclid, is just an aggregate of 
things as units, and a number is the number of the units of a multitude. 

Ernst is reading Euclid’s proof as if the generality of the proof comes 
from thinking of the assigned multitude of prime numbers A, B, C as an 
arbitrary sequence of prime numbers 

P1, P2, …, Pn 

                               
4 Müller (1981). 
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that is generated recursively by the method suggested in the proof. On the 
basis of this reading Ernst can say that “The method of the proof is general, 
and can be used to prove the existence of n + 1 primes from n primes. But 
that was hardly Euclid’s way of thinking about it. Euclid was thinking about 
it in geometric terms, where numbers are line-segments.  

Let us follow Ernst in ‘modernizing’ Euclid’s proof (Elements, book IX, § 
20) by letting P1, P2, …, Pn  be the assigned prime numbers. We shall prove 
that there are more prime numbers than these. 

Consider the number P = (P1 × P2 ×… Pn ) + 1. 

P is either a prime number or not. 

If P is prime the proof is complete since P is then a prime number dif-
ferent from all the assigned prime numbers P1, P2, …, Pn. 

If P is not a prime number it must have a prime factor Q (by theorem 
VII, § 31 of the Elements). And this prime number must be different 
from all the prime numbers P1, P2, …, Pn  because otherwise it would 
be a factor of the unit, which is absurd. 

Therefore, Q is not one of the numbers P1, P2, …, Pn and by hypothe-
sis it is prime. So the prime numbers P1, P2, …, Pn, Q have been found 
which are more than the assigned multitude of prime numbers P1, P2, 
…, Pn. 

Therefore, prime numbers are more than any assigned multitude of 
prime numbers. 

Q.E.D. 

The generality expressed by the variable n in this proof is not the generality 
of a mathematical induction. There is no induction (even implicitly) in this 
modernized version of Euclid’s proof any more then in Euclid’s original 
proof. The generality of the variable n only comes from the fact that the pro-
cedure of the proof is independent of the specific number of primes chosen 
as the assigned multitude of prime numbers.  

If we would replace the expression P1, P2, …, Pn everywhere in this proof 
with Euclid’s expression A, B, C we would have Euclid’s original proof (ex-
cept that we have not written out the geometrical representation of the num-
bers, and we have defined the number P by first multiplying the given prime 
numbers P1, …, Pn, which Euclid does not do).5 This shows that Euclid’s 

                               
5 Euclid considers numbers as length of line-segments and thus as being ‘one-dimensional’. 
He therefore avoids multiplication. Instead he uses Proposition 36 of Book VII according to 
which “There is a least number which three given numbers measure”, which is proved without 
using multiplication of numbers. 
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assigned multitude of primes A, B, C, has the role of an arbitrary multitude 
of prime numbers in the original proof. One might even say that Euclid is 
taking the number 3 as a number variable. To understand Euclid’s proof is 
also to understand that the assigned multitude of primes A, B, C can be re-
placed, for instance, by the multitude of five primes A, B, C, D, E, and 
then‘3’ is replaced by ‘5’, but the proof procedure would still be the same. 

Euclides’ proof of theorem IX, 20, about the infinity of the prime num-
bers is not the only proof in the Elements where a general proposition about 
numbers is illustrated by a proof that deals with a specific finite multitude of 
numbers in which you are expected to see that the proof does not depend on 
the specific numbers chosen. Illustrating a general case in this way by deal-
ing with a particular case, is rather a common procedure in Euclid’s Ele-
ments in general (not least in the geometrical theorems, where a specific 
drawn figure, a line-segment, a triangle or a circle, is used to prove general 
results about line segments, triangles and circles). The proposition IX, 10, 
for instance, begins as follows: “If as many numbers as we please beginning 
from a unit are in continued proportion, and the number after the unit is 
square, then all the rest are also square;” Euclid begins the proof by saying: 
“Let there be as many numbers as we please, A, B, C, D, E, and F, beginning 
from a unit and in continued proportion, and let A, the number after the unit, 
be square.” Euclid is here dealing with the particular case of six numbers, 
with the required properties. What the phrase ‘as many as we please’ signi-
fies is that you are supposed to see that the choice of a sequence of six num-
bers and no more (with the required properties) is not essential in the proof. 
And to see this is not an additional inferential step in the proof; it is to see 
the proof as a proof of the general result stated in the theorem. 

From an Aristotelian point of view one might say that there is neverthe-
less a sense in which ‘induction’ is involved in this procedure of getting to 
see something general by dealing with particular cases, but it is not mathe-
matical induction, and neither is it induction of empirical science. It is rather 
induction in the sense of Aristoteles’ epagoge. Engberg-Petersen (1979) 
argues convincingly that Aristotle had a unified conception of epagoge, 
which is not a type of inference. It is rather the exercise of the generalizing 
ability which Aristotle calls nous, a sort of intuition. Avoiding the word 
‘conclusion’ which would suggest a type of inference, Engberg-Petersen 
expresses the basic idea of this conception of epagoge as “attending to par-
ticular cases with the consequence that insight into some universal point is 
acquired” or, alternatively, “acquiring insight into some universal point as a 
consequence of attending to particular cases”.6 

This use of epagoge to see something general by attending to particular 
cases is not an inference, but rather a kind of non-demonstrative procedure 
which is a routine procedure in mathematical reasoning, such as for instance 

                               
6 Engberg-Petersen (1979, p. 305). 



 14 

in geometry when a specific, concrete triangle ABC is used as an “arbitrary 
triangle” in a proof of a theorem about triangles in general. So there is no 
gap in Euclid’s proof in the sense that an inferential step is left out when he 
proceeds from particular cases to the universal point at the end of the proof 
of the infinity of prime numbers. 

Did Euclid possess Aristotle’s general notion of epagoge? It seems likely 
that Euclid as well as Aristotle learned this procedure of “acquiring insight 
into some universal point as a consequence of attending to particular cases” 
from mathematics (perhaps in their education at Plato’s Academy). It seems 
likely that Aristotle’s epagoge was then the result of extending the applica-
bility of this procedure for getting insight into the ‘universal in the particu-
lar’ to topics outside mathematics. But why should the mathematician Euclid 
be interested in this general notion of epagoge? Well, Euclid was influenced 
by several features of Aristotle’s philosophical doctrine (though not the theo-
ry of syllogisms). Euclid employs Aristotle’s theory of statements with its 
distinction between axioms and postulates, and he follows Aristotle’s di-
chotomy between discrete and continuous quantity, which persisted in math-
ematics up to the days of Descartes. 

It is tempting to say that Euclid was a mathematician, not a philosopher, 
but the relationship between philosophy and mathematics was more compli-
cated in ancient Greece. They did not have our sharp divide between philos-
ophy and mathematics as two different and independent disciplines and pro-
fessions. 

Euclid’s Elements is an exposition of the logical order of the fundamen-
tals of elementary mathematics. So there is no doubt a logical-philosophical 
context present in the Elements. But that is not the only relevant context of 
the presentation in the Elements. The presentation has also pedagogical aims. 
The way in which epagoge may be present in the exposition is also influ-
enced by the rhetorical-dialectical situation, where its aim is to get the read-
ers and students of the Elements to accept the general points. It is not unlike-
ly that Euclid sometimes says as much as is needed to achieve that aim. One 
reading of the basic idea of epagoge, discussed by Engberg-Petersen that 
seems to be most appropriate here is the following: 

leading another person, by pointing to particular cases, towards something 
katholou [universal] with the aim and consequence that he acquires insight 
into it.7 

Let us finally stress that to think about a multitude of prime numbers as an 
arbitrary finite sequence of primes, P1, P2, …, Pn,  is to situate it in an opera-
tional context that was foreign to Euclid. It is to take for granted how we 
operate with this symbol in the symbolic practice where we have access to 

                               
7 Enberg-Petersen (1979, p. 301). 
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the number-variable n to express the form of a finite sequence. As stressed 
by Klein (1968) and Unguru (1975), the use of a letter as a number-variable 
in this sense was foreign to ancient Greek mathematics. Alphabetic letters 
were used for numbers, but always for determinate numbers. Here we have 
one of the most essential features of the difference between the modern 
symbolic concept of number and the concept of number in ancient Greek 
mathematics. The symbolic concept is essentially connected with the use of 
a number-variable to express the form of the result of performing an arith-
metical operation. Without this use of a number-variable, the precise sense 
of the notion of an arithmetical operation is lost. The generality expressed by 
the variable n in a “proof from n to n+1”, which is the generality of a recur-
sive pattern or rule, is the specific generality of mathematical induction and 
is bound up with the symbolic concept of number. 
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3   Jacob Klein and the origin of symbolic 
mathematics 

The disagreement about the origin of proof by mathematical induction is 
only a particular case of a more general historiographical debate, or quarrel, 
about the history of ancient Greek mathematics that started with Sabatai 
Unguru’s article On the Need to Rewrite the History of Greek Mathematics, 
published in 1975.8 Unguru claims that lack of historical sense is a common 
feature of most mathematicians’ readings of ancient mathematical texts in 
that they tend to read the ancient texts only from the point of view of modern 
mathematics. Unguru writes: “to read ancient mathematical texts with mod-
ern mathematics in mind is the safest method for misunderstanding the char-
acter of ancient mathematics -…” The historical approach, according to Un-
guru, is an approach which involves interpretation. It cannot “divorce itself 
from the attempt to unravel the original intentions of the text’s author,” 
which means that the interpreter has to be sensitive to the historico-cultural 
context. 

Jacob Klein’s book Greek Mathematical Thought and the Origin of Alge-
bra9 is an important but rather neglected work in the history and philosophy 
of mathematics. Klein’s historical approach anticipates Unguru’s main point 
about the necessity to unravel the original intentions of the authors of classi-
cal Greek mathematical texts. Klein writes in the beginning of his book: 

[…] most of the standard histories attempt to grasp Greek mathematics itself 
with the aid of modern symbolism, as if the latter were an altogether external 
“form” which may be tailored to any desirable “content”. And even in the 
case of investigations intent upon a genuine understanding of Greek science, 
one finds that the enquiry starts out from a conceptual level which is, from 
the very beginning, and precisely with respect to the fundamental concepts, 
determined by modern modes of thought. To disengage ourselves as far as 
possible from these modes must be the first concern of our enterprise.10 

                               
8 See Kastanis, N. and Thomaidis “The term ‘Geometrical Algebra’, target of a contemporary 
epistemological debate”, for a survey of this debate. (available on the internet)  
9 Klein (1968). A comprehensive survey of the work of Edmund Husserl and Jacob Klein on 
the philosophical foundations of the logic of modern symbolic mathematics appears in Hop-
kins B.C. (2011). 
10 Klein (1968, p. 5). 
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Klein argues that the modern symbolic concept of number is not a further 
developed and extended version of the ancient Greek concept of number 
(Arithmos). The latter belongs to ancient Greek non-symbolic, ontological 
science. The modern symbolic concept of number is an essentially new con-
cept, a concept in a new conceptual dimension, which was possible to articu-
late only together with the invention of the algebraic symbolism in the sev-
enteenth century. According to Klein, the invention of the algebraic symbol-
ism was an essential transformation in the sense that new techniques and 
operational practices were created as the basis for new conceptions. But an 
effect of this conceptual transformation was also that the original Greek un-
derstanding of numbers was lost, which is why Klein’s ‘intentional’ histori-
cal method is needed. 

But Klein’s use of this method is meant to have not only historiographic 
interests and motives, he also claims that the understanding of the lost Greek 
conception of numbers may be helpful to resolve conceptual difficulties 
within modern mathematics and mathematical physics. He suggests that 
some of these difficulties have their source in the fact that “fundamental 
ontological science of the ancients is replaced by a symbolic discipline”11 
These difficulties are a main concern of mine in this essay. 

The Greek mathematician who seems to have come closest to the concep-
tual transformation in which the algebraic symbolism originated, was Dio-
phantus of Alexandria (who lived in the third century AD, and who some-
times is called "the father of algebra"). He was the author of a series of 
books called Arithmetica that deal with solving (what we call) algebraic 
equations. But according to Klein, it is François Viète (Franciscus Vieta; 
1540 –1603) who develops the logical and mathematical consequences of 
Diophantus’ work, and who deserves to be called the ‘inventor’ of modern 
mathematics. An important step in Vieta’s work was his innovative use of 
letters as parameters in equations. And it is Vieta who introduces the word 
‘symbol’ (lat. Symbolum), and talks about the symbolic concept of number.12  

Diophantus was working with an arithmetical calculus of determinate 
numbers, a logistice numerosa. Vieta advances Diophantus’ problems by 
introducing a new ‘general analytic’ or an ‘analytic art’, using not number 
but merely ‘species’ or ‘forms’ – a logistice speciosa. The species or forms 
correspond to what we would call formulas or algebraic expressions. In the 
articulation of these symbolic forms, the use of letters as variables and pa-
rameters is essential. 

The word ‘species’ or ‘form’ alludes to the ‘eidos’ of Greek philosophy, 
but it is important to understand how its sense has been transformed in 
Vieta’s ‘analytic art’. This is how Klein explains the difference: 

                               
11 Klein (1968, p. 184). 
12 Klein says that “The term ‘symbolum,’ used for letter signs as well as for connective signs, 
originated with Vieta himself”  (Klein 1968, p. 276). 
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[…] the “being” of the species in Vieta, i.e. the “being” of the objects of 
“general analytic,” is to be understood neither as independent in the Pythago-
rean or Platonic sense nor as attained “by abstraction” […] in the Aristotelian 
sense, but as symbolic. The species are in themselves symbolic formations – 
[…] They are, therefore, comprehensible only within the language of symbol-
ic formalism. […] Therewith the most important tool of mathematical natural 
science, the “formula,” first becomes possible, but above all, a new way of 
“understanding,” inaccessible to ancient episteme is thus opened up.13 

The essential point of the conceptual transformation that Vieta accomplishes is 
that the concern with determinate numbers of units of measurement (of ancient 
non-symbolic arithmetic), is replaced by the forms expressed in an arithmeti-
cal-algebraic symbolism. So in a certain sense one might say that in the sym-
bolic conception, form becomes the content. But ‘form’ in this sense is not 
‘typographical form’ or ‘syntactical form’ in the modern metamathematical 
sense. ‘Form’ in Vieta’s sense is displayed in the operational practices. 

The aspect of mathematics as activity is essential in the logic of symbolic 
mathematics. It is important to understand that the new arithmetical-algebraic 
system of Vieta (as well as the mathesis universalis of Simon Stevin, Des-
cartes, and Wallis, who continue and complete Vieta’s work) are not new the-
ories of arithmetic, or new sciences of number (in the Aristotelian sense of 
‘science’), they are primarily new arts, new practices, new methods and tech-
niques for dealing with problems, not only problems in ‘pure mathematics’ but 
also in cosmology, physics and astronomy. Vieta ends his work Isagoge by 
saying “Analytic art appropriates to itself by right the proud problem of prob-
lems, which is: TO LEAVE NO PROBLEM UNSOLVED”.14 

Vieta (like Descartes and other founders of modern science) had special in-
terests in cosmological and astronomical problems, and his mathematical in-
vestigations are closely connected to his cosmological and astronomical work. 
The manner in which Vieta and other founders of modern science “set about 
attaining a mathematical comprehension of the world’s structure betrays, from 
the outset, a different conception of the world, a different conception of the 
world’s being, than that which had belonged to the anscients.”15  

                               
13 Klein (1968, p. 175). 
14 Klein (1968, p. 185. The use of capital letters is due to Vieta). 
15 Klein (1968, p. 152). 
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4   Conflicting views of the role of symbolism 
in mathematics 

Let us return to the Unguru debate. B.L. van der Waerden, a professional 
mathematician as well as a historian of ancient mathematics, was one of the 
mathematicians who reacted immediately to Unguru’s strongly polemic arti-
cle with an equally polemic reply in which he accuses Unguru for overesti-
mating the importance of symbolism in mathematics. Van der Waerden 
writes: 

Unguru, like many non-mathematicians, grossly overestimates the im-
portance of symbolism in mathematics. These people see our papers full of 
formulae, and they think that these formulae are an essential part of mathe-
matical thinking. We, working mathematicians, know that in many cases the 
formulae are not at all essential, only convenient.16   

According to Unguru (following Klein 1968), the emergence of algebra and 
symbolic mathematics in the seventeenth century, in particular the use of 
letters as variables and parameters, marks the beginning of an essential con-
ceptual transformation of mathematics, while for van der Waerden the intro-
duction of algebraic symbolism was only the invention of a more convenient 
notation to express a mathematical content that was in many respects the 
same as what it always has been. The content of Euclid’s Elements II, for 
instance, is algebra according to van der Waerden and Freudenthal, it is ‘ge-
ometric algebra’, algebraic relationships expressed in geometric form due to 
the lack in classical Greek mathematics of the algebraic notation for express-
ing the algebraic content.17 

In this controversy, I find myself in agreement with Klein, Unguru and 
their followers (with some reservations concerning Unguru’s argumentation 
to be discussed later). The lack of sensitivity to, and interest in, features of 
the mathematical symbolism that are conceptually significant is not uncom-
mon among ‘working mathematicians’ (and logicians, who have a tendency 
to think of a symbolism as a system of notations, a system of mere typo-
graphical signs which are conceived in naturalistic terms, and this forces 

                               
16 B.L. Van der Waerden, “Defense of a ‘Shocking’ point of View”, A.H.E.S., 15, 1975, p. 
205.  
17 These conflicting views depend upon the difference between a symbolism and a system of 
notation.  
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them to adopt a kind of dualism between form and content, expression and 
meaning, syntax and semantics. Carnap even said that: “Syntax, pure and 
descriptive, is nothing more than the mathematics and physics of lan-
guage”.18 

The lack of sensitivity to conceptually significant features of symbolism 
makes it difficult to distinguish between philosophical and mathematical 
problems. The attitude of a mathematician is often that something deserves 
to be called a real problem only when it can be dealt with and solved math-
ematically (this was, for instance, Hilbert’s attitude to the consistency prob-
lem in his article “On the infinite”). Mathematicians are masters in using the 
mathematical symbolism, but not in the reflection upon this use that requires 
that you pay attention to the symbolic practices from an outlook where the 
normal (silent) agreement in modern mathematical practices is put into fo-
cus.  

Looking at ancient Greek mathematics from within the normal agreement 
in the practice of modern mathematics, there is always the risk of misunder-
standing the non-temporality or timelessness of the sense or content of a 
mathematical rule or statement as if this timelessness were the infinite tem-
poral duration of the content, the permanence of the content in time. But that 
the non-temporality of a rule or statement within mathematics is timelessness 
must be taken seriously; it is lack of any temporal significance or reference, 
including ‘endless temporal duration’ or permanence. I think that it is by 
taking timelessness as infinite temporal duration that Van der Waerden and 
Freudenthal are led to say that the algebraic content of an equation such as 

(a + b)2 = a2 + b2 + 2ab 

was present already in Euclid’s times “at least implicitly”, although this con-
tent was given a geometrical disguise in Euclid’s Elements II. This is very 
doubtful in view of the fact that Euclid never multiplied geometric lengths or 
any other geometric magnitudes. If ‘a’ and ‘b’ are geometric lengths, the 
expressions ‘a2’, ‘b2’and ‘ab’ seem not to have made sense to Euclid since 
they are of another dimension than ‘a’ and ‘b’. It was not until Descartes’ 
analytic geometry (which was based on Descartes’ symbolic conception of 
geometry) that such ‘mixtures’ of arithmetic and geometry were made sense 
of. 

The algebraic content of the equation above is inseparable from its alge-
braic proof, and its proof is the transformation of the left-hand side of the 
equation into the right-hand side using the rules of the algebraic calculus 
(that was set up and used not before the 17th century).  

                               
18 Carnap, (1959  p. 284). Carnap’s notion of syntax, which is based on a naturalistic view of 
language, is very far from what Wittgenstein meant by ‘logical syntax’ the Tractatus. 
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A mathematician, or rather a mathematical physicist, with sensitivity to, 
and interest in, conceptually significant features of mathematical symbolism 
was Heinrich Hertz. His attitude to the role of mathematical symbolism was 
therefore also quite the opposite of van der Waerden’s, who takes mathemat-
ical symbolisms to be merely more of less convenient systems of notation. 
Hertz wrote: 

We cannot escape the feeling that these mathematical formulas have an inde-
pendent existence and an intelligence of their own, that they are wiser than 
we are, wiser even than their discoverers, that we get more out of them than 
was originally put into them.19 

Hertz’ work on the mathematics of classical mechanics in which he showed 
how to deal with conceptual problems connected, for instance, with the no-
tion of force of classical mechanics was an important and influential contri-
bution to the symbolic point of view. I believe that Ernst Cassirer was right 
when he said: “Heinrich Hertz is the first modern scientist to have effected a 
decisive turn from the copy theory of physical knowledge to a purely sym-
bolic theory.”20 Hertz saw the scientific theory as the application of a sym-
bolic system, which is an autonomous entity in its formal aspect, independ-
ent of the empirical phenomena it is used to explain. By “the principles of 
mechanics”, will be meant, says Hertz, “any selection of such and similar 
propositions, which satisfies the requirement that the whole of mechanics 
can be developed from it by purely deductive reasoning without any further 
appeal to experience.”21 Hertz showed that the problems connected with the 
notion of force, do not relate to the empirical content of the problematic no-
tions of mechanics, “but only to the form in which the content is represent-
ed”, i.e. the conceptual problems are problems of the symbolism.22 This is 
how Hertz himself motivated this feature of his work: 

…the existing defects are only defects in form; […] all indistinctness and un-
certainty can be avoided by suitable arrangement of definitions and notations, 
and by due care in the mode of expression.23 

                               
19 Quoted from Bell, (1937, p 31). 
20 Cassirer, (1957, p. 20). By the ‘copy theory’ Cassirer meant a view of physical theory 
which we find, for instance, in Ernst Mach’s writings. 
21 Hertz (1956, p. 4, my emphasis). 
22 Hertz (1956, p. 8). 
23 Hertz (1956, p. 9). 
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5   Wittgenstein and symbolic mathematics 

The mentioned feature of Hertz’ work deeply influenced Wittgenstein, not 
only the author of the Tractatus but also the later Wittgenstein.24 In the Big 
Typescript Wittgenstein writes: 

In my way of doing philosophy, its whole aim is to give an expression such a 
form that certain disquietudes disappear. (Hertz) 25 

I will argue that the view of modern mathematics as symbolic mathematics 
was essential in Wittgenstein’s approach to the problems in the discussion 
about the foundations of mathematics that begins in the late nineteenth cen-
tury. Wittgenstein’s interest in mathematical symbolism is conceptually 
more rigorous and sensitive than that of Klein and his followers in that he 
laid more stress upon the operational aspects of the mathematical symbolism 
as human practices the various features of which we do not survey even 
though we master the practices. Wittgenstein made the following, somewhat 
excessive, statement about the role of symbolism in mathematics: “Let's 
remember that in mathematics, the signs themselves do mathematics, they 
don't describe it” (PR 186). Inspired by Hertz, Wittgenstein said in the Trac-
tatus that “My fundamental idea is that the ‘logical constants’ do not repre-
sent.”(T 4.0312) He would have said the same thing about the operations of 
arithmetic.  

It is the operational aspect of a symbol, its function in the calculus, its 
role in the manipulation and transformation of expressions, which constitutes 
it as a symbol. So a symbolism is not just a system of notation in the typo-
graphical or linguistic sense (which is why the symbolic view of mathemat-
ics is not formalism or nominalism, as these notions are used in the literature 
of analytic philosophy26). This means, of course, that the new mathematical 
concepts (such as, for instance, the concept of an arbitrary finite sequence), 
emerged together with the new algebraic symbolism. The concepts could 
come into existence as new precise notions only when the operational prac-
tices of the new symbolism were in place. Or, rather, the invention of new 
notions was the invention of the new operational practices of the algebraic 

                               
24 This is argued in more detail in my paper Stenlund (2012). 
25 BT, p. 421.  
26 Such as for instance in Weir (2011). 
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symbolism. It is not as if the new notions were invented in advance “in the 
minds of mathematicians” and were then given expression and application 
using the new algebraic notation. That is the sort of idealism or mentalism 
that Wittgenstein is constantly questioning.27 

Wittgenstein was questioning essentially the same mentalistic tendency in 
Frege when he wrote: 

In attacking the formalist conception of arithmetic, Frege says more or less 
this: these petty explanations of the signs are idle once we understand the 
signs. Understanding would be something like seeing a picture from which 
all the rules followed, or a picture that makes them all clear. But Frege does 
not seem to see that such a picture would itself be another sign, or a calculus 
to explain the written one to us. 

There is a tendency towards such a mentalism also in Klein’s and Unguru’s 
arguments that there were things that Greek mathematicians could not do 
because they did not have the required concepts. Klein and Unguru tend to 
argue as though there is always something mental, a mental cause, reason or 
ground, that makes people do what they do. But this idea is one of the most 
seductive sources of confusion. A lot of what we do, we do not do for any 
reason or ground, we just do as we have been trained to do. And our starting 
point is not ‘complete passivity’ but action. (As Goethe said: “Im Anfang 
war die Tat.”) 

One might say about many substantially new ways of thinking, new con-
cepts, revolutionary changes in science, etc., which have emerged in the 
past, that they were once historically impossible, they were in sharp conflict 
with established notions and practices. But, nevertheless, they have hap-
pened, they have taken place, new operational practices developed, and sub-
sequently history has been revised and rewritten. (A convincing criticism of 
the “argument from conceptual impossibility”, as it has appeared in the Un-
guru debate, is given in Netz (2002)). 

Wittgenstein emphasized the operational aspect of a symbolism, for in-
stance, in the remark: 

 “In order to recognize the symbol in the sign we must consider the signifi-
cant use”. (T 3.326)28 

This can throw some light on Hertz’ idea that the signs and formulas of 
mathematical symbolism have “an intelligence of their own, that they are 

                               
27 PG, p. 40. 
28 The original German version of this remark is “Um das symbol am Zeichen zu erkennen, 
muss man auf den sinnvollen Gebrauch achten.” I prefer Ogden’s translation of this remark. 
The Pears and McGuiness translation “In order to recognize a symbol by its sign we must 
observe how it is used with a sense”, can be read as though the sign already has got a sense (in 
some sort of ‘semantics’) prior to and independently of its use.  
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wiser than we are, wiser even than their discoverers, that we get more out of 
them than was originally put into them”. The ‘hidden intelligence of formu-
las’ is simply the manner in which a certain symbol or formula in its use is 
connected with so many other things in the arithmetical-algebraic system, 
which we don’t survey and foresee even if we do master its use. This ‘intel-
ligence’ seems to be hidden only because we do not survey the possible uses 
of the formula even if we do master them in practice. This is true especially 
of the ‘moves of the game’ at the most basic operational level where there is 
complete agreement in action among mathematicians. These moves and 
features of the calculus therefore tend to be dismissed as ‘trivialities’ by 
mathematicians. But such trivialities are precisely the topic of Wittgenstein’s 
investigations about the foundations of mathematics. This is why it is so 
difficult to understand what he is up to in some of his remarks on the founda-
tions of mathematics. His topic ‘the nature of mathematical symbolism’ is a 
non-topic for the mathematician. In PG (p. 369) Wittgenstein remarks: “The 
philosopher only marks what the mathematician casually throws off about 
his activities.” 

Wittgenstein’s conception of mathematics, already from the beginning in 
the Tractatus, has much in common with what has been called symbolic 
mathematics. I think that this is true of the early and middle as well as the 
late Wittgenstein. I am inclined to say that for Wittgenstein, the most authen-
tic form of mathematics in modern times is symbolic mathematics.29 The 
symbolic view of mathematics offers us a perspective from which the unity 
of Wittgenstein’s philosophy of mathematics becomes apparent.  

A clear manifestation of Wittgenstein’s symbolic point of view is his 
claim that mathematical propositions are not ‘real’ propositions. According 
to Wittgenstein, they don’t have a descriptive content; they do not describe 
real states of affairs. Already in the Tractatus, mathematical propositions 
were called “pseudo-propositions”. And around the beginning of the 1940’s, 
he expressed a symbolic, non-ontological conception of mathematics as fol-
lows: 

Let us remember that in mathematics we are convinced of grammatical prop-
ositions; so the expression, the result, of our being convinced is that we ac-
cept a rule. 

Nothing is more likely than that the verbal expression of the result of a 
mathematical proof is calculated to delude us with a myth. 

I am trying to say something like this: even if the proved mathematical 
proposition seems to point to a reality outside itself, still it is only the expres-
sion of acceptance of a new measure (of reality).  

                               
29 Here I am using the word ‘authentic’ in more or less the same sense as when we say that 
chemistry is an authentic natural science today, which alchemy is not.  
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Thus we take the constructability (provability) of this symbol (that is, of 
the mathematical proposition) as a sign that we are to transform symbols in 
such and such a way. 30 

This is something that cannot be made much sense of within a philosophical 
vocabulary based on the foundational status of mathematical logic, where all 
possible propositions are propositions in the ontological sense. They have a 
descriptive content and are about something in a ‘referential sense’. There is 
no place in the vocabulary for propositions in any other sense. The closest 
one can come to propositions in some non-ontological sense are propositions 
in the “nominalistic” sense that are merely about concrete signs, so-called 
‘syntactical propositions’. One is forced to see Wittgenstein’s philosophy of 
mathematics as some superficial kind of formalist view in which mathemat-
ics has been deprived of all meaning. 

But as Wittgenstein said in the last quotation, if he is depriving mathemat-
ics of something in his critique of foundations, it is the (often misleading) 
prose that accompanies the mathematical calculi, and he is doing so in order 
to clarify the sense that mathematical notions have within the calculi. 

                               
30 RFM III, §§26-27. 
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6   Symbolic arithmetic and the place-value 
system of numeration 

I am inclined to agree with Unguru (and his followers) that there was no 
proof by mathematical induction in ancient Greek mathematics. And I think 
that this circumstance is connected with the fact that in ancient Greek math-
ematics (by the time of Euclid and Archimedes), one did not have the full 
place-value system for numbers, and 0 and 1 were not seen as a numbers. 
My suggestion is that the ideas of an arbitrary finite sequence and finite iter-
ation of symbolic arithmetic, which are preconditions of proof by mathemat-
ical induction, had their origin in the emergence of the place-value system 
for numbers, which was referred to as the Arabic ciphers. Ortega y Gasset 
(1971, p. 52) reports that Leibniz, in his published correspondence, “called 
attention to the fact that Arabic ciphers have the advantage over Roman ci-
phers of expressing the “genesis” of a number and thereby of defining it”.31  

Of particular importance was the decimal place-value system, also called 
the Hindu-Arabic numeration system (which was imported to the west in the 
middle ages from Arabic sources and which subsequently became our nor-
mal way of writing numerals). Boyer (1968, p. 234) mentions that the Hindu 
mathematician Aryabhata, who was active in the fifth century, used a form 
of the decimal place-value system and in his writings we find the phrase: 

 
from place to place each is ten times the preceding 

 
This phrase indicates the principle of the generation of the bases of the dec-
imal place-value system, i.e. that the places are Units, Tens, Hundreds, 
Thousands, Tenthousands, and so on. Here the phrase “and so on” is not an 
abbreviation for something that could be written out in full as when we say 
“A, B, C, and so on” for the sequence of letters of the alphabet. Aryabhata’s 
phrase suggests the idea of arbitrary finite iteration of an operation, in this 
case the operation of multiplying the base of the preceding place by ten. 

In the fully developed decimal place-value system for integers, a number 
is written as a finite sequence or a string of digits taken from the list of digits 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Each digit has its unique place within the sequence 
as a whole. Since it is only single digits that occur as the terms of the se-

                               
31 Leibniz, Mathematische Schriften, Vol. IV, pp. 455 ff. 
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quence, there is no need to separate the places of the sequence by means of 
commas or some other device than juxtaposition. The total value of a numer-
al, as a sequence of digits, is calculated in this notation by additions and 
multiplications. For a two-digit numeral, 23 for instance, we have 

23 = (2 × 10) + (3 × 1) 

For a three-digit numeral, 517 for instance, we have 

517 = (5 × 100) + (1 × 10) + (7 × 1) 

and for a four-digit numeral, 3702 say, we have  

3702 = (3 × 1000) + (7 × 100) + (0 × 10) + (2 × 1) 

and so on. In the second example ‘1’ is used as a number, and in the last 
example ‘0’ is used as a number. The numbers ‘0’ and ‘1’, which were not 
numbers according to the Greek notion of number (arithmos), have clearly 
important functions in the decimal place-value system. 

Neither the late ancient Greeks nor the Hindu-Arabic mathematicians had 
the symbols I have used here for equality, addition and multiplication. Equa-
tions, as well as addition and multiplication were expressed in verbal lan-
guage, in mathematical prose (to use Wittgenstein’s expression). The alge-
braic symbolism was not yet invented and the presentation was, as one says, 
rhetorical. And, of course, they did not have anything like the following 
algebraic symbol for the ‘general case’ of a number in the decimal place-
value system:  

akak-1...a0 = ak10k + ak-110k-1 + …+ a0100 

where 0 ai < 10 and ak  0. It is important to realize that this expression 
belongs to a symbolic system, an operational practice that did not exist in 
Greek or Hindu-Arabic mathematics, but only in modern mathematics. One 
essential symbolic feature of this equation is the use of the number-variable 
k. For a sufficiently large value of k, the numeral akak-1...a0  would not have a 
reading in ordinary language as my examples 23, 517 and 3702 all have. But 
even without this expression for the general case, it can be seen on the basis 
of examples, being particular cases, that this method of numeration stipulates 
no limit to the length of the expression for a number, i.e. to the number of 
places occurring in it. Each number is uniquely determined by the method 
for its construction in this system of numeration.  

With the place-value notation, one was in possession of the operational 
germ of the arithmetical idea of “and so on ad inf.” (if not the precise arith-
metical concept, which required the arithmetical-algebraic symbolism), and 
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also the operational germ of the ideas of finite iteration, and a finite se-
quence, and thereby also the germ of recursive proof or proof by mathemati-
cal induction. The word ‘infinity’ in the phrase “and so on ad inf.” here 
simply means that no finite sequence of digits is excluded as an expression 
for a number. It is not a feature of this system of notation for numbers that a 
number must be the number of things of some given multitude of things. A 
numeral in this system is a finite sequence of digits, which is a symbol for a 
number determined by the rules for calculating in the system. 

It should be clear that the sense of number and finiteness suggested here 
is essentially different from the notion of number and finiteness of ancient 
Greek mathematics, since it was essential for the Greek concept of number 
(Arithmos), that a number is a number of things (units) of a multitude. 

The problem of so-called effective calculability discussed in connection 
with Church’s thesis in modern mathematical logic arises only for the notion 
of finiteness of modern symbolic mathematics, according to which a verbal 
expression such as “can be carried out in a finite number of steps” has a kind 
of non-literal, symbolic sense that did not exist for the Greeks. In ancient 
Greek logistics one was surely concerned very much with ‘practical effective 
calculation procedures’, but not with the calculability of the number-
theoretic functions, that are discussed in connection with Church’s thesis. 

The features of the decimal place-value system of numeration I have 
stressed here points towards the symbolic notion of number and finiteness 
that begins to emerge in the work of Vieta, Stevin, Descartes and Wallis in 
the sixtienth and seventienth centuries. Of particular importance in this re-
spect was Stevin’s work.32 In 1585 he published a pamphlet, De Thiende 
(“Art of Tens”) in which he used not only the decimal place-value system for 
integers, but also for decimal fractions. The Arabs and Chinese knew about 
decimal fractions earlier, but they were not used very much. Stevin compares 
Arab and Greek mathematics and his comparisons are often to the disad-
vantage of Greek mathematics. In Stevin’s view the most important histori-
cal roots of modern mathematics are not in Greek mathematics, but rather in 
Hindu-Arabic mathematics. 

Stevin’s pamphlet was very influential. He established the use of decimals 
in everyday mathematics, demonstrating the simplicity and advantage of the 
system. In the introduction to De Thiende he predicted that using decimal 
fractions in coinage, weights and measures, etc. would be one day universal-
ly accepted – a prediction that has come true to a great extent (even if it is 
not universally accepted). Stevin was very much what we would call an ‘ap-
plied mathematician’. As Klein puts it: “Stevin consciously breaks with the 
traditional forms of science and puts his ‘practical’ commercial, financial, 
and engineering experiences into the service of his ‘theoretical’ preoccupa-

                               
32 Simon Stevin (1548-1620) was a Flemish mathematician and military engineer.  
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tion – as, conversely, his ‘theory’ is put to use in his ‘practical activity’.”33 
Thus, for instance, he was the first to explain the tides using the attraction of 
the moon. In 1586 (three years before Galileo) he reported results of his own 
experiments to the effect that different weights fell a given distance in the 
same time. He wrote on astronomy and strongly defended the sun system of 
Copernicus. 

Unlike Vieta, who expressed himself very respectfully about Greek math-
ematics, Stevin is very critical, and in particular about the weaknesses and 
mistakes he finds in Greek arithmetic. (An exception here is Archimedes, 
whose work Stevin admired.) The Greek view that the number ‘one’, or the 
‘unit’, is not a number but rather the principle or arche (the beginning) of 
number, was according to Stevin one such mistake which he examines at 
great length and rejects. He also made a strong plea that all numbers such as 
square roots, irrational numbers, negative numbers etc. should all be treated 
as numbers and not be distinguished as being ‘different in nature’. As van 
der Waerden puts it: “For Stevin, the real numbers formed a continuum. His 
general notion of real number was accepted, explicitly or tacitly, by all later 
scientists.”34 

Klein’s detailed account of Stevin’s criticism of the Greek concept of 
number, shows that the criticism is firmly based on the symbolic concept of 
number manifest in the decimal place-value system. 

                               
33 Klein (1968, p. 186). 
34 Van der Waerden (1985, p. 69). 
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7   Rabbi Levi ben Gerson 

Looking at the historical development of mathematics, one can see that 
many mathematical concepts, methods, and techniques that were given pre-
cise mathematical sense in the symbolic systems that started to emerge in the 
seventeenth century had forerunners, but, of course, forerunners that were 
less precise by the standards of modern mathematics. This is also true of the 
method of using recursion in proofs. One mathematician who used what one 
would be inclined to call, “proof by recursion” or “proof by induction”, quite 
systematically was Rabbi Levi ben Gerson.35 He proved several theorems on 
the commutative and associative properties of multiplication and on permu-
tations and combinations using recursive procedures. 

What should be noted first of all is that ben Gerson is using the decimal 
place-value system for numbers in computations – not however with the 
Hindu-Arabic notation, but with the first nine Hebrew letters for the digits 1, 
… , 9, and a circle for zero. Following Euclid he also represents numbers as 
line segments, i.e. AB for the line segment with endpoints A and B but, at the 
same time, arbitrary numbers are also represented by letters a, b, c, … In his 
proof of the theorem that the number of permutations of n elements is the 
product with the factors 1, 2, …, n, he states (what we call) the induction-
step in prose as a theorem, and then he reformulates it as follows:  

Let the elements be a b c d e and their number be n and let m be the successor 
of n. Let the number of permutations of a b c d e be t. Adding one member to 
the set a b c d e, we obtain a b c d e f containing m elements. We say that the 
number of permutations of a b c d e f is equal to the product of t by m. 

It is clear, from the context, that Levi ben Gerson is not concerned with the 
particular case of a sequence of five numbers when he writes a b c d e (in the 

                               
35 Levi ben Gerson was born in Languedoc in 1288, and was a Talmudist, philosopher, Bibli-
cal commentator, mathematician, astronomer, and physician. He wrote in Hebrew and com-
pleted several mathematical works. For instance, a commentary of several books of Euclid’s 
elements and a work called Maasei Hochev, the title of which is said to mean “the work of the 
calculator”. In the first (theoretical) part of the book, sixty-eight propositions are given gen-
eral proofs, and the second part gives instructions for solving numerical problems in adding, 
subtracting, multiplying, but also in summing arithmetical and geometric series, and in com-
binations, permutations, and proportions, and in extraction of square and cube roots. In the 
Maasei Hochev, which was completed in 1321, we find repeated use of  recursion in proofs. 
(My account of Levi ben Gerson, and his work is based on Rabinovitch (1970)). 
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sense in which Euclid was indeed concerned with the particular case of a 
sequence of three prime numbers when he wrote “Let A, B and C be the as-
signed prime numbers” in the beginning of his proof of the infinity of the 
primes). Ben Gerson tends to use the expression  

a b c d e 

as we would use an expression like  

a, b, c, d, …, e 

where the three dots is an abbreviation for the (n-5) members of the se-
quence that have not been written out (and ignoring that ‘e’ comes immedi-
ately after ‘d’ in the alphabet). So to some extent one might say that he had 
the germ of the notion of an arbitrary finite sequence. Not, however, as a 
notion belonging to a developed calculus of finite sequences. He does not 
seem to have had a clear notion of the form of a finite sequence, or an accu-
rate symbolism for finite sequences. Neither did he have a satisfactory no-
tion of the successor operation (by the standards of modern mathematics). 
When he says “let m be the successor of n”, he somehow thinks of it as an 
external relation between two given numbers, rather than as an operation on 
numbers which is given by its form n+1, where ‘n’ is a number variable. One 
reason for this may have been that he didn’t have symbols for addition (and 
multiplication) as operations. Addition, multiplication, equality, were ex-
pressed in verbal language as in Greek mathematics. For this reason there is 
a great lack of perspicuousness (surveyability) in ben Gerson’s statement of 
theorems and proofs. Rabinovitch points out that “it is quite difficult to read 
even relatively simple statements where every plus sign must be written out 
in words”.36 Here one could ask oneself, if this difficulty is due to a mere 
notational inconvenience or if it is rather a conceptual difficulty. To what 
extent is the perspicuousness of a proof a part of its essence as a proof? One 
gets the impression that there is a tension in ben Gerson’s mathematics be-
tween the verbal-geometric perspicuousness of Euclid, and the algebraic-
symbolic perspicuousness connected with the place-value notation and the 
use of letters as variables. Consider for instance, Maasei Hoshev, Proposition 
41: 

The square of the sum of the series of integers beginning from one up to a 
given integer is equal to the cube of the given integer plus the square of the 
sum of the series of integers from one up to the predecessor of the given inte-
ger. 

                               
36 Rabinovitch (1970, p. 239) 
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In modern symbolism this proposition would be expressed: 
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Already when he reformulates the original proposition in the beginning of 
the proof, ben Gerson moves closer to the algebraic-symbolic perspicuous-
ness by using letters for arbitrary numbers of a series. 

In ben Gerson’s proofs, in which we recognize a use of recursion and are 
inclined to call them proofs by induction, he often illustrates the proof with 
more cases than needed (in the proof), i.e. not only for the base n = 1, but 
also for n = 2, n = 3, n = 4. What he seems to want to illustrate here is how 
the result ‘extends to infinity’ like a ladder or a spiral. In connection with the 
(recursive) proof of the theorems on the commutative and associative prop-
erties of multiplication, he says: 

In this manner of rising step by step, it is proved to infinity. 

So the method of rising step by step is ben Gerson name for what later has 
been called “the method of proof by mathematical induction”. Unlike the 
modern statements of the method it is not defined or made precise in some 
mathematical calculus or system. It is rather what one perhaps would call 
“an intuitive notion”. The name rising step by step is an ordinary language 
simile which captures a similarity between procedures in different proofs by 
induction.37  

So ben Gerson, unlike Euclid, was using letters a, b, c, … for arbitrary 
numbers, i.e. these letters are used as parameters. And his use of the letter n 
and m in his proof about permutations are number variables. The recursion in 
the proof (‘the induction step’) is carried out on these variables. He also 
seems to have had a notion of an arbitrary finite sequence, even if his sym-
bolism is not satisfactory. I don’t think that it is farfetched to believe that his 
familiarity with and use of the place-value system for numerals is one im-
portant thing that takes ben Gerson’s mathematics closer to modern symbol-
ic mathematics. 

My point with the previous discussion of mathematical induction is not 
mainly historical, its point is rather to show what difference the symbolic 
point of view makes, by giving some examples of what sort of differences 
‘make the difference’. 

                               
37 According to Rabinovitch (1970 , p.245) ‘rising step by step’ is a translation of the Hebrew 
word Hadragah. A noun formed from the same root occurs in the Bible where it is taken to 
mean cliffs that appear like rising stairs. 
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Ben Gerson had a notion of mathematical induction, of finite sequences 
etc., that were not clear enough by our standards. They rest on vague analo-
gies expressed in prose. But we are nevertheless inclined to call it a begin-
ning of the development towards precise notions. But we could also say that 
he had the beginning of a symbolism for these notions, but one that was not 
accurate. It may then seem as though we have two different kinds of inaccu-
racies, one having to do with content and the other with form. It is important 
to realize that this alleged difference is a mistaken idea. It is one and the 
same inaccuracy. When you have found an accurate symbolism for a notion, 
you have also become clear about the content of the notion.  
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8   Archimedes and the naming of large 
numbers 

It is often said by modern commentators that one of the great advantages of 
the place-value system was that one eliminated the need to invent new digits 
for numbers, no matter how large. But it is important to realize that this 
statement is not a judgment that is neutral with respect to the difference be-
tween the ancient Greek arithmetic and modern symbolic concepts of num-
ber and finiteness. The ‘great advantage’ is very much a great advantage for 
someone who takes the symbolic conception of number and finiteness as the 
true meaning of these notions (which is our normal (silent) attitude).  

In his work entitled Psammites (the ”Sand-Reckoner”) Archimedes de-
scribes his problem with the naming of large numbers as follows: 

… I will try to show you by means of geometrical proofs, which you will be 
able to follow, that, of the numbers named by me and given in the work 
which I sent to Zeuxippus, some exceed not only the number of the mass of 
sand equal in magnitude to the Earth filled up in the way described, but also 
that of the mass equal in magnitude to the universe.38 

One part of the problem was precisely extending the existing Ionian or al-
phabetic system of numeration to very large numbers far beyond a ’myriad’ 
or ’ten thousands’, which was the largest number expressible in Greek ordi-
nary language at the time. “Are there multitudes so large that they cannot be 
counted?”, was therefore a real problem which it is not for us because we are 
satisfied with a number as a form, a form of a finite sequence, a possible 
finite sequence where the possibility is determined by the method for its 
construction defined in the algebraic-arithmetical symbolism. We don’t re-
quire of an instance of the general form of a number expressed in the deci-
mal system as a sequence of digits, that this sequence should have a clear 
and intelligible reading in ordinary language.  

In determining an upper bound for the number of grains of sand that fit 
into the universe Archimedes used the heliocentric model of the Universe of 
Aristarcus of Samos. Assuming that the Universe is spherical he estimated 
that it would require no more than 1063 grains of sand to fill it. The details of 
his estimation, which is a piece of history of astronomy, will not concern us 

                               
38 The quotation can be found in Wikipedeia under the item “The Sand Reckoner”. 
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here. What interest us is the system of numeration that Archimedes devel-
oped and in which he could name this number and even larger numbers. And 
by ‘naming’ Archimedes meant that the names of the large numbers should 
have an intelligible reading in the natural language of his times.  

Archimedes developed his system as a series of “periods of numbers” and 
each period consists of a series of “orders of numbers”: first numbers, sec-
ond numbers, third numbers, etc up to a last order of a given period. The 
orders as well as the periods have all a last number, and the last number of a 
certain order or period is taken as the unit of the next order or period (if there 
is one). So there will be a largest number named in this system. 

Starting with the word “myriad” he extends this to naming all numbers up 
to a myriad myriads (104 × 104 = 108). These are the numbers of the first 
order of the first period. Myriad myriads (108) is then taken as the unit of the 
numbers of the second order of the first period. The numbers of the second 
order are then multiples of this unit up to this unit taken a myriad-myriad 
times, (108 × 108 = 1016). This number is then taken as the unit of the num-
bers of the third order in the first period, and the multiples of this unit are the 
numbers of the third order, and so on. Archimedes continued naming num-
bers in this way up to a myriad-myriad times the unit of the numbers of the 
108-th order, i.e. (108)Q, where Q = 108. Thereby the numbers of the first 
period are defined. It consists of the numbers from 1 to QQ. 

Let P = QQ. The number P is then taken as the unit of the numbers of the 
first order of the second period. It will consist of the numbers from P to 
108P. This last unit will be taken as the unit of the second order of the second 
period, ending with 1016P. In this manner we continue until we come to the 
Q-th order of the second period, ending with QQP = P2. 

Next P2 is taken as the unit of the first order of the third period, and we 
continue until we reach the Q-th order of the third period ending with P3. 
This number is then taken as the unit of the first order of the fourth period, 
and one continues the process until we reach the Q-th order of the Q-th peri-
od, ending with PQ. This is the last and largest number in Archimedes system 
of numeration. He expressed it in ordinary language as “a myriad-myriad 
units of the myriad-myriad-th order of the myriad-myriad-th period”. 

It has been pointed out that Archimedes system has similarities to a place-
value numeration system in which a myriad myriads, 108, is the base. But 
since an end is stipulated for the process of defining numerals, it is not a 
place-value system. Why did Archimedes put an end to the process? From 
the point of view of modern mathematics it would have been natural to con-
tinue the process ad. inf. (i.e., without stipulating an end) – It was presuma-
bly because he wanted his numerals to have an intelligible reading in ordi-
nary verbal language. For Archimedes the word ‘naming’ had a much more 
ordinary and literal sense, than in the syntax and semantics of modern math-
ematics (as when one introduces ‘names’ of all numerals in a formal system 
through a recursive definition). We have used modern notation in explaining 
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Archimedes’ numeration system (to give the reader an idea of what the sys-
tem is like from a modern point of view), but it was an essential feature of 
Archimedes’ account that his numeration system is defined and explained in 
ordinary verbal language, in the mathematical prose of his times. In this re-
spect Archimedes adapted himself to a hierarchy of values of ancient Greek 
culture, which Netz describes as follows:  

Greek literary production is marked by a hierarchy of values always related 
to a certain ‘literary’ or ‘verbal’ preference: literature is ranked above sci-
ence, inside science philosophy is ranked above mathematics; persuasion (to 
the Greeks, the central verbal art) is ranked above precision and natural lan-
guage above other symbolic domains. 39 

This explains, according to Netz, the non-arithmetical nature of classical 
Greek mathematics. Could Archimedes, as a mathematician, have ignored 
these extra mathematical values? Netz argues that he could, but chose not to 
do it. One reason for this choice may have been that his work, Psammites, is 
addressed to non-mathematicians (a king Gelon, among others) who were 
thinking that no number have been named which is great enough to exceed 
even the magnitude of the grains of sand on the earth. In addressing readers 
who were non-mathematicians Archimedes had better to observe prevailing 
extra-mathematical values in order to carry conviction (be persuasive). 

It was an important feature of Greek mathematics that the language of 
mathematics be continuous with and in proximity with ordinary verbal lan-
guage. This is also argued by Klein (1968). It seems to be part of what Klein 
expresses as follows: 

Greek scientific arithmetic and logistic are founded on a “natural” attitude to 
everything countable as we meet it in daily life. This closeness to its “natu-
ral” basis is never betrayed in ancient science.40 

The closeness to its “natural” basis of everyday life is a feature of Greek 
mathematics which stands in sharp contrast to modern symbolic mathemat-
ics. There is a striking contrast in this respect even when we compare Greek 
science and modern science in general. In contemporary popular science 
there is a clear tendency to relinquish what “we meet in everyday life” and 
even to give oneself up to mythology. 

Articulating modern mathematics in ordinary verbal language by assign-
ing a place for mathematical propositions in the general category of proposi-
tions expressed by declarative sentences of natural language, have often 
resulted, not in “closeness to the natural attitude of everyday life”, but on the 
contrary in mythological ways of thinking such as for instance the ‘non-

                               
39 Netz (2002, p. 287). 
40 Klein (1968, p. 63). 
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linguistic’ Thoughts of Frege (which have their special Wirklichkeit as enti-
ties of “The Third Realm”),41 or the ontological mythologies of transfinite set 
theory of Cantor and Gödel. 

Modern logicians are more ontologically extravagant than Aristotle, who 
says that “The general propositions of mathematics are not about separate 
things which exist outside of and alongside the [geometric] magnitudes and 
numbers, but are just about these; not, however, insofar as they are such as to 
have a magnitude or to be divisible [into discrete units].”42 The general prop-
ositions that Aristotle had in mind here are, for instance, the axioms or “the 
common notions” and the theorems of Eudoxus’ theory of proportions.  

But the ontological views of Aristotle are a hard topic. He rejected Plato’s 
doctrine that numbers have an independent existence, and claimed instead 
that quantity, magnitude and number exist within the phenomena we per-
ceive with our senses. The number three is not detached or separated from a 
multitude of three apples. But how can they then be objects of knowledge 
(episteme) in arithmetic as theoretical science? This question is what Aristo-
tle answers by what has been called his “theory of abstraction”.  

Having said that quantity is inseparable from sensible things, it is some-
what surprising to find Aristotle saying that arithmetical science nevertheless 
studies the numbers as if they were separated from the objects of sense. Ar-
istotle claims that “It [science] thinks the mathematical objects which are not 
separate as separate when it thinks them.”43 And this is accomplished by 
abstraction in which “their separate mode of being arises from being “lifted 
off”, “drawn off”, “abstracted.”44 “The mathematician makes those things 
which arise from abstraction his study, for he views them after having drawn 
off all that is sensible …, and he leaves only the ‘how many?’ and continu-
ous magnitude.”45 

Abstraction is, however, not meant to be a sort of psychological proce-
dure resulting in mathematical objects as mental constructions. 

Jacob Klein summarizes Aristotle’s ontology of mathematical objects as 
follows: 

If the reduction [in the abstraction process] goes so far that things are no 
longer regarded even as “mere bodies” but only as “items,” these things have 
been transformed into “neutral” monads. Just this “neutrality” of things 
which have withered away into mere countable “items” constitutes the “puri-

                               
41 Frege (1957, p. 269), writes:”There is no contradiction in supposing there to exist beings 
that can grasp the same thought as we do without needing to clad it in a form that can be 
perceived by the senses. But still, for us men there is this necessity.” 
42 Aristotle Metaphysics (M 3, 1077 b 17-20). 
43 Aristotle, On the Soul, (Г 7, 431 b 15 f.). 
44 Klein (1968, p. 104). 
45 Aristotle, Metaphysics, (K 3, 1061 a 28 ff). 
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ty” of the “arithmetic” monads and turns them into the noetic material which 
underlies scientific study.46 

So we can understand Jacob Klein’s statement that with Vieta’s symbolic 
approach in his Analytic art “a new way of ‘understanding,’ inaccessible to 
ancient episteme is thus opened up”. 

                               
46 Klein (1968, p. 105). 
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9   Ordinary verbal language and mathematical 
symbolism 

Let us return to Jacob Klein’s claims that Vieta is the “inventor of modern 
mathematics” and that “modern mathematics is symbolic mathematics”. 
Klein’s claims are quite extensive and strong. Presumably, he does not want 
to say that modern mathematics has reached full realization and understand-
ing of its symbolic nature. That this is not what he is saying seems to follow 
from his statement about the “ontological presuppositions [that] are left un-
clarified”, in modern mathematics and mathematical physics.  

Despite the transformation of mathematical thought that takes place with 
the work of Vieta, Stevin, Descartes and Wallis, it seems to me that there are 
important features of Greek non-symbolic ways of thinking that were passed 
on, rather unaffected by the symbolic transformation, to modern times 
through two very influential works, namely Aristotle’s logical doctrine and 
Euclid’s Elements (and many features, if not all, of Aristotle’s logical doc-
trine are part of the philosophical context in Euclid’s Elements).47 The great 
influence of Euclid’s Elements, even in modern times, has made people 
compare its influence with that of the Bible. It has been said that no other 
book, except the Bible has as many translations, editions and commentaries 
as the Elements. Calinger points out about the Elements that “Its geometrical 
conception of mathematics greatly influenced the natural sciences – in medi-
eval Arabic and Latin natural philosophy as well as in Isaac Newton’s Prin-
cipia of 1687, which follows the format of the Elements. Its conceptions 
were basic to Kant’s Critique of Pure Reason, published in 1781.”48 

Klein would perhaps object that our understanding and reading of Eu-
clid’s Elements since the seventeenth century is, nevertheless, imprinted by 
our loss of understanding of ancient Greek mathematical thinking. In Greek 
mathematics one had the conscious attitude that natural language referring to 
ordinary immediate experience is the basic linguistic framework. It has pri-
ority over other linguistic domains. Klein is certainly right that the reference 
to ordinary immediate experience as the basic source of fundamental math-

                               
47  See Mancuso (1996, Ch. 1 and 4.) Mancuso argues convincingly that “the Aristotelian 
epistemological framework was pervasive in the seventeenth century and very influential 
indeed in later centuries” (Mancuso 1996, p. 92). By the “Aristotelian epistemological frame-
work” Mancuso means primarily what we find in Aristotle’s Posterior Analytics. 
48 Calinger (1999, p. 132-133). 



 40 

ematical concepts is something that gets lost, or is abandoned, in the trans-
formation that takes place in the seventeenth century. It was this step in par-
ticular that made it possible for seventeenth century mathematics to trans-
gress the boundary line between discreet and continuous quantity – a bound-
ary line which we find in Aristotle and Euclid and their followers. But what 
is still not abandoned is the tendency to give meaning and significance to 
basic notions in mathematics and formal logic by translation or paraphrase 
into verbal language (to which I count what is often called “informal math-
ematical language”, or, in Wittgenstein’s words “mathematical prose”). 

One thing that was transferred to modern times from the Aristotelian-
Euclidian tradition is a philosophical attitude to formal logic, what I would 
like to call the foundational status of (formal) logic, which involves at least 
the following things: First, logic is concerned with judgments or propositions 
originally connected with the episteme of the Aristotelian ontological con-
cept of a science. In this sense a science and its propositions are always 
about a certain subject-matter which we have access to through a process of 
abstraction. Geometry and its propositions, for instance, are about continu-
ous quantity, which we encounter in nature. This ontological conception of 
propositions is present in mathematics as much as in physics and biology. 
Secondly, to the foundational status of formal logic belongs also the idea that 
logic displays the form of judgments or propositions that is essential for their 
being true or false. This means in particular that a logically well-articulated 
proposition carries its meaning or logical content by itself as a proposition, 
regardless of its context of use. 

What I want to argue is that the foundational status of logic, Aristotelian 
logic as well as modern formal logic, is intimately connected with the trans-
lation (or paraphrase) of the basic notions and rules of the logical calculi into 
natural language, and thus into a non-symbolic linguistic framework. The 
prose-translations, or the natural language readings, of the basic logical no-
tions and formulas of formal logic tend to become ritualized and acquire a 
normative role for what constitutes the logical content of propositions. (In 
learning to formalize sentences of ordinary language using the propositional 
or the predicate calculus in contemporary introductory logic courses, stu-
dents are initiated in these ritualistic reading techniques. To learn to disre-
gard the context of use of sentences is an important part of learning these 
paraphrase techniques.) Being articulated in ordinary language, it now ap-
pears as though the logical notions and rules are already present in ordinary 
language, as a hidden or concealed logical core of ordinary language that is 
made explicit through formalization. But the normativity of the prose-
readings of logical notions and formulas was not a discovery about ordinary 
language; they were adapted to the formal rules of the logical calculi. And it 
is a part of this adaptation to disregard how the precise conceptual content of 
sentences depends upon the context of their use. 
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What I have said here about the role of verbal language may seem to be in 
conflict with Frege’s logical doctrine in one respect. The proper subject mat-
ter of logic, according to Frege, is not sentences of natural language but 
Thoughts, which are sometimes said to be ‘non-linguistic’ entities. For Frege 
it is Thoughts that are the subject-matter of logic, that have a logical struc-
ture and stand in logical relations to one another. A Thought is about a de-
terminate subject-matter, and it says something true or false about that sub-
ject-matter. – But how can a Thought say something about a subject-matter if 
it is ‘non-linguistic’, if it is not articulated by signs of some sort? A determi-
nate Thought has to be expressed as a sentence of a language, if it is to be a 
determinate thought at all.49 A Thought is really what Frege earlier called the 
Sinn of a sentence of language. 

The propositional calculus and the predicate calculus are calculi. It would 
be possible to present the systems of formal logic as pure calculi, in which 
the basic logical notions are deprived of all meaning that comes from the 
translation and paraphrase into natural language (i.e. the reading of ‘f(a)’ as 
‘a has the property f’, ‘A’ as ‘It is not the case that A’, ‘A & B’ as ‘A and 
B’, ‘x f(x)’ as ‘there exists an object x which has the property f’, etc.). In 
such a presentation of formal logic as a pure calculus, the basic logical oper-
ations are symbols (not just signs; remember that a symbol is determined by 
how we operate with a sign in the calculus). The different signs ‘’ and ‘’, 
for instance, have been used for the same symbol. If we call that symbol 
‘negation’, we must keep in mind that this word only signifies a symbol in 
the pure calculus; its sense does not come from a translation of the signs ‘’ 
or ‘’ as ‘not’ or as ‘it is not that case that’ in natural language. 

One could make the same point by saying that it would be possible to do 
with the systems of formal logic what Hilbert did with Euclidian geometry in 
his Grundlagen der Geometrie. Hilbert presented Euclidean geometry as a 
system in which the basic notions (e.g. ‘point’, ‘line’, ‘plane’, ‘between’, 
etc.) are deprived of the meaning that comes from their use in informal geo-
metrical language, (which is often called the ‘intuitive meaning’ of these 
words). So the only ‘meaning’ that the basic notions have in the system is 
the one that comes from the axioms and rules that define the system.50 But 
viewing Euclidian geometry as a pure calculus we would go further than 
Hilbert, who was still following the logical tradition in presenting the Eu-
clidian geometric system as a theory about some ‘unspecified things’, exter-
nal to the Euclidean calculus. Hilbert said that in Grundlagen, he had pre-

                               
49 Frege states explicitly: “…that a thought of which we are conscious is connected in our 
mind with some sentence or other is for us men necessary. (Frege, 1957, p. 269.) 
50 Freudenthal (1962, p.618) expressed the significance of Hilbert’s Grundlagen by saying 
that with Hilbert “[…] the bond with reality is cut. Geometry has become pure mathematics. 
The question whether and how to apply it to reality is the same in geometry as it is in other 
branches of mathematics. Axioms are not evident truths. They are not truths at all in the usual 
sense.” 
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sented geometry as a “pure mathematical science”. By viewing the system as 
a pure calculus, the axioms get the role of rules for the operation with the 
basic notions and the signs of the calculus (which include geometric figures).  

In such a presentation of the logical systems as pure calculi, they are 
mathematical symbolisms, and they would deserve the name “symbolic log-
ic”. Formal logic as symbolic logic in this sense has no longer the founda-
tional status I mentioned before. The foundational claims disappear when the 
logical symbol’s connection with informal verbal language is cut off. They 
are just mathematical symbolisms side by side with other mathematical 
symbolisms without any exceptional position among the great variety of 
mathematical symbolic systems.  

In many purely mathematical results about logical systems, in so-called 
‘metalogic’, only such features that belong to the system as a pure calculus 
or a mathematical symbolism are actually used. But in presentations of mod-
ern logical systems, one tends to state and present their mathematical proper-
ties as if the systems are inseparable from the translation of the signs into 
natural language (or mathematical prose), i.e. as if the logical operations 
must have the sense that comes from their translation into natural language. 
The reason for this is of course that one wants to adhere to the foundational 
status of formal logic according to which the propositional calculus, for in-
stance, is concerned with propositions in the ontological sense; they are un-
derstood as being about some sort of reality external to the calculi that make 
them true of false. But as a pure calculus the propositional calculus is only 
concerned with formulas, and their translation or reading as (forms of) Eng-
lish sentences is not part of the rules of the calculus. 

If the logical symbols’ connection with the natural language readings of 
them were cut off, one would also undermine the philosophically suggestive 
prose reading of most results in metalogic, i.e. results about ‘consistency’, 
‘soundness’, ‘completeness’, ‘incompleteness’, ‘decidability’, ‘undecidabil-
ity’, etc. Confronted with the threat that the alleged philosophical signifi-
cance of, for instance, famous results such as Gödel’s incompleteness theo-
rems gets lost, logicians will hold on to the foundational status of formal 
logic, and to the ritualized prose readings of the logical symbols.  

The point of presenting a logical system as a pure calculus would be to 
show that the foundational status of formal logic, and the prose readings of 
the logical symbolism, is not a (mathematically) necessary feature of it. It 
shows how the ontological conception of propositions of mathematics is 
intimately connected with the translation of the logical operations into verbal 
language. So in a certain sense one might say that the non-symbolic, onto-
logical conception of mathematical propositions rests upon giving informal 
mathematical language a foundational significance.51 I think that this feature 

                               
51 Here it is instructive to look at the debate between Hilbert and Frege (in Frege, 
1980). It is clear that Frege argues as if the presentation of a mathematical system 
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belongs to the heritage from the Greeks (Aristotle), and it stands in sharp 
contrast to the symbolic conception of mathematics.  

The most obvious way in which a branch of mathematical logic rests up-
on the standard readings, or translations into verbal language of the expres-
sions and formulas of the predicate calculus is in so-called ‘model-theoretic 
semantics’, where one starts out with a notion of ‘truth in a structure’. Such a 
structure has a domain of objects which are values of the bound variables. 
Via the natural language reading of formulas, a formula becomes a proposi-
tion about these objects that is true or false in the structure. If the objects are 
numbers, the formulas are translated into arithmetical propositions. It is clear 
that the ontological conception of arithmetic is built into this approach. One 
gets the impression that the standard verbal reading of the formulas of the 
predicate-calculus was an important source of inspiration in the invention of 
model-theoretic semantics. 

Returning to Jacob Klein’s claim that the essence of modern mathematics 
is symbolic mathematics, it is clear that this claim does not apply to modern 
mathematical logic as it is understood and used in the discussion about the 
foundations of mathematics since the beginning of the twentieth century. 
And this foundational discussion has dominated (and thereby also delimited) 
the discussion in the philosophy of mathematics since then. All positions in 
this philosophical discussion (e.g. realism, Platonism, intuitionism, logicism, 
formalism, structuralism, etc.) take for granted the ontological conception of 
a proposition with roots in the logical tradition, and mathematics is seen as a 
kind of ‘natural science of mathematical objects’, whether they are platonic 
objects or mental constructions.52 In the symbolic conception of mathemat-
ics, the ontological difficulties in this discussion do not arise at all. 

                                                                                                                             
(geometry as well as logic) as a pure calculus is impossible, because, according to 
Frege, the meaning of the basic notions that comes from the translation into informal 
language cannot be disregarded.  
52 Exceptions here are Poincaré’s and the early Brouwer’s critique of the foundational status 
of formal logic. But this critique has been largely ignored in the foundational discussion. 
Modern intuitionists and constructivists (with the exception  perhaps of  Errett Bishop) have 
their own formal logic with their own ontological notion of proposition. 



 44 

10   The end of the science of quantity 

The impact of the heritage from Euclid and the Aristotelian logical doctrine 
on modern mathematics is present not only in the modern logical tradition, 
but also in mainstream mathematics (e.g. mathematical analysis or Calculus) 
of the eighteenth and the beginning of the nineteenth centuries. It seems to 
me that there is a deep tension at work between the two tendencies in math-
ematics during this time: on the one hand the Euclidean-Aristotelian herit-
age, with its ontological emphasis on geometry and ‘continuous quantity’, 
and the symbolic conception with its emphasis on the formal and operational 
aspect of mathematics, on the other. The letter tendency manifests itself in 
the 18th century in the effort to make algebra the foundation of mathematical 
analysis (Lagrange).  

The former, ontological tendency, was passed on by Newton, whose atti-
tude to the tension between the two tendencies is somewhat puzzling. Ac-
cording to Guicciardini (2003, p. 75), Newton’s interest in mathematics be-
gan in 1664, when he read, inter alia, François Viète’s works, Descartes’s 
Geometrie, Oughtred’s Clavis mathematicae (1631) and Wallis’s Arithmeti-
ca Infinitorum (1656). From reading these works on “modern analysis” 
Newton learned analytic geometry, algebra, tangent problems, and series, 
and he made his own contributions to this field of research which was highly 
symbolic. But according to Guicciardini: 

In the 1670s he was led to distance himself from this early highly analytical 
mathematical research. Newton began to criticize modern mathematicians. 
He stressed the mechanical character of modern algebraical methods  […] By 
contrast, he characterized the “geometry of the Ancients” as simple, elegant, 
concise, adherent to the problem posed, and always interpretable in terms of 
existing objects. Needless to say, notwithstanding Newton’s rhetorical decla-
ration of continuity between his methods and the methods of the “Ancients”, 
his geometrical dynamics is a wholly seventeenth-century affair. The reasons 
that induced this champion of analytics, series, infinitesimals, and algebra to 
spurn his analytical research are complex. They have to do with foundational 
worries about the nature of infinitesimal quantities […]. They also have to do 
with his dislike of Descartes, towards anything Cartesian […].”53 

Newton passed on the “methods of the Ancients”, for instance, in the form of 
the ideas of absolute space, absolute time and absolute motion. Newton’s 
                               
53 Guicciardini (2003, p. 92). 
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assertion of these ideas resulted in a quite violent fight between Newton (via 
his spokesman Clarke) and Leibniz, who was a great symbolic thinker and 
argued for the relativity of place and motion. According to Hermann Weyl: 
“In this quarrel modern Physics sides entirely with Leibniz.”54 We also recall 
that it was Leibniz’, and not Newton’s version of the infinitesimal calculus 
that survived into the 20th century. Leibniz’ symbolic approach in mathemat-
ics and logic and its influence and success, is further support for the claim 
that the essence of modern mathematics is symbolic mathematics. 

Many 18th century mathematicians conceived themselves to be concerned 
with a subject-matter that belonged to geometry seen as the science of physi-
cal space or to physics as concerned with continuous quantities such as 
lengths, weigths, area, volume, time, mass, power, speed, etc. As Epple 
points out, “During the 18th and part of the 19th century, many scientists still 
agreed with the idea that mathematics was the ‘science of quantity’ […] It 
was self-evident to mathematicians of the 18th century that the quantities 
dealt with in analysis were endowed with meaning in the natural and social 
world.”55 

Many conceptual problems that were noted and discussed (but not solved) 
in 18th century mathematics had their source, it seems to me, in the deep 
tension between the mentioned two tendencies, i.e. between the view of 
numbers as quantities, and the symbolic view of numbers. There were prob-
lems about the nature of negative numbers: If numbers are quantities and 0 is 
nothing, how can there be quantities less than nothing? There were problems 
about infinitesimal magnitudes, differentials, the notion of limit, function, 
continuity, and one talked about the ‘mysteries’ of imaginary numbers. 
There were also problems concerning infinite divergent series. According to 
Jahnke “it was not self-evident that a formula obtained by algebraic expres-
sions should be regarded as meaningless if it did not allow a numerical inter-
pretation because a divergent series was involved”.56 This attitude to diver-
gent series, that it should be possible (some day) to make sense of expres-
sions and equations involving them, was according to Jahnke a typical atti-
tude in 18th century analysis.  

That Gauss felt a need for increased rigor in this situation, is clear from 
the following description he gives of the situation in mathematics: 

It is characteristic of mathematics of our modern times (contrary to antiquity) 
that our sign language gives us a lever that reduces the most complicated ar-
guments to a certain mechanism. In this way science has gained infinitely in 
richness, but as the business is usually run, it has lost equally much in beauty 
and solidity. How often is this lever used only mechanically, although the au-
thorization to do so in most cases implies certain tacit assumptions. I insist 

                               
54 Weyl (2009, p 125). 
55 Epple (2003, p 291, 292). 
56 Jahnke (2003, p. 108). 
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that by all applications of the calculus, by all applications of concepts one 
should remain conscious about the original conditions, and never without au-
thorization consider the result of the mechanism as one’s property. However, 
the usual trend is that one claims that analysis has a general character […] It 
is often like that in the case of divergent series. Series have a clear meaning 
when they converge; this clear meaning vanishes with this condition of con-
vergence, and it changes nothing essential whether one uses the word sum or 
value.57 

The image of mathematics as the science of quantity changes, however, pro-
foundly in the late half of the 19th century. Epple writes about this change: 

[…] one may reasonably call this change the end of the paradigm of the sci-
ence of the quantity. Several parallel developments initiated the departure 
from this paradigm. In great Britain, a tradition of symbolical algebra 
emerged […]. In the wake of other investigations (by Ernst Kummer, Her-
mann Grassmann, William Rowan Hamilton and many others), the notion of 
number was gradually extended far beyond its earlier limits. […] 

By constructing new mathematical entities that could no longer be sub-
sumed under the traditional notion of quantity, these developments exploded 
the extension of this concept.58 

With the endeavor towards increased rigor in mathematics that begins with 
the work of Gauss, Cauchy, Weierstrass and others in the 19th century, the 
influence of the symbolic conception of mathematics is obvious and there-
with also the endeavor towards a non-ontological outlook. Mathematical 
analysis was separated from geometry. Gaps were found in Euclid’s argu-
ments, and in addition, as a consequence of the invention of alternative ge-
ometries, Euclid’s authority was questioned. It was felt that basic results in 
analysis (such as, for instance, the intermediate value theorem) should be 
given a firmer formal basis than being based on geometric intuition. Geo-
metric intuition was also challenged by the invention (by Weierstrass and 
others) of functions that were continuous but nowhere differentiable. 

In 18th century mathematics there was no sharp division between pure and 
applied mathematics. Most mathematicians also worked in theoretical phys-
ics. This fact reflected itself in the language of mathematics, in the prose of 
mathematics. Does a certain word such as, for instance, the word ‘quantity’ 
derive its meaning from its use in physics, or does it have its meaning from 
the way it is operated with in the mathematical calculus, i.e. does its mathe-
matical sense coincide with its sense as a symbol of the calculus? It was only 
after the influence of the symbolic view of mathematics that this question 
could be raised, because an essential feature of the symbolic point of view 
was the logical separation of a symbolic system from its application to some 
subject-matter outside pure mathematics. This is why it is sometimes neces-
                               
57 Quotation from Lützen (2003 .p. 173). 
58 Epple (2003, p. 291). 
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sary to deprive words of their meaning in order to get clear about where the 
boundary between a symbolic mathematical system and its application goes. 
Even a word of ordinary language may have the role of a symbol in a calcu-
lus (such as, for instance, the words ‘point’ and ‘line’ in Hilbert’s system in 
Grundlagen der Geometrie). 

In Weierstrass’ work on the arithmetization of analysis he is still using the 
word ‘quantity’, but it is clear that the sense of the word, as he is using it, is 
the sense it has as a symbol in the arithmetical calculus he is working with. 
Epple makes this point as follows: “Weierstrass continued to use the notion 
of quantity, but expressions like “arithmetical quantity” or “number quanti-
ty” made clear what he had in mind: a logical separation of his concepts 
from their more intuitive counterparts in geometry and physics.” 59  

It is thus an important feature of the symbolic point of view to sharply 
separate a calculus or symbolic mathematical system, from its application to 
some independently given subject-matter outside the system. This attitude 
towards the relation between pure and applied mathematics was in keeping 
with a more general tendency in 19th century mathematics, which Lützen 
describes as the existence of “A process of emancipation of mathematics 
from science” and this process “added to the feeling that the foundations of 
analysis had to be revised. […] It became important to give mathematics, 
including analysis, a solid foundation of its own, independent of applica-
tions.”60  

It is interesting that one important motivation for the rigorization of anal-
ysis, was problems concerning the teaching of mathematics. According to 
Lützen: “Several mathematicians found themselves in an awkward situation 
when they had to teach the introduction to analysis, and therefore they de-
cided to reform it.”61 This was, according to Lützen, the direct background 
for Cauchy’s and Weierstrass’s reforms and of Dedekind’s and Méray’s 
construction of the real numbers. It seemed most natural from a pedagogical 
point of view to introduce basic notions of analysis, such as the notion of 
infinitesimal magnitude, through their applications in physics. The ‘awkward 
situation’ was the impression that the correctness of the basic concepts of 
pure mathematics seemed to depend on their successful applications in phys-
ics – as if pure mathematics was at bottom not really pure. 

The process of “emancipation of mathematics from science” did manifest 
itself in the organization of higher education in mathematics in Germany in 
the 19th century. Lützen explains: “[…] high schools and universities rather 
than technical high schools became the centres of mathematical training and 

                               
59 Epple (2003, p. 296). 
60 Lützen (2003, p. 155,156). 
61 Lützen (2003, p. 155). 
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research. Combined with the neo-humanist movement, this led to the devel-
opment of pure mathematics as an independent field.”62 

In Cauchy’s work on reforming analysis in his Cours d‘analyse it is clear 
that the symbolic point of view is present in an essential way. This is true in 
particular in Chapter VII where he introduces imaginary numbers. Accord-
ing to Bottazzini, “Cauchy took the ontological problem concerning the na-
ture of imaginary numbers much more seriously than anyone before him. In 
the Cours d‘analyse he introduced them in a formal manner as ‘symbolic 
expressions’ given by ‘any combination of algebraic signs that do not signify 
anything in themselves or to which one attributes a value different from that 
which it naturally has’.63 Cauchy does not solve the “ontological problem” 
about imaginary numbers by giving a positive answer to the question of their 
“ontological nature”, but by making the ontological problem disappear in the 
light of a rigorous symbolic approach to the nature of imaginary numbers. 
And Cauchy’s approach required hard work. Bottazzini reports that “it took 
him no less than fifty-five pages to […] define algebraic operations on ‘ex-
pressions’ like α + β√-1 (α and β being real quantities) in a rigorous way and 
to establish their properties.” In Bottazzini’s judgement, “Chapter VII of the 
Cours can be considered one of the places where Cauchy displayed his con-
cept of rigor best.” 

The symbolic algebra that was developed by George Peacock and Augustus 
de Morgan was, in a sense, an expanded symbolic approach. The algebraic 
symbolism was not just an arithmetic-algebraic symbolism. The symbols of 
algebra were no longer understood as representing necessarily numbers or 
magnitudes. In the chapter headed “On symbolic algebra” in de Morgan’s 
book on Trigonometry and Double Algebra, he writes: 

It is most important that the student should bear in mind that, with one excep-
tion, no word nor sign of arithmetic or algebra has one atom of meaning 
throughout this chapter, the object of which is symbols, and their laws of 
combination, giving a symbolic algebra which may hereafter become the 
grammar of a hundred distinct significant algebras. If any one were to assert 
that + and − might mean reward and punishment, and A, B, C, etc., might 
stand for virtues and vices, the reader might believe him, or contradict him, 
as he pleases, but not out of this chapter. The one exception above noted, 
which has some share of meaning, is the sign = placed between two symbols 
as in A = B. It indicates that the two symbols have the same resulting mean-
ing, by whatever steps attained. That A and B, if quantities, are the same 
amount of quantity; that if operations, they are of the same effect, etc. 

                               
62 Lützen (2003, p. 155). It seems clear to me that it was the symbolic point of view, with its 
algebraic methods and techniques, that made this development of mathematics into an inde-
pendent field possible. This development can, for this reason, be said to support the claim that 
“modern mathematics is symbolic mathematics”.   
63 Bottazzini (2003, p. 217). 
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This is reminiscent of what Hilbert wrote to Frege in the so-called Frege-
Hilbert controversy: 

[I]t is surely obvious that every theory is only a scaffolding or schema of 
concepts together with their necessary relations to one another, and that the 
basic elements can be thought of in any way one likes. If in speaking of my 
points I think of some system of things, e.g. the system: love, law, chimney-
sweep … and then assume all my axioms as relations between these things, 
then my propositions, e.g. Pythagoras' theorem, are also valid for these 
things. In other words: any theory can always be applied to infinitely many 
systems of basic elements.64 

The system of symbolic algebra of de Morgan is not a theory about anything 
external to the system. It is a self-standing mathematical symbolism that can 
be applied to other independently existing subject-matters.  

One of the most clear and distinct examples of the use of the symbolic 
point of view is the mathematician Johannes Thomae’s concept of “formal 
arithmetic” presented in the introduction of the 2nd edition to his book Ele-
mentare Theorie der analytischen Functionen einer complexen Veränderli-
chen, published in 1898. As Thomae uses the word ‘formal’ it is essentially 
synonymous with ‘symbolic’, as this word has been used in mathematics 
ever since Vieta.  

What makes Thomae’s clarification of formal or symbolic arithmetic ex-
ceptional is his use of the game of chess comparison in order to make clear 
the relevant notion of ‘form’ in formal arithmetic. With the game-
comparison he brings in the aspect of mathematics as activity, as operational 
practices (in opposition to mathematics as doctrines, laws, disciplines, theo-
ries), which is so important in the symbolic point of view. Thomae summa-
rized his standpoint as follows: 

The formal conception of numbers sets itself more modest limitations than 
does the logical conception. It does not ask, what are and what shall the num-
bers be, but it asks, what does one need about numbers in arithmetic. For the 
formal conception, arithmetic is a game with signs which one may call emp-
ty; by this one wants to say that (in the game of calculation) they have no 
other content than that which has been attributed to them concerning their 
behaviour with respect to certain rules of combination (rules of the game). 
Similarly, a chess player uses his pieces, he attributes to them certain proper-
ties which condition their behaviour in the game, and the pieces themselves 
are only external signs for this behaviour. To be sure, there is an important 
difference between the game of chess and arithmetic. The rules of chess are 
arbitrary, the system of rules for arithmetic is such that by means of simple 
axioms the numbers can be related to intuitive manifolds, so that they are of 
essential service in the knowledge of nature. – The formal standpoint relieves 
us of all metaphysical difficulties, this is the benefit it offers us.65 

                               
64 Letter to Frege of December 29, 1899, as excerpted by Frege in Frege (1980, p. 40). 
65 Quoted from Epple (2003, p. 301). 
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Thomae here begins by dissociating himself from the questions of the onto-
logical nature of numbers on the grounds that answers to these questions are 
not needed in arithmetic. The ontological issues arise in discussions of the 
logical or philosophical foundation of arithmetic, but not in arithmetic as a 
mathematical practice. And don’t we have to agree with Thomae here? What 
would be an example of a mathematical problem in arithmetic, be it in ele-
mentary arithmetic or in advanced research-arithmetic, for which the onto-
logical nature of numbers (as discussed by philosophers) would make a dif-
ference? 

In arithmetic, seen as a game with signs, the signs are said to be, in one 
sense, empty of content. But in another sense they do have content. They 
don’t have a content in the game that comes from explanations or transla-
tions given in mathematical prose (using the words ‘quantity’ and ‘magni-
tude’). The arithmetical calculus, like the game of chess, is autonomous. But 
the signs do have content in the calculus, namely the ‘content’ attributed to 
them concerning their function and behavior with respect to the rules of the 
calculus. It is this content that constitutes the forms of formal (or symbolic) 
arithmetic. These forms are not features of the signs as objects of visual per-
ception, they are rather forms of the use of signs.  

The words ‘sign’ and ‘symbol’ are often used as synonymous words. But 
here it is important to distinguish between a symbol as a form of use of a 
sign, and the ‘sign’ as the external and immediately perceivable mark for this 
form of use. The difference becomes clear in the game of chess comparison. 
By a chess piece we may mean a certain immediately perceivable visual 
object with a certain colour, shape and size that distinguishes it from other 
pieces in the game, but we also talk about a chess piece as an object with 
properties that condition its behavior in the game, i.e. as a piece with which 
you can make certain moves in the game but not others. The word ‘formal’ 
in Thomae’s “formal arithmetic” refers to the behavior of arithmetical 
‘chess-pieces’ in the latter sense.  

Thomae was not the only mathematician who used the word ‘formal’ in 
this way around the end of the 19th century. This raises of course the ques-
tion if the symbolic view of mathematics coincides with formalism. It is 
difficult to give a short answer to this question since the word ‘formalism’ 
has often been used in a superficial, pejorative sense (e.g. by Brouwer and 
Frege), sometimes even as a caricature of the symbolic view of arithmetic, 
such as, for instance, when it is said that a formalist considers arithmetic or 
geometry “as games with empty signs”. Note that Thomae hestitates in the 
quotation above about using the word ‘empty’. The symbols of his formal 
arithmetic are not empty; they have a content determined by the forms of 
their use – not by possible applications of the system, or by semantical ex-
planations.  

The mathematician Hermann Grassmann uses the words ‘form’ and ‘for-
mal’ in a way similar to Thomae’s in Grassman’s book Die lineale 
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Ausdehnungslehehre, published in 1844. The book begins with an introduc-
tion in which Grassmann gives an account of his conception of mathematics. 
He disassociates himself from the ontological conception of logic and math-
ematics by making a basic division of sciences in real (Reale) and formal 
(Formale): Thinking in the real sciences always takes place with respect to 
an independently existing subject-matter outside thinking. In mathematics, 
being a formal science, the subject-matter of thinking is posited by thinking 
itself and in a second act of thought it is made the object of study of mathe-
matics as a formal science. The object of study of pure mathematics is forms 
of thought (Denkformen). Pure mathematics is Formenlehere (doctrine of 
forms), says Grassmann. Now, if thinking is of a linguistic nature (which 
was also a common idea by this time); if thinking is operating with signs 
(including pictures and figures), this would mean that the Denkformen of 
pure mathematics are forms of the use of signs.66 

Hilbert comes close to Grassmann’s idea when he says about the ‘formula 
game’ of his proof theory:  

This formula game is carried out according to certain definite rules, in which 
the technique of our thinking is expressed. These rules form a closed system 
that can be discovered and definitively stated. The fundamental idea of my 
proof theory is none other than to describe the activity of our understanding, 
to make a protocol of the rules according to which our thinking actually pro-
ceeds. 67 

                               
66 With his ”Ausdehnungslehre” (or extensive, or geometric algebra) Grassmann initiated a 
new research orientation in modern symbolic mathematics, which would get many applica-
tions in theoretical physics. The following historical account comes from Wikipedia, the free 
encyclopedia under the title-word: ‘geometric algebra’:”GA [geometric algebra] in the sense 
used in this article was not developed until 1844, when it was used in a systematic way to 
describe the geometrical properties and transformations of a space. In that year, Hermann 
Grassmann introduced the idea of a geometrical algebra in full generality as a certain calculus 
(analogous to the propositional calculus) that encoded all of the geometrical information of a 
space. Grassmann's algebraic system could be applied to a number of different kinds of spac-
es, the chief among them being Euclidean space, affine space, and projective space. Following 
Grassmann, in 1878 William Kingdon Clifford examined Grassmann's algebraic system 
alongside the quaternions of William Rowan Hamilton. From his point of view, the quaterni-
ons described certain transformations (which he called rotors), whereas Grassmann's algebra 
described certain properties (or Strecken such as length, area, and volume). His contribution 
was to define a new product — the geometric product — on an existing Grassmann algebra, 
which realized the quaternions as living within that algebra. Subsequently Rudolf Lipschitz in 
1886 generalized Clifford's interpretation of the quaternions and applied them to the geometry 
of rotations in n dimensions. Later these developments would lead other 20th-century mathe-
maticians to formalize and explore the properties of the Clifford algebra. [...] Progress on the 
study of Clifford algebras quietly advanced through the twentieth century,  although largely 
due to the work of abstract algebraists such as Hermann Weyl [Brauer and Weyl (1935)] and 
Claude Chevalley. […] In physics, geometric algebras have been revived as a "new" way to 
do classical mechanics and electromagnetism, together with more advanced topics such as 
quantum mechanics and gauge theory. David Hestenes [Hestenes, and Sobczyk, (1984)] 
reinterpreted the Pauli and Dirac matrices as vectors in ordinary space and spacetime, respec-
tively, and has been a primary contemporary advocate for the use of geometric algebra. 
67 Hilbert (1927, p. 475). 
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A very pertinent formulation of the symbolic view of mathematics was given 
by the French mathematician and philosopher Luis Couturat in his book De 
l’infini mathématique (Paris, 1896 , p. 49). Like Thomae, Couturat also uses 
he game of chess comparison: 

A mathematician never defines magnitudes [or numbers] in themselves, as a 
philosopher would be tempted to do; he defines their equality, their sum and 
their product, and these definitions determine, or rather constitute, all the 
mathematical properties of magnitudes. In a yet more abstract and more for-
mal manner he lays down symbols and at the same time prescribes the rules 
according to which they must be combined; these rules suffice to characterize 
these symbols and to give them a mathematical value. Briefly, he creates 
mathematical entities by means of arbitrary conventions, in the same way that 
the several chessmen are defined by the conventions which govern their 
moves and the relations between them.68 

If formalism is a concern with form, and form is understood as in Thomae, 
Grassman, Couturat as forms of use of signs, as relating to the function and 
behavior of signs in a calculus, then clearly formalism is closely related to 
the symbolic view of mathematics. But in the philosophical discussion about 
formalism in the 20th century (a discussion which has been dominated by 
mathematical logic in its foundational status), formalism tends to be under-
stood against the background of the ontological view in which mathematical 
propositions are taken to have a descriptive content – a mathematical system 
or theory is seen as a body of truth, or a body of knowledge about some in-
dependently existing subject-matter. In this picture the aspect of mathemat-
ics as human activity, as operational practices, tends to disappear, and so 
does also the notion of a symbol as something else than a sign. A mathemati-
cal symbolism is often misunderstood as a system of notation with a natural-
istic conception of signs and expressions. As a result, formalism becomes a 
kind of caricature of the symbolic view. It is ‘formalism’ in that pejorative 
sense that Frege is attacking when he says: 

In order to produce it [an infinite series] we would need an infinitely long 
blackboard, an infinite supply of chalk, and an infinite length of time. We 
may be censured as too cruel for trying to crush so high a flight of the spirit 
by such a homely objection; but this is no answer.69 

Heine and Thomae made some less successful remarks that might seem to 
invite this objection. But it is doubtful if anyone has seriously held a formal-
ist view of mathematics that would make this remark into a fair objection. In 
Frege’s critique of the formalists, it is clear that he had an ontological con-

                               
68 Quotation in English from Bell (1937, p. 624). 
69Frege, (1960, p. 219).  
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ception of arithmetic which he never questions.70 He emphasizes arithmetic 
as a science (rather than as an activity or practice), and the subject-matter of 
this science is the abstract objects that are the ‘reference’ of the number 
signs. It is, for Frege, on the basis of our knowledge of the sense and refer-
ence of the number signs that the rules of arithmetic are justified. Wittgen-
stein’s remark about Frege’s critique of the formalists quoted in Section 5 
seems to me very much to the point. 

There is also a notion of formalism that has been called “Hilbert’s formal-
ism”, but this “formalism” is rather an unfair polemic picture of Hilbert’s 
views for which Brouwer was originally responsible. According to Georg 
Kreisel: “We note at once that there is no evidence in Hilbert’s writings of 
the kind of formalist view suggested by Brouwer when he called Hilbert’s 
approach “formalism”.71 This is to some extent an exaggeration. Hilbert nev-
er called himself a formalist, but some of his statements show that he was no 
doubt influenced by what was called the “formal approach” around the turn 
of the century. But Kreisel is certainly right in saying that the notion of “Hil-
bert’s formalism” is to a great extent a fabrication of Brouwer’s. It is not a 
very clear notion since Brouwer tends to put every view of mathematics that 
he dislikes or rejects under the label “formalism”. A more interesting view of 
Hilbert’s foundational work is given by Hermann Weil when he suggests a 
reading of Hilbert’s proof-theoretical program with its “formula game” as 
being a symbolic construction.72  

Frege’s and Brouwer’s critique of formalism manifests a blindness to-
wards the symbolic aspect of mathematics. This blindness is reinforced in 
the 1930’s through the notion of ‘logical syntax’ and the sharp division be-
tween syntax and semantics attached to it, which has become generally ac-
cepted and very influential in the literature of logic and analytic philosophy 
since the 1930’s. The crucial feature of syntax in this sense (not to be con-
fused with what Wittgenstein called ‘logical syntax’ in the Tractatus) is its 
naturalistic conception of language. The instigators of this syntax-
terminology, Carnap, Gödel and Tarski, were very explicit about its natural-
istic character. As already mentioned, Carnap said that “syntax, pure and 
descriptive, is nothing more than the mathematics and physics of lan-
guage”.73 This approach to language, in particular to the language of mathe-
matics, blocks the aspect of language that the game of chess comparison 
opens up, such as for instance the difference between sign and symbol. That 
mathematics is at bottom activity, operational practices, forms of use of 
signs disappears as something inessential.  

                               
70 Frege, (1960, pp. 182-233). 
71 Kreisel (1958, p. 346). 
72 Weyl (1927, pp. 136-141). 
73 Carnap  (1959,  p. 284).  
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Syntax, with the associated division between syntax and semantics, has of 
course been successful and influential for the invention of new mathematical 
theories of formal systems (where the words ‘form’ and ‘formal’ have the 
specific syntactical sense), theory of automata, applications in computer 
science, etc., but it is doubtful if this development has contributed to in-
creased rigor of ordinary mathematics. Hasn’t logical semantics, including 
logical model theory, on the contrary cemented the old ontological view of 
mathematics? 

Let me finally mention one prominent mathematician who explicitly 
called his own conception of mathematics formalism, in a sense that comes 
close to the symbolic conception of mathematics. It is Felix Hausdorff, who 
was working in set theory and is considered as one of the founders of topol-
ogy. His book Grundzüge der Mengenlehre, published in 1914 is often de-
scribed as a ground-breaking work in modern mathematics. But in the first 
decade of the 20th century Hausdorff expressed (in manuscripts he never 
published) a view of set theory as a symbolic system without an ontology. It 
was a view in sharp contrast to Cantor’s philosophical understanding of set 
theory. Hausdorff’s work falls within the rigorization movement around the 
beginning of the 20th century. We will return to Hausdorff in the next sec-
tion.  

The main point of this section has been to argue that an increased aware-
ness and use of the symbolic conception of mathematics, was one essential 
part of the rigorization of mathematics in the late 19th century.74 

                               
74 More examples in support of this claim can be found in Epple (2003). 
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11   Wittgenstein on calculus and 
mathematical ‘prose’. 

There are many examples of the prose/calculus distinction in the strict sym-
bolic point of view that Wittgenstein held, at least in the middle period,75 
when he spoke of mathematics as consisting of symbolic systems, games or 
calculi that are autonomous systems determined by rules for the operation 
and transformation of expressions. Again and again he warned about what he 
called the prose accompanying the calculus76 (the verbal readings in ordinary 
language of the signs and expressions of the calculus) – especially when this 
prose does not derive from some application of the calculus to something 
outside mathematics. 

If proximity to ordinary language was an essential feature of ancient 
Greek mathematics, Wittgenstein’s strict symbolic view of modern mathe-
matics is diametrically opposed to this feature. His attitude seems to have 
been that modern mathematics, despite great progress in the last two centu-
ries, has not yet found its true individuality or authenticity, but is still hold-
ing on to antiquated features of the Euclidian-Aristotelian tradition. 

He saw, in fact, prose accompanying the calculus as the main source of 
puzzles and confusion in the discussion of the foundations of modern math-
ematics. The following quotation from Philosophical Grammar is one of 
many passages where he makes this point: 

If you want to know what the expression “continuity of a function” means, 
look at the proof of continuity [of functions]; that will show what it proves. 
Don't look at the result as it is expressed in prose, or in the Russellian nota-
tion, which is simply a translation of the prose expression; but fix your atten-
tion on the calculation actually going on in the proof. The verbal expression 
of the allegedly proved proposition is in most cases misleading, because it 
conceals the real purport of the proof, which can be seen with full clarity only 
in the proof itself.77 

By the ‘Russelian notation’ he means the mathematical logic of Principia 
Mathematica, in which a formula such as (x) fx is translated and explained 
as the verbal sentence “There exists an object x which has the property f “, 

                               
75 See Stenlund (2012).  
76 PG, (p. 324).  
77 PG, (p. 369-370). 
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which we do understand as an English sentence (or a form of English sen-
tences). But this is a very vague sense of understanding, since it is based 
only on the doctrine of sentence construction of English, and that doctrine 
says nothing, or very little, about the use of the sentence and the contexts of 
its use. Does it mean the same when the variable x ranges over a finite do-
main, as when any number can be a value of the variable? Through mathe-
matical logic any proposition can be represented in the mathematical nota-
tion of modern logic, “and this makes us feel obliged to understand it. Alt-
hough of course this method of writing is nothing but the translation of 
vague ordinary prose.” (RFM p. 299). So one important example of ‘prose 
accompanying the calculus’ is the ordinary language expressions used in the 
translation of the signs and formulas of the predicate calculus into verbal 
language. 

In his Notebooks Wittgenstein said that “My whole task consists in ex-
plaining the nature of the proposition” (NB, p. 39). But it was clear to Witt-
genstein from the start that the propositions explained in the Tractatus do not 
include mathematical propositions. The propositions of the Tractatus express 
possible states of affairs about objects that are the substance of the world, 
but the statements of mathematics in the Tractatus do not express possible 
states of affairs about independently existing objects of a mathematical 
realm. A symbolic conception of arithmetic is present already in the Tracta-
tus. The opposite view in which mathematical and non-mathematical propo-
sitions are propositions in the same sense (which is the more or less estab-
lished view in the branch ‘mathematical logic and the foundations of math-
ematics’) is based on the similarities in the readings in “vague ordinary 
prose” of mathematical and non-mathematical statements. 

If persuasion was ranked above precision in Greek mathematics, it is clear 
that Wittgenstein wanted to reverse this ranking, provided that ‘precision’ 
means conceptual precision. This precision is not achieved by merely chang-
ing notation, i.e. using mathematical notation that is translated into “vague 
ordinary prose”. Such a change may result rather in a deceitful feeling of 
persuasiveness about an achieved precision.  

One difficulty with understanding the last quoted passage is Wittgen-
stein’s use of the word ‘proof’. Many of Wittgenstein’s examples of proofs 
in RFM are really only calculations, while the established use of the word 
‘proof’ among philosophers, logicians as well as professional mathemati-
cians is still following the Aristotelian-Euclidian tradition, and then a proof 
tends to be contrasted with a calculation (Poincaré calls calculation ‘verifica-
tion’ and contrasts verification with proof). A proof in the Euclidian sense is 
essentially expressed in verbal language, in mathematical prose. It consists 
of a sequence or a pattern of propositions, related to one another by rules of 
inference. This conception of a proof was questioned in the Tractatus on the 
basis of the distinction between saying and showing, which was one of Witt-
genstein’s tools in the Tractatus for clarifying the logical structure of lan-
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guage in general from a more strict symbolic point of view in which the no-
tions of form and operation are essential. A form as Wittgenstein uses this 
word (even in his later philosophy), cannot be described: it can only be pre-
sented. (PR, p. 208). A form is not a property of a substrate. So there is a 
problem here, for instance, with the form of ‘actually infinite sets’. How can 
there be actually infinite sets if their form cannot be presented? They must 
presuppose an “underlying imaginary symbolism” (PG, 470)? The idea of 
mathematical entities outside any symbolism was incomprehensible to Witt-
genstein’s symbolic view of mathematics. It would perhaps be comparable to 
the idea of (partly) human-like beings, having no bodies, like spirits or an-
gles.  

It was a fundamental idea about arithmetic in the Tractatus that the logi-
cal forms of the propositions of language have an arithmetical structure. The 
logical forms are formal or internal properties and relations that show them-
selves in the symbolism, in how they are generated by the operations in the 
universal calculus of propositions in the Tractatus. 

The concept of an operation and a series generated by successive applica-
tions of an operation is the basis for the Tractatus’ conception of arithmetic. 
A number is explained as a specific kind of symbol, namely as an exponent 
of an operation. (TLP 6.021). 

In the change that takes place in Wittgenstein’s thinking in the 1920’s, the 
universal calculus of the Tractatus loses its privileged position, and becomes 
one calculus among many others. But what does not change is his interest in 
mathematics as methods and techniques for operating with and transforming 
expressions and symbols. It is against this background that Wittgenstein 
prefers to talk about a mathematical system as a calculus, rather than as a 
theory about something, or a deductive system of propositions having de-
scriptive contents.  

So when Wittgenstein is questioning the use of prose in mathematics as 
being a source of confusion, he is questioning the (non-symbolic) conception 
of proposition and proof with roots in the Aristotelian-Euclidian tradition. 
Many of the verbal expressions that belong to the prose accompanying the 
calculus have their origin in philosophy, not least in the Aristotelian-
Euclidean tradition. 

In the following remark Wittgenstein suggests a method for separating 
calculus and (inessential) prose: 

In set theory what is calculus ought to be separated from what claims to be 
(and of course it cannot be) theory. The rules of the game have thus to be 
separated from inessential statements about the chessmen. 

Frege replaced those signs in Cantor’s alleged definitions of “greater”, 
“smaller”, “+”, “-“, etc., with new words, to show that here there wasn’t any 
real definition. In the same way, in all of mathematics one could replace the 
usual words, especially the word “infinite” and its cognates, with entirely 
new and hitherto meaningless expressions, in order to see what the calculus 
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with these signs really achieves and what it doesn’t achieve. If the idea was 
widespread that chess gave us information about kings and castles, I would 
propose to give the pieces new shapes and different names, so as to demon-
strate that everything belonging to chess has to be contained in the rules.78   

What such an investigation of the word “infinite” would reveal, for instance, 
is that there is often a confusion of the mathematical sense of ‘infinite’ and 
the use of the word ‘infinite’ as a superlative for something finite that strikes 
us as enormously large, as when we say “The number of trees along the road 
looks infinite”, or “The number of stars in the sky is infinite”. And then we 
are in danger of accepting the picture of an infinite sequence in mathematics 
as if it were an extremely long finite sequence, as if an infinite sequence in 
mathematics has an end, but one that it is ‘infinitely far away’. But the ex-
pression ‘infinitely far away’ is not a measure of a distance or a length, it is a 
superlative we use about extremely large finite distances. That sense of ‘in-
finite’ does not achieve anything in the calculus of set theory. 

The separation of calculus and prose is an important part of Wittgen-
stein’s conceptual (or grammatical) investigation. And it is a difficult part 
since we do not survey and are not aware of the ways in which the use of 
‘prose-expressions’ in a mathematical system affects our understanding of 
the system as a whole. 

In the late half of the 19th century it became more and more obvious that 
the formal deductive structure in Euclid’s elements was not really ‘formal’. 
Many arguments did depend on the prose-meaning of words (such as for 
instance the word ‘between’). It was clear that the ‘formal deductive’ style in 
Euclid also had a tacit rhetorical purpose. 

This is what Hilbert’s axiomatization of geometry tried to correct. But 
Hilbert still followed the tradition in viewing pure geometry as a theory 
about something (about some ‘unspecified things’, as he expressed it), and 
he was led to the idea of the axioms as propositions defining the notions 
involved. Einstein saw the possibility of viewing geometry as a pure calcu-
lus, an autonomous system (in which the axioms are rules for the operation 
with signs and figures), and which, as a pure calculus, is not ‘about anything 
outside the calculus’, but which can be applied to things in nature, for in-
stance, in the description of physical space.79  

One of the first mathematicians who clearly expressed the view of geome-
try as an autonomous system, independent of intuition or any empirical ba-
sis, was Felix Hausdorff. In a manuscript with the title Formalism from 
around 1904, he says about mathematics, and geometry in particular, that 
“The most important and fundamental task of modern mathematics has been 
to set itself free from this dependency [on intuition and empirical bases], to 

                               
78PG, (p. 468-469). 
79 Einstein’s theory of relativity was no doubt a source of inspiration for Wittgenstein in the 
middle period (RFM VI, § 28). See also Stenlund (2012, p. 149-152). 
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fight its way through from heteronomy to autonomy.”80 Leo Corry summa-
rizes Hausdorff’s view as follows: 

This autonomy, so fundamental for the new view of mathematics predicated 
by Hausdorff and widely adopted later on as a central image of twentieth-
century mathematics, was to be attained precisely by relying on the new con-
ception of axiomatic systems embodied in GdG [Hilbert’s Grundlagen der 
Geometrie]. […] Pure mathematics, under this view, is a ‘free’ and ‘autono-
mous’ discipline of symbols with no determined meaning. Once a specific 
meaning is accorded to them, we obtain ‘applied’ mathematics. Intuition 
plays a very important heuristic and pedagogical role, but it is inexact, lim-
ited, misleading and changing, exactly the opposite of mathematics.81 

In the beginning of the 1930th Wittgenstein was, no doubt, influenced by this 
modernistic “central image of twentieth-century mathematics”. The “inexact, 
limited, misleading, and changing” intuition mentioned here comes to ex-
pression in what Wittgenstein calls ‘prose’.  

But there is also a philosophically important difference between a profes-
sional mathematicians’ attitude (such as Hausdorff’s) to the new axiomatic 
method and Wittgenstein’s. Wittgenstein never saw it as his concern to ex-
press opinions about the final or ideal shape of geometry and arithmetic as 
disciplines of the science of mathematics, which was a natural concern for a 
professional mathematician for whom mathematics is research-mathematics 
and higher mathematical education (while the rest is ‘trivial mathematics’). 
For Wittgenstein elementary mathematics, seen as established practices, 
methods and techniques of a wider circle of mathematical agents than the 
circle of professional mathematicians, is the rock-bottom of mathematics. 
This is also a reason why the word ‘calculus’ is more appropriate than the 
word ‘discipline’ for Wittgenstein. 

This difference reflects Wittgenstein’s attitude to the idea of “the founda-
tions of mathematics”. The foundations that are Wittgenstein’s concern are 
already there in the established mathematical activities and practices and the 
task is to get clear about it – and that reflection over elementary mathemati-
cal practice is not a mathematical task. The task is not to invent a foundation 
for mathematics through mathematical construction (such as Principia 
Mathematica or axiomatic set theory), or to propose a mathematical research 
program (such as the intuitionistic constructivization of mathematics or Hil-
bert’s proof-theory). The roots of the worries about the foundations of math-
ematics are according to Wittgenstein our lack of a clear view of the work-

                               
80 Quoted in Corry (2006, p. 148) 
81 Corry (2006, p. 148-149, my emphasis). It is interesting that Hilbert was less inclined to 
view his Grundlagen der Geometrie as the paradigm for a formalistic view of mathematics, of 
geometry in particular, than Einstein and Hausdorff and many others. As Corry makes clear, 
Hilbert often questioned the autonomy of geometry and claimed that geometric knowledge 
has an empirical basis.  
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ings of the mathematical symbolism (caused partly by the role of prose in 
mathematics). And this lack of a clear view manifests itself in the problems, 
or puzzles (as he calls them) he is concerned with in his writings and lectures 
on the foundations of mathematics. This is one reason why Wittgenstein’s 
style of writing about the foundations of mathematics is so different from the 
normal styles of writing in this branch. In order to accentuate that he is not 
doing ‘foundations of mathematics’ in the mathematician’s sense, he points 
out in the first lecture of the series of lectures he gave on the foundations of 
mathematics in Cambridge in 1939 that “I am going to talk about the inter-
pretation of mathematical symbols, but I will not give a new interpretation.” 
And about the puzzles he will deal with he says that “all the puzzles I will 
discuss can be exemplified by the most elementary mathematics.”82  

Wittgenstein is very clear about his attitude to the foundations of mathe-
matics in the following remarks: 

What does mathematics need a foundation for? It no more needs one, I be-
lieve, than propositions about physical objects – or about sense impressions, 
need an analysis. What mathematical propositions stand in need of is a clari-
fication of their grammar, just as do those other propositions. 

The mathematical problems of what is called foundations are no more the 
foundation of mathematics for us than the painted rock is the support of a 
painted tower. (RFM, p. 378) 

This remark, and similar critical remarks about mathematical logic and the 
foundations of mathematics, may make it look as though Wittgenstein’s 
philosophy of mathematics is exclusively critical and negative. But the posi-
tive message is Wittgenstein’s symbolic conception of mathematics which 
he did not launch as a new branch of the foundations of mathematics, since it 
already existed within mathematics since many centuries and only needed to 
be clarified. The symbolic view is an important feature of the most progres-
sive development of the mathematics created in the last three centuries up to 
and including the mathematics of quantum physics (as I shall argue in the 
last section). But it needs to be made clear since it is obscured by various 
other trends – such as mathematical logic in its foundational status. Wittgen-
stein could not help seeing that in the light of his symbolic conception, 
mathematical logic in that rȏle stands out as a remnant from an antiquated 
ontological conception of mathematics of the past.83  

Wittgenstein tended, however, to exaggerate the calculus/prose distinction 
in the beginning of the thirties, when he was inclined to see mathematics as 

                               
82 Diamond (1976, p. 13, 14). 
83 In RFM, (p. 300) Wittgenstein says: “ ‘Mathematical logic’ has completely deformed the 
thinking of mathematicians and of philosophers, by setting up a superficial interpretation of 
the forms of our everyday language as an analysis of the structures of facts. Of course in this 
it has only continued to build on the Aristotelian logic.” 
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pure calculus.84 Maybe this exaggeration was an effect of how Wittgenstein 
was influenced by what Corry called “a central image of twentieth-century 
mathematics” in the quotation given before. In any case, there is a change on 
this point in Wittgenstein’s thinking in the middle of the 30th when a more 
anthropological point of view enters in connection with his work on rule-
following and as a result of criticism by Piero Sraffa. Wittgenstein realized 
that mathematics is not a sharply delimited field. The use of mathematical 
signs in applications outside mathematics contributes to the meaning of 
mathematical signs.85 But the calculus/prose distinction is still important in 
his later work, though in a less dogmatic sense. Similarities between state-
ments in prose or in verbal language are still in many cases the source of 
false or misleading analogies. 

Let us look at one of Wittgenstein’s examples that shows how prose, or 
verbal language, may mislead us into (or may seem to justify) a belief in an 
ontological realm of mathematical objects, having independent existence. 
Consider the two sentences 

A human being has two eyes 

and 

A quadratic equation has two roots86 

Due to the similarity in the verbal form of the two statements, it may be 
tempting so say: as the first proposition is about objects outside mathematics 
(eyes of a human being), so the second is about independently existing 
mathematical objects (numbers that are roots of a quadratic equation). And 
we would be led to an ontological realm of numbers. 

But looking at the concept of the roots of equations we see that numbers 
that are roots of quadratic equations do not exist independently of mathemat-
ics, but only in the context of the arithmetical-algebraic symbolism. The 
roots of an algebraic equation of the form x2 + ax + b = 0 are given by two 
different algebraic expressions. (This holds despite the fact that any equation 
of the form (x – a)2 = 0, with a > 0 has, in a sense, only one root, but as the 
concept of the roots of a quadratic equation is determined in the algebraic 
symbolism, this means that the two roots of these quadratic equations happen 
to coincide.) 

                               
84 In PG (p. 468), written in the beginning of the 30th, he says: “Mathematics consists entirely 
of calculations. In mathematics everything is algorithm, and nothing is meaning, even when it 
doesn’t look like that because we seem to be using words to talk about mathematical things. 
Even these words are used to construct an algorithm”. 
85 In RFM (p. 257, written in 1942) he says:”It is the use outside mathematics, and so the 
meaning of the signs, that makes the sign-game into mathematics.”  
86Wittgenstein discusses a similar example in Diamond (1976, p. 150). 
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It is the similarity in the verbal form of the statements of number outside 
and inside mathematics that makes it appear as though they were results of 
“applying mathematics” in the same sense. That is the false analogy. The 
decisive thing is that it is only the application of arithmetic to something 
independently given outside mathematics (such as eyes of people) that de-
serves to be called applied mathematics, and which is opposed to pure math-
ematics. The statement “A quadratic equation has two roots” is a statement 
of pure mathematics that is based on an algebraic proof, and not on counting 
objects in some realm outside the arithmetical-algebraic symbolism.  
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12   Leibniz and blind thought 

There is a similarity between Wittgenstein and Leibniz, concerning the dif-
ference between calculus and prose. Recall the quotation above when Witt-
genstein says: 

In set theory what is calculus ought to be separated from what claims to be 
(and of course it cannot be) theory. The rules of the game have thus to be 
separated from inessential statements about the chessmen. 

He continues by suggesting a method for making the separation between the 
role of the word ‘infinite’ as a piece in the game or calculus of set theory, 
and its role as a prose expression with a ‘linguistic meaning’ of its own in 
statements about the ‘chess-pieces’, statements that purport to refer to some-
thing independently existing beyond the calculus, something that set theory 
is taken to be a ‘theory about’.87  

Leibniz was concerned with a similar problem with his infinitesimal cal-
culus when he was criticized for not making clear what the infinitesimal 
calculus ‘is about’. By not distinguishing calculus and mathematical prose 
the critics were misled by the prose into seeing the infinitesimal calculus as a 
theory about something, such as infinitesimal magnitudes. Leibniz reacted to 
criticisms of the differential calculus for having an unclear foundation, and 
for the uncertain status and nature of the infinite and the infinitesimals by 
saying that “…it is unnecessary to make mathematical analysis depend on 
metaphysical controversies or to make sure that there are lines in nature 
which are infinitely small in a rigorous sense in contrast to our ordinary 
lines, or as a result, that there are lines infinitely greater than our ordinary 

                               
87 The prose meaning of ‘infinite’ often invites a (false) analogy between an infinite sequence 
and an extremely large finite sequence – as if an extremely long sequence of numbers of the 
form 1, 2, 3, …, n  is ‘closer to’ or ‘more similar to’ the sequence of all natural numbers than 
a short finite sequence of this form. It is on the basis of this analogy that it seems to make 
sense to conceive of the set of natural numbers as an extension (in which the generation of 
numbers by iteration of the successor operation “has been completed”, i.e. carried out to the 
end which the sequence of naturel numbers does not have!). It seems to me that the normal 
meaning (for most logicians) of a proposition beginning with a universal quantifier which 
ranges over the set of natural numbers N, is to think of N as an extension. 

The mathematician Niels Henrik Abel was very dissatisfied with the theory of infinite se-
ries of his times. He complained that “One applies all operations to infinite series as though 
they were finite, but is that permissible? Hardly. – Where is it proved that one gets the differ-
ential of an infinite series by differentiating each term?” (Quoted in Lützen, 2003, p. 177).  
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ones, yet with ends.”88 As Krämer points out89: “Leibniz emphasized that the 
inner coherence of his calculus does not depend on the metaphysical dispute 
how to interpret the differential symbolism. To calculate correctly does not 
presuppose an answer to the question of whether an infinitesimal magnitude 
exists as an actual or as a potential infinity.” Herman Weyl makes a similar 
point: “… many of the Leibnizian statements sound as if his view of the 
infinitely small is that it […] cannot be given a reasonable contentual inter-
pretation, yet that nonetheless all things stand as if it [the infinitely small] 
did actually exist. All that matters for the mathematicians is that it fits into 
the calculus of signs without contradiction.”90  

One of Leibniz’ great achievements was his clarification of the notion of 
calculus on the basis of the distinction he made between two kinds of think-
ing: symbolic or blind thought, and intuitive thought. ‘Intuitive thoughts’ is 
what Leibniz often refer to as ideas. Starting out from limitations of human 
mental capacities, he explains the distinction as follows: 

…especially in longer analysis, we do not intuit the entire nature of the sub-
ject matter at once but make use of signs instead of things, […] Thus when I 
think of a chiliogon, or a polygon of a thousand equal sides, I do not always 
consider the nature of a side and of equality and of a thousand (or the cube of 
ten), but I use these words, whose meaning appears obscurely and imperfect-
ly to the mind, in place of ideas which I have of them, because I remember 
that I know the meaning of the words but that their interpretation is not nec-
essary for the present judgment. Such thinking I usually call blind or symbol-
ic; we use it in algebra and in arithmetic, and indeed almost everywhere. 
When a concept is very complex, we certainly cannot think simultaneously of 
all the concepts which compose it. But when this is possible, or at least inso-
far as it is possible, I call the knowledge intuitive.91 

Here Leibniz goes against Descartes, who emphasized the intuition of clear 
and distinct ideas at every step in thought and held that thinking of a certain 
complex concept presupposes permanent intuitive awareness of the concepts 
that compose it. 

If intuition is ‘the mind’s eye’ we understand Leibniz’ choice of the ex-
pression ‘blind thought’ for symbolic thought in which intuition is not in-
volved. Symbolic thought occurs, as Leibniz says, ‘almost everywhere’ but 
the paradigm cases are the calculi of arithmetic and algebra, such as operat-
ing in the decimal place-value system for numbers. This wide use of symbol-
ic thought is similar to Wittgenstein’s wide use of the notion of calculus to 
bring out features of language, but which nevertheless has the calculi of 
arithmetic and algebra as paradigm cases. A crucial thing about a calculus, 
                               
88 Loemker (1969, p. 542-543). 
89 Krämer (1996, p. 85). 
90 Weyl (1997, p. 139). Ishiguro (1990, Ch V), gives a very penetrating account of Leibniz’s 
notion of the infinitesimal. 
91 Loemker (1969, p. 292). 
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and therefore of symbolic thought, is that its structural features, the forms of 
its signs and expressions, are tied to the expressions as objects of visual per-
ception, and not to a verbal reading of the expressions as in the rhetorical 
practices of Ancient mathematics. 

One might think that Leibniz notion of intuition and intuitive thought cor-
responds to the content which comes to expression in what Wittgenstein 
calls prose, or mathematical prose. But that is not the case. There is, as far as 
I can see, no counterpart in Wittgenstein thinking to Leibniz’s ‘intuition’. It 
is a notion which seems to have its source in Leibniz’s metaphysical ideal-
ism. But as Esquisabel has pointed out, Leibniz suggests two different kinds 
of blind thought.92 In addition to the blind thought that takes the operational 
practices of arithmetic and algebra as paradigm cases and which Esquisabel 
calls symbolic blind thought, Leibniz recognizes certain contexts, in which 
the signs are words or sentences of ordinary language and where there is 
non-intuitive thinking that involves a certain comprehension of linguistic 
meanings of words and sentences, although it is often confused, vague or 
even erratic. Esquisabel calls this kind of blind thought verbal blind thought 
and he recognizes it’s occurrence as follows: 

This is the case fundamentally when we appeal to ordinary language in eve-
ryday life in our social interchanges or in our meditation. In such situations 
we face another form of blind thought that is characterized by the fact that we 
have a vague and confused comprehension of the meanings of words or sen-
tences, with no possibility of better specifying that meaning. Thus, our mind 
moves so to say in a milieu of diffused linguistic comprehension in which 
meaning cannot be established univocally and firmly.93  

Leibniz mentions this verbal blind thought in connection with problems 
arising in the interpretation of biblical texts when questions about the truth 
of faith arise, questions that may be subjected to a variety of interpretations 
that can be mutually incompatible. Meanings in verbal blind thought are 
loaded with a high degree of confusion and uncertainty, and for this reason it 
involves according to Leibniz a severe danger for philosophical thinking, 
namely the threat of talking equivocally and metaphorically about things, 
about which we have no genuine understanding. 

Wittgenstein recognized much the same dangers in the use of prose, in 
particular in mathematical prose, so it seems to me that the distinction be-
tween symbolic blind thought and verbal blind thought in Leibniz’s philoso-
phy, is a clear forerunner of the middle period Wittgenstein’s distinction 
between calculus and prose. 

Let us take a look at important features of the algebraic symbolism, in or-
der to get closer to the roots of the calculus/prose distinction. As Krämer 

                               
92 Esquisabel (2012). 
93 Esquisabel (2012, p. 16). 
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points out, through the algebraic symbolism of Vieta, a new kind of writing 
was introduced, a kind of writing that speaks to the eyes and not to the ears.94 
The essential feature of the algebraic signs is their visual, graphical form. 
This form is not given through verbal descriptions, definitions or ‘rules of 
formation’; the form of a sign is basically given by being shown or present-
ed. 

For alphabetical writing, on the contrary, there is a transition to spoken 
language. Alphabetic writing is a sort of representation in visual space of 
temporal sequences of spoken language. Every letter has a characteristic 
sound. Learning to read alphabetic text involves learning not just what the 
letters look like but also how they sound. Every word has a pronunciation 
and each sentence has a reading. Understanding alphabetic writing, you have 
to be able to read the written text aloud, and hear what is expressed in it. 

The letters A, B, C,… are used by Vieta in his algebraic symbolism as 
variables or parameters, but the characteristic sounds of these letters are 
completely irrelevant in the algebraic symbolism of his analytical art. 

But even algebraic signs have verbal readings or readings in mathematical 
prose, these readings are, however, in general irrelevant and often incompre-
hensible if they are not given together with the algebraic sign and a stipula-
tion of the form: “An expression of this form is what we will call so and so”. 
It is the visual form of the algebraic signs that give sense through stipulation 
to these verbal readings, and not the other way around. Consider for instance 
the sign 

a2 

with the verbal reading “a raised to 2”.  There is nothing in this verbal 
phrase, taken by it-self that tells us that this sign must look exactly like this: 
a2. So the meaning of the phrase “a raised to 2” is determined by the stipula-
tion that this graphical form is what we shall call “a raised to 2”. The point 
of having the verbal readings of algebraic signs is that it facilitates commu-
nication. A teacher who is demonstrating how solve a quadratic equation on 
the blackboard for his students, will use this verbal reading of the algebraic 
symbols in addressing the students. But if this teacher had solved the same 
equation for himself on paper, he would not have said a word but just calcu-
lated.  

So let me summarize: Algebraic writing is not based upon a transition 
from written to spoken language or conversely (as in the case of alphabetic 
writing). It speaks directly to the eye. The algebraic sign is a visual, graph-
ical structure which is immediately accessible to the human eye. The form of 
a sign is given by it being shown or presented. 

                               
94 Krämer (1996, p. 84) 
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Signs in this sense was, it seems to me, what Leibniz meant by charac-
ters. Leibniz talks about the signs of his calculi as characters. He says, for 
instance: 

The human mind cannot advance far in reasoning without resorting to charac-
ters. And characters, when they are adequately chosen, have this marvellous 
property: they leave so to say visible marks of our thoughts on paper, and 
[thus] we provide ourselves with the means of being infallible.95 

Another notion is that of an algebraic symbol (which must not be confused 
with an algebraic sign). The important thing here is that the algebraic sym-
bolism is an operative symbolism. A symbol is determined by how we oper-
ate with the sign for it. Or, as Wittgenstein expresses his concept of a symbol 
in the Tractatus: 

In order to recognize the symbol in the sign we must consider the significant 
use. (T 3.326) 

 
Consider for instance the rule 

a2 = a × a 

which is one of the rules that determines the sign ‘a2’as a symbol. By this 
rule it is connected to the rules for multiplication. 

When the rules for operating with the signs in a symbolism are stated only 
in terms of signs as visual structures (characters) without any use of prose, 
then we have what Leibniz called a calculus. Leibniz says: 

Calculus is […] operation by means of characters, which takes place not only 
in quantity, but also in all other reasoning.96 

Typical examples of calculi in this sense, according to Leibniz, are operating 
with ciphers in the algorithms for addition, multiplication, subtraction, divi-
sion in the decimal place-value system. 

Leibniz had the idea of a comprehensive system, a Universal Characteris-
tic in which verbal language has been made superfluous. In that system truth 
has been reduced to correctness of calculation. 

We do not believe in the possibility of such a universal calculus, but not 
so much because of the incompleteness and undecidability results in modern 
mathematical logic, but rather because, as times have changed, we can’t 
share Leibniz’s optimistic rationalism.  

                               
95 Quoted in Esquisabel (2012, p. 23). 
96 Quoted in Esquisabel (2012, p. 23). 
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It would be a mistake to speak about the signs of the algebraic and arith-
metical symbolisms (including Leibniz’s characters) as “syntactical objects” 
as the word “syntax” has come to be used in the wake of Gödel, Tarski and 
Carnap, when syntax is contrasted with semantics and a new technical sense 
of metamathematics, formalization, formal system, etc., was introduced. In 
this conception, which was based on a naturalistic conception of language, 
syntactical objects are mathematical entities. To transform the signs in the 
arithmetical symbolism, for instance, into syntactical objects is the first step 
in the formalization of arithmetic . It is to give a mathematical representa-
tion of the signs (that are given as visual structures) using the mathematical 
concept of a finite sequence in stating “rules of formation” for numerical 
signs and expressions. It is important to realize that formalization in this 
sense is applied mathematics. As I have pointed out before, Carnap was well 
aware of this and he states this naturalistic view of language explicitly in his 
book The Logical Syntax of Language. Through formalization in this sense, a 
mathematical structure is built into the syntax of a formal system, and it is 
this structure that is used in the so-called arithmetization of syntax which 
was an important method in Gödel’s work. Even if a syntactical object is a 
finite object in the mathematical sense, it may be too complex to be a struc-
ture in visual space that can be perceived by the human eye. 

Hilbert’s notions of formulas, proofs etc. was different. He states explicit-
ly in explaining his proof theory that “A proof is an array that must be given 
as such to our perceptual intuition;”97  

The syntactical objects, in Carnap’s sense, are not “prior to mathematical 
thought” (to use an expression of Hilbert’s), they are the result of mathemat-
ical construction. 

It is interesting to compare what I have said about algebraic signs as visu-
al structures perceivable by the human eye, with what Hilbert says about 
what he calls die finite Einstellung. This is what he says in an English trans-
lation of the article Die Grundlagen der Mathematik from 1927. 

as a condition for the use of the logical inferences and the performance of 
logical operations, something must already be given to us in our faculty of 
representation [in der Vorstellung], certain extralogical concrete objects that 
are intuitively [anschaulich] present as immediate experience prior to all 
thought. If logical inference is to be reliable, it must be possible to survey 
these objects completely in all their parts, and the fact that they occur, that 
they differ from one another, and that they follow each other, or are concate-
nated, is immediately given intuitively,[…] And in mathematics, in particular, 
what we consider is the concrete signs themselves, whose shape, […] is im-
mediately clear and recognizable. 98 

                               
97 Hilbert  (1927, p. 465). 
98 Hilbert (1927, pp. 464-465. my emphasis). 
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Hilbert repeats this statement of die finite Einstellung, in many of his papers 
on the foundations of mathematics from the beginning of the 1920’s to the 
beginning of the 1930’s. And he repeats it using almost the same words, 
which indicates that it was a deep and strong conviction. Hilbert, unlike Car-
nap, did not have a naturalistic conception of signs, but rather a sort of phe-
nomenological view of signs. 

A characteristic feature of Hilbert’s philosophical statement of the finite 
Einstellung, is that he is standing outside mathematics when he states it. He 
is looking at mathematical sign-language from the outside, and he explicitly 
calls his perspective a philosophical view. He does not use mathematical 
symbolism or concepts in what he says about signs, for instance 

But when he passes over to the proof-theoretical work, he places himself 
inside mathematics. But then die finite Einstellung turns into something else 
than the philosophical perspective it was from the beginning. It turns into a 
mathematical concept within a classification of methods of proof inside 
mathematics. He distinguishes between finite and transfinite methods, for 
instance. Most of the features he ascribes to the “concrete signs that are intu-
itively present as immediate experience” have somehow disappeared, since 
he is now concerned with mathematical objects and methods. For instance, 
the ‘part-whole structure’ of the immediately recognizable objects (signs) of 
the finite Einstellung is not the same structure as the imposed part-whole 
structure of the numerical terms and formulas in formalized arithmetic. It is 
no longer clear how the details in his statement of the finite Einstellung in-
fluences the proof-theoretical work. Even Hilbert’s distinction between real 
and ideal mathematical statements seems to be based on a mathematical 
conception of finitary proof and reasoning. It is not clear how the notion of 
the ‘concretely finite’ of the finite Einstellung, (which is bounded by human 
perceptual capacities), can justify Hilbert’s finitary mathematical methods of 
proof, which according to Hilbert “includes recursion and intuitive induction 
for finite existing totalities”.99 Hilbert points out, for instance, that “The as-
sertion that all the objects of a finite existing surveyable totality possess a 
particular property is logically equivalent to a conjunction of several indi-
vidual assertions;”100 But what shall we say if such a totality is so large that it 
is not surveyable, but still finite? Well, then we are no longer talking about 
the ‘concretely finite’, but about mathematical finitude. 

It seems to me that this kind of gap between the ‘concretely finite’ of the 
finite Einstellung and the normal mathematical notion of the finite manifests 
a serious difficulty in Hilbert’s program. The difficulty is due, it seems to 
me, to Hilbert’s underrating of the conceptual importance of the operative 
symbolism of arithmetic. Note that in his statement of the finite Einstellung 
he talks about signs but never about the use of signs. 

                               
99 Hilbert (1923a, p.1139). 
100 Hilbert (1922a, p. 1122). 
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In Hilbert’s paper (1922a, p. 1122), he ends the statement of the finite 
Einstellung by saying: “In the beginning was the sign.” And then he goes on 
to “explain the numbers”, by saying: “The sign 1 is a number. A sign that 
begins with 1 and ends with 1, and such that in between + always follows 1 
and 1 always follows + is likewise a number.”  

What Hilbert should have said is this:  

In the beginning was the use of signs. 

A written mark or figure becomes a sign when it has got a use as a sign. If 
Hilbert had said “In the beginning was the use of signs”, he could have con-
tinued: The use of signs creates symbols such as the numbers, and the suc-
cessor-operation. The symbol 1 is a number. The symbol ‘+ 1’ is the succes-
sor-operation: if n is a number, then n+1 is (the next) number in the series of 
natural numbers. 

The German philosopher Alois Müller criticized Hilbert for his talk about 
signs having no meaning.101 As a result of this criticism, Hilbert changed his 
terminology. He uses the word numeral (Ziffer) or number-sign instead of 
sign. So now the “explanation of numbers” reads: the numeral 1 is a number, 
and numerals of the form 1+1, 1+1+1, etc. are numbers. This was, it seems 
to me, an unfortunate decision since we certainly want to distinguish be-
tween numerals and numbers, as we must distinguish between signs and 
symbols. Hilbert’s decision manifests ignorance of the operational aspect of 
the arithmetical symbolism, where numbers and other symbols are constitut-
ed.  

That Hilbert wanted to limit himself to ‘surveyable’ totalities in talking 
about all objects of a totality, is connected with the concrete sense of finitude 
of the finite Einstellung, which is subject to the human capacity to survey a 
totality of objects. But as a mathematician, Hilbert (and other proof-
theorists) tended to find this restriction ‘troublesome’. The mathematics of 
proof-theory runs smoother without it. As Mancuso has pointed out, there is 
a clear change of emphasis concerning the sense of the word ‘finite’ in Hil-
bert’s writings during the 1920’s.102 The mathematical sense of the word 
becomes more important, even if Hilbert never abandoned the philosophical 
view of the finite Einstellung. I think that there is a conflict here in Hilbert’s 
thinking that was never resolved. Hilbert wanted the two senses of ‘finite’ to 
be to a great extent one and the same, but they are essentially different. One 
of them has to do with the human capacity to perceive finite structures in 
visual space, the other is the pure mathematical notion of finitude (of the 
calculus of finite sets and sequences, for instance). It is even misleading to 
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think of the latter notion of finitude as an extension of the former. They are 
different concepts.103  

What is the reason for Hilbert’s ignorance of the use of signs, of the rules 
for the use of signs in the operative symbolism in arithmetic? I think it has to 
do with his vision of the essence of mathematics as captured in formalized 
mathematics, which is a vision of something static and completed, as for 
instance when he says “mathematics proper, or mathematics in the strict 
sense becomes a stock of provable formulae.”104 Mathematics is seen as 
consisting essentially of the proved theorems, something completed, and not 
of the activities and on-going operational practices where mathematical 
problems are solved. 

In formalized mathematics the theorems are formulas with readings in 
mathematical prose and Hilbert seems to have had very great confidence in 
the understanding that is based on these prose-readings. I see this confidence 
as a part of his attitude to accept classical mathematics essentially as it 
stands (except that its consistency has to be established). And his confidence 
in the (passive) mathematical prose tends to push aside the activity aspect of 
mathematics, and to block seeing the importance of the operative symbol-
ism. 

It is interesting that Leibniz main motivation for his symbolic approach is 
connected with the limitations of the human mind that we find in Hilbert’s 
finite Einstellung, such as for instance the limited human capacity to survey 
a totality of objects. Leibniz says 

For example, we often grasp a number, however large, all at once in a kind of 
blind thought, namely when we read chiphers on paper which not even the 
age of Methusela would suffice to count explicitly.105 

I suppose that what Leibniz has in mind here is, for instance, a symbol or 
number such as  

1248 

In understanding this number (in the decimal place-value system), we have 
(in general) no intuitive awareness of the individual numbers that we have to 
go through in counting from 1 up to this number. The thought of the number 
1248 is, what Leibniz calls a symbolic or blind thought. 
In another context Leibniz says: 
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Thus, nobody could carry out in his mind reasonings that are extremely 
lengthy, had not certain signs been invented, that is, names by means of 
which the overwhelming amount of things could be embraced in such an ab-
breviated way that this multitude can be gone through. Such a thing would be 
impossible if, by suppressing names or other signs like these, definitions 
were to be used in place of that defined. And I use to call such thoughts blind. 
Nothing is more necessary or frequent for man than them.106 

 
Let us consider the following equation: 

1040 × 1030 =  1070 

We see immediately that this is a true equation, thanks to the use of the sym-
bol for multiplication and the exponential notation that gives us the symbols 
1040, 1030, 1070. We can recognize the truth of the equation on the basis of 
this symbolism alone, while remaining ‘blind’ to what logicians call the “ca-
nonical form” of this equation, obtained by replacing these symbols, and the 
multiplication symbol by their definitions until we have an equation between 
extremely long sequences of the form (using Hilbert’s notation):  

1+1+1+1+1+ … +1. 

Could this equation be written down in its entirety on paper? – Remember 
that Archimedes estimated the number of grains of sand that would fill up 
the (Classical Greek) Universe, to about 1063, which is a much smaller num-
ber than 1070.. 

                               
106 Esquisabel (2012, p. 14). The translation is slightly amended. 
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13   Husserl’s failure to accept symbolic 
mathematics. 

Let us recall the following quotation from Jacob Klein that was given before 

[…] the “being” of the species in Vieta, i.e. the “being” of the objects of 
“general analytic,” is to be understood neither as independent in the Pythago-
rean or Platonic sense nor as attained “by abstraction” […] in the Aristotelian 
sense, but as symbolic. The species are in themselves symbolic formations 
[…] They are, therefore, comprehensible only within the language of symbol-
ic formalism. […] Therewith the most important tool of mathematical natural 
science, the “formula,” first becomes possible, but above all, a new way of 
“understanding,” inaccessible to ancient episteme is thus opened up.107 

Look at the last sentence where he says that “the most important tool of 
mathematical natural science, the ‘formula,’ becomes possible”. Why is that 
so important for Klein to point out in this context? – It has to do with the fact 
that one very important part of Klein’s ambition to show that modern math-
ematics is symbolic mathematics, was to show that the symbolic mathemat-
ics initiated by Vieta, Stevin, Descartes and Wallis, and further developed by 
Leibniz, did provide the necessary conceptual tools and mathematical re-
sources for the creation of modern exact natural science, in particular mod-
ern physics. Klein gives a summary of this development in his article “Phe-
nomenology and the History of Science”. I quote this summary here at 
length: 

In creating his ars analytice, Vieta introduced for the first time, fully con-
scious of what he was doing, the notion of a mathematical symbol and the 
rules governing symbolic operations: he was the creator of the mathematical 
formula. In doing this, he preserved, however, the original “ideal” concept of 
number, developed by the Greeks out of the immediate experience of 
“things” and their prescientific articulation. In Vieta’s notion of “species” the 
original understanding of number is retained […] But his immediate succes-
sors, Ghetaldi, Harrot, Oughtred, and Wallis (partly under the influence of 
Stevin and, as far as Wallis is concerned, of Descartes’ Geometry), have al-
ready lost the original intuition. The technique of operating with symbols re-
places the science of numbers. Descartes, for his part, aiming at the all-
comprehensive mathesis universalis, and following the algebraic doctrine of 
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Stevin, transforms the traditional understanding of Euclidean geometry into a 
symbolic one, which transformation is at the basis of his analytic geometry. 
His mathematical significance lies in the fact that he subjects the traditional 
geometry to the same kind of symbolic “formalization” to which Vieta sub-
jected the Diophantean arithmetic. 

This establishment of a fundamental analytical discipline, planned in ad-
vance by Vieta as well as by Descartes for the sake of founding a “true” as-
tronomy and a “true” physics, inaugurates the development of a symbolic 
science of nature, commonly known as mathematical physics.108 

Klein’s ambition to make clear the origin of modern physics has much in 
common with Husserl’s ambition to do something similar in his Crisis of the 
European Sciences and Transcendental Phenomenology. But there are im-
portant and crucial differences. Husserl starts out with Galileo as a paradigm 
case for the new modern approach to physics in which the aim is the mathe-
matization of nature.109 Husserl speaks of “Galileo’s mathematization of 
nature”, but perhaps it would have been more correct to say “Galileo’s ge-
ometrization of nature”, because Galileo did not have algebra and therefore 
no “formulae” (“the most important tool of mathematical natural science”, in 
Klein’s words). Galileo’s conception of geometry was the traditional Euclid-
ean one, and not the symbolic conception of geometry of Descartes (which 
was the precondition for the “arithmetization of geometry” and for the crea-
tion of Descartes’ analytic geometry). Galileo’s mathematical work relied 
heavily on the Eudoxian theory of proportions as presented in the fifth book 
of Euclid’s Elements. So Galileo’s mathematical methods were the standard 
ones of the day, and these methods were clearly superseded by the algebraic 
methods of Descartes. 

In addition, Husserl suggests that Galileo was convinced of “the possibil-
ity of philosophy as episteme achieving an objective science of the world”110, 
and Galileo is said to believe that “it had just been revealed that pure math-
ematics, applied to nature, consummately fulfills the postulate of episteme in 
its sphere of shapes”.111 This does not match Klein’s statement that “with 
Vieta’s analytic art a new way of ‘understanding,’ inaccessible to ancient 
episteme is thus opened up”. Vieta’s analytic art and the mathesis universalis 
of Stevin, Descartes and Wallis were certainly not “sciences of the world” in 
the ontological sense of Aristoteles’ episteme. And this is very important if 
we are interested in the impact of symbolic mathematics, and the sense in 
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which the work of Vieta, Stevin, Descartes and Wallis was a transformation 
and not a continued development of ancient Greek mathematics. 

A phenomenologist might object that Husserl is not concerned with “ac-
tual history” but with what Husserl calls “intentional history”. Galileo may 
have been the first who seriously embraced the idea, and the intention, of a 
complete mathematizing of nature, even if he did not possess the mathemati-
cal tools that made it possible to realize that idea. 

Husserl certainly knew about symbolic mathematics (it is one of the 
themes in his early work The Philosophy of Arithmetic), he also knew about 
the invention of algebra, about Descartes’ arithmetization of geometry, about 
formulae and their importance in modern physics, but somehow he did not 
want to count these inventions as decisive moments in the “paradigm shift” 
towards modern mathematics and natural science. It seems to me that Hus-
serl had great difficulties with accepting and appreciating symbolic mathe-
matics as the essence of modern mathematics. Klein points out that Husserl 
“does not seem to appreciate […] the importance of Stevin’s algebraic work 
and strangely enough, the Cartesian idea of a mathesis universalis, based at 
least partly upon Stevin and leading directly to the corresponding, if modi-
fied, Leibnizian concept [of a universal and symbolic science (mathesis uni-
versalis, ars combinatoria)].112  

That Husserl is uncomfortable with the non-ontological symbolic point of 
view shows itself already in the terminology he used in The Philosophy of 
Arithmetic, where he distinguishes between authentic and symbolic numbers, 
and suggests that only a small cardinal number (Anzahl) is a true and authen-
tic number. In The Philosophy of Arithmetic Husserl writes: “If a content is 
not given directly to us as what it is, but only indirectly through signs that 
univocally characterize it, then we have a symbolic presentation of it instead 
of an authentic one.”113 This makes it sound as if a number in symbolic 
arithmetic is only a kind of “stand in” or “surrogate” for something else that 
is the real thing, the authentic number outside the symbolic systems.114  

Husserl seems to be unable to abandon the Greek ontological view of 
arithmetic, which modern arithmetic had left behind already in the seven-
teenth century when the decimal place-value system of numeration was gen-
erally accepted.115 In his account of Husserl’s views, Da Silva writes: 
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Representing numbers in decimal notation (or any other notational system) is 
a way of grasping them and indirectly dealing with them.116 

Indirectly! - We will always deal with numbers in some notational system, 
are we never dealing with numbers directly? Husserl would perhaps answer: 
“Only in intuition.” 

My impression is that Husserl’s reluctance to accept and appreciate the 
fruitfulness and richness of symbolic mathematics was connected with his 
intuitionism. The confidence in intuitive (Anschauliche) evidence appears to 
have been deeply rooted in Husserl’s thinking. This may also be the reason 
why Husserl persisted in seeing modern arithmetic as having its historical 
roots in ancient Greek arithmetic (which was more concrete and an-
schaulich), as if the modern concept of number has developed from, or on 
the basis of, the Greek concept of number (arithmos), rather than in opposi-
tion to it in essential respects. Since the Greek origin of modern arithmetic 
was precisely what Stevin denied, we can understand Husserl’s lack of ap-
preciation of Stevin’s work. 

We note that Husserl speaks of the “Crisis of the European Sciences”. It 
seems to have been important for Husserl that mathematics is a European 
science with its origin in ancient Greece. This is perhaps more an expression 
of an ideological than a philosophical attitude. In any case, for Stevin the 
influence from Hindu-Arabic mathematics was much more important than 
the Greek influence.  

In his essay The Origin of Geometry, Husserl argues that the institution of 
Greek geometry is retained in the intentions of modern geometricians. I 
think that Lachterman’s account of the change from ancient to modern math-
ematics shows in great detail that this is a mistaken idea.117 Lachterman gives 
a particularly penetrating account of Descartes’ symbolic approach to geom-
etry and its impact on modern mathematics.  

I believe that Sybille Krämer is right when she says that “The mathemati-
cal innovations of the sixteenth and seventeenth centuries have little to do 
with the “geometric-proving” theories passed down from Antiquity, and 
derive rather from an “algebraic-algorithmic” spirit, whose origins lie in 
Hindu-Arabic culture.”118 Historians of mathematics seem to agree that the 
decimal place-value system (with a sign for zero) was an independent inven-
tion of Indian mathematics, even if it had occurred earlier in Chinese math-
ematics. 119 It seems to have been established in academic circles in India in 
the 6th century. Arabic scholars improved the system by introducing decimal 
fractions, and were instrumental in making it known in Europe. But it was 

                               
116 Da Silva (2012, p. 120). 
117 Lachterman (1989). 
118 Krämer (2012, p. 371). 
119 Ifrah (1981). 



 77

Stevin who really introduced the actual use of the decimal place-value sys-
tem in Europe through his book De Thiende. 

The work of the Islamic mathematician al-Khwarizmi, who lived in Bag-
dad and died in the middle of the ninth century, contributed to the develop-
ment of the algebraic-algorithmic spirit through his treatise on algebra 
(Hisab al-jabre w’al muquabala) and on Indian numerals (Algoritmi de nu-
mero Indorum120). The English word ‘algebra’ is derived from a Latinized 
version of the word al-jabre, and the word ‘algorithm’ is a corrupted Latin 
form of al-Khwarizmi’s name. His treatises were translated and explained in 
Latin and introduced into Europe (for instance, through Fibonacci’s book 
Liber Abaci published in 1202). But the new ideas were met with a great 
resistance that lasted for several centuries due, among other things, to the 
strong influence of Aristotelian doctrines since the 12th century. One feature 
of the decimal place-value system that was met with particularly violent 
resistance was its use of the cipher zero. The idea of a number zero was in-
compatible with the still prevailing Greek and Roman notion of number ac-
cording to which numbers were understood in terms of multitudes composed 
of discrete, countable units.121 This understanding of numbers was not essen-
tial for numbers of the decimal place-value system. The double role of zero 
in the decimal place-value system was clarified. Zero was used as an empty-
place indicator to indicate the absence of a numeral, but at the same time 
rules for calculating with the sign “0” were set up in which “0” was treated 
like any other numerical sign. 

A number in the decimal place-value system is a symbol determined by 
its functional role in the system. The general acceptance of the Indian deci-
mal place-value system of arithmetic in the fifteenth and sixteenth centuries 
was a great victory of symbolic mathematics over the ontological conception 
of mathematics of Antiquity. In view of the enormous importance for mod-
ern mathematics of the decimal place-value system and its extensions, there 
is some truth in saying that a central part of the origin of modern mathemat-
ics was in India and not in Greece. 

In his book on algebra (which is said to be the first book on algebra) al-
Khwarizmi developed a method for solving linear and quadratic equations. 
But the most striking feature of the book is its practical orientation. It is a 
book showing how to solve equations and problems derived from ordinary 
life in the Islamic empire at that time such as the measuring of lands and the 
digging of canals, but also problems arising in tax collection, lawsuits and 
trade. Only the first part of the book is a discussion of what we would today 
recognize as algebra. 
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But al-Khwarizmi’s algebra is not on the level of Vieta’s. Al-Khwarizmi 
did not invent the formula. There is no use of algebraic symbolism, every-
thing is expressed in mathematical prose. It was rhetorical algebra. It is the 
increased use of the algebraic symbolism which leads to the “algebraization 
of mathematics” (as Mancuso calls it) in the seventeenth century; Mancuso, 
following Mahoney, mentions “freedom from ontological commitment”, as a 
characteristic feature of this algebraic mode of thought.122 

Husserl could not avoid seeing how the symbolic approach was responsi-
ble for great change and great progress in modern mathematics and natural 
science around the beginning of the 20th century, and, as pointed out by Da 
Silva (2012), Husserl did a lot of work in trying to give an epistemological 
justification of “symbolic knowledge” in modern mathematics. But already 
the stating of the problem as a problem about “symbolic knowledge” is prob-
lematic. The mere combination of the words “symbolic” and “knowledge” is 
itself questionable, since the word ‘knowledge’ tends to be understood as 
“knowledge that so and so is the case” in the traditional sense of scientific 
knowledge, i.e. as episteme in Aristotle’s sense. (And this was obviously 
how Husserl understood it. As Da Silva points out “The idea of a definite 
system of axioms, a nomological system as Husserl also called it, answers to 
the Aristotelian ideal of science that Husserl was not willing to abandon.”123) 
A proposition or judgment expressing such ‘knowledge’ is a judgment about 
things having independent existence in an ontological realm outside the 
symbolism in which the judgment is formed. Now, this is clearly incompati-
ble with the word “symbolic” as Vieta, and his followers, used it ‒ in partic-
ular, at the time when the technique of operating with symbols starts to re-
place the science of numbers. As is clear from the quotation from Klein at 
the beginning of this section, the word ‘symbolic’ means non-ontological, so 
there is no such thing as an ‘ontological symbolism’ or an ‘ontological sym-
bolic view of mathematics’. These expressions are bound to cause confusion. 
The ontological views of the Pythagoreans, Plato and Aristotle are men-
tioned by Klein (in the quotation given before) as contrasts to the symbolic 
mathematics of Vieta and his followers. Vieta’s introduction of the word 
‘symbolic’ is intimately connected with his invention of the algebraic sym-
bolism (which did not exist before). 

Vieta’s analytic art is not a theory or system of knowledge in the form of 
proved mathematical theorems. It is an art: methods and techniques for solv-
ing problems. For Vieta the word “problem” takes the place of the word 
“theorem”. As mentioned before, Vieta strongly emphasized this new atti-
tude as the proper attitude to his analytic art at the end of his article. Lach-
terman points out about Descartes’ geometry that “the Geometry is devoted 
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exclusively to solving problems and not at all to proving theorems.”124 So 
this problem-oriented attitude is also an important aspect of Descartes’ ana-
lytic geometry. And much the same can be said about Leibniz’s infinitesimal 
calculus. They are not axiomatic deductive theories or systems of knowledge 
in the form of theorems about some independently existing subject matter, 
but analytic arts. So, once again, the expression “symbolic knowledge” is 
indeed misleading. I don’t think that the use of the word ‘knowledge’ can be 
defended by pointing out that there is also “knowledge how to do some-
thing”. That is a more special use of the word ‘knowledge’ that will hardly 
prevent the confusion. 

The mathematical inventions of Vieta, Descartes and Leibniz, which were 
accomplished by means of the symbolic point of view, were extremely suc-
cessful in solving problems. This was and still is the justification of symbolic 
mathematics. Husserl’s work on giving a logical, epistemological justifica-
tion of “symbolic knowledge” amounts to the construction of ontological 
correlates of the symbolic systems using familiar mathematical and philo-
sophical prose, as, for instance, in his “formal ontology”, but in this endeav-
or he is corrupting the true meaning of symbolic mathematics that begins 
with Vieta. Da Silva speaks of “Husserl’s constant preoccupation to keep 
symbolic methods in science and mathematics far from degenerating into a 
pure and epistemologically unjustified game with signs”.125 The feeling of 
“formalist alienation” (an expression Husserl used according to Da Silva) 
behind this talk of “degeneration” is, in my opinion, rooted in a superficial 
view of the workings of mathematical symbolism, where the difference be-
tween sign and symbol has been lost.  

Husserl explicitly points out that “we must not define merely in terms of 
signs and calculational operations.” (FTL §34). He is not willing, for in-
stance, to call an equation such as 

a + b = b + a 

a rule of arithmetical calculation by which we are, in Husserl’s words, “al-
lowed to manipulate the given signs in such a manner that the sign b + a can 
always be substituted for a + b”. (FLT § 34). Husserl prefers instead the 
following verbal reading of this rule: 

There shall obtain among the objects belonging to the multiplicity (conceived 
at first as only empty Somethings, ‘Objects of thinking’) a certain combina-
tion-form with the law-form a + b = b + a’ – where equality has precisely the 
sense of actual equality such as belongs to the categorial logical forms” (FLT 
§34) 
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Here, the operative aspect of the rule  a + b = b + a  is removed and replaced 
by the static concept of a law that applies to ‘objects of a multiplicity’ in a 
postulated ontological realm. But the use of the word ‘law’ here seems to 
suggest a doubtful similarity to laws of nature in physics. 

Are we supposed to get rid of our ‘formalistic alienation’, by accepting 
Husserl’s heavy-footed formulation? 

Husserl says about the symbolic view of arithmetic: “…to put in the place 
of the actual theory of multiplicities its symbolic analogue” and explain ob-
jects and multiplicities in terms of rules of the game, is to be led astray by 
supposed needs for greater exactness. (FTL §34). 

It is not greater exactness, but greater clarity that is achieved by recogniz-
ing the objects as symbols constituted or determined by their function in the 
game, rather than as postulated ontological entities. One of the main points 
of comparing the arithmetical calculus with a game is to make clear the dif-
ference between signs and symbols, and that is enough to relieve oneself of 
the ‘formalist alienation’. 

Husserl (in contrast to Leibniz and Wittgenstein) seems to me to have had 
too much confidence in the conceptual reliability of the verbal language of 
mathematics and the vocabulary of traditional philosophy. 
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14   Contemporary physics and symbolic 
mathematics 

The “crises of European sciences” that was a concern of both Husserl and 
Klein, included the difficulties of interpretation that arose with the invention 
of relativity theory and quantum physics in the 20th century. That Klein was 
aware of these difficulties is clear from a talk he gave in 1932 to an audience 
consisting of both philosophers and physicists.126 

But let us leave Husserl and Klein here. Let us instead listen to what two 
physicists said about the conceptual problems confronting contemporary 
physics. The great changes of scientific thinking that came about with the 
invention of relativity theory and quantum physics led to the “downfall of 
classical physics and to strange new conceptions of the physical world”, as 
the physicist A.S. Eddington expressed it in his Gifford Lectures in 1927.127 
What is of interest for us about this development is that it also led to a new 
awareness of the importance of symbolism in science and in particular of the 
fruitfulness of symbolic mathematics. 

Eddington writes: 

One of the greatest changes of physics between the nineteenth century and 
the present day has been the change in our idea of scientific explanation. It 
was the boast of the Victorian physicist that he would not claim to understand 
a thing until he could make a model of it; and by a model he meant some-
thing constructed of levers, geared wheels, squirts, or other appliances famil-
iar to an engineer. Nature in building the universe was supposed to be de-
pendent on just the same kind of resources as any human mechanic. […] 

Nowadays we do not encourage the engineer to build the world for us out 
of his material, but we turn to the mathematician to build it out of his materi-
al. […] We are dealing in physics with a symbolic world, and we can scarcely 
avoid employing the mathematician who is the professional wielder of sym-
bols.128 

A prominent mathematician who made significant contributions to modern 
physics in this spirit was Hermann Weyl. He was a scientist, a mathemati-
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cian, at heart, but he had extensive philosophical interests, which affected his 
work as a mathematician and his contributions to contemporary theoretical 
physics. He was a student of Hilbert’s, and from about 1912 to the publica-
tion of his book Das Kontinuum in 1918, Weyl was influenced by Poincaré 
and by Husserl.129  

In 1919 Weyl met L.E.J. Brouwer and was deeply influenced by 
Brouwer’s philosophical ideas in general and in particular by his mathemati-
cal intuitionism with its emphasis on intuitively cognizable truths. Weyl later 
described himself as having been an apostle of Brouwer by this time. But in 
the beginning of the 1920s Weyl became more and more doubtful about the 
sufficiency of the intuitionistic as well as the pure phenomenological ap-
proach for the understanding of modern science. In 1927 he wrote: “With 
Brouwer, mathematics gains the highest intuitive clarity; his doctrine is ide-
alism in mathematics thought to the end. But, full of pain, the mathematician 
sees the greatest part of his towering theories dissolve in fog.”130 By this time 
Weyl had become convinced that contemporary ‘creative science’ must 
transcend what is intuitively and phenomenologically given. He seems to 
have accepted that Brouwer’s intuitionism, as well as pure phenomenology, 
are incapable of accounting for contemporary theoretical physics. In 1932, 
Weyl wrote: 

The scientific formulation of the objective conception of the world takes 
place in physics, which employs mathematics as a means of construction. But 
the situation that prevails in theoretical physics in no way corresponds to 
Brouwer’s ideal of a science, to his postulate that every proposition shall 
have its individual meaning, and that this meaning shall be capable of intui-
tive display. On the contrary, the propositions and laws of physics taken indi-
vidually do not have a content which can be verified experimentally; it is on-
ly the theoretical system as a whole which can be confronted with experience. 
What is achieved is not intuitive cognition of an individual or general state of 
facts, and a description which faithfully portrays the given conditions, but 
theoretical, purely symbolical construction of the world.131 

It seems to me that much the same criticism applies to Husserl’s idea of a 
science, since Husserl too presupposed that every proposition shall have its 
individual meaning. Later Weyl sums up the main point by saying 

in the natural sciences we are in contact with a sphere which is impervious to 
intuitive evidence; here cognition necessarily becomes symbolical construc-
tion. Hence we need no longer demand that when mathematics is taken into 
the process of theoretical construction in physics it should be possible to set 
apart the mathematical element as a special domain in which all judgments 

                               
129 For an up to date survey of Weil’s foundational thinking, and its relation to phenomenolo-
gy, in the period 1910-1930, see Mancosu and Ryckman (2002).  
130 Weyl (1927, p. 136). 
131 Weyl (2009, p. 78, my emphasis). 
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are intuitively certain; from this higher viewpoint which makes the whole of 
science appear as one unit, I consider Hilbert to be right.132 

Symbolical construction, in which the symbols, in themselves, do not always 
signify anything accessible as intuitive experience, is henceforth Weyl’s 
mathematical approach in theoretical physics. The great importance he at-
tached to this new symbolic orientation is clear from the following state-
ment: “ […] only in mathematics and physics, as far as I can see, has sym-
bolic-theoretical construction acquired sufficient solidity to be convincing 
for everybody whose mind I open to these sciences.”133  

He describes essential features of this constructive symbolic cognition as 
follows: 

Upon that which is given, certain reactions are performed by which the given 
is in general brought together with other elements capable of being varied ar-
bitrarily. […] By the introduction of symbols, the judgments are split up; and 
a part of the manipulation is made independent of the given and its duration 
by being shifted on to the representing symbols which are time resisting and 
simultaneously serve the purpose of preservation and communication. There-
by the unrestricted handling of notions arises in counterpoint to their applica-
tion, ideas in a relatively independent manner confront reality. […] Symbols 
are not produced simply “according to demand” wherever they correspond to 
actual occurrences, but they are embedded into an ordered manifold of possi-
bilities created by free construction and open towards infinity.134 

In these, and similar statements of Weyl’s, it seems to me that he is on the 
verge of saying that most (if not all) of the propositions of the theoretical, 
symbolic systems of quantum physics, are not really propositions about 
anything external to the system, but rather rules or laws of a calculus whose 
“manipulation is made independent of the given”. When it is said that this 
system as a whole depicts a “transcendent symbolic world”, I think that it 
must not be taken as an ontological or metaphysical statement, but rather as 
an epitome of the successful applications of the system as a whole; its func-
tion, significance and importance in the practices of modern physics.135 

                               
132 Weyl (2009, p. 80). 
133 Weyl (2009, p. 82). 
134 Weyl (2009, pp. 118-119). What Weyl means by this will hopefully be clearer by the 
examples I present throughout this section, especially the example with the introduction of an 
arithmetical symbolism for counting sequences of sounds at the end of this section. 
135 Scholtz (2006, p. 306) says that ” Weyl tried, as much as he could, to distance himself 
from classical metaphysics, in particular its reference to the kind of transcendent reality that 
was stipulated there. He definitely refused, however, to cut the bonds to all kinds of meta-
physics. He rather substituted strong references to symbolical and material practices in place 
of the old realism.” I agree with Scholtz, but I would not want to call Weyl’s reference to 
“symbolical and material practices” an expression of a bond to “a kind of metaphysics”.  
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Weyl illustrates the mentioned “splitting up of judgments” by using a 
simple example from the propositional calculus.136 He points out that in for-
malized mathematics formulas of the form A → B have replaced the state-
ment that A implies B or that B follows from A. The split consists in the fact 
that after the replacement, the sign ‘→’ stands for a symbol which is manip-
ulated only according to the formal rules of the system, and not on the basis 
of the intuitive reading or ‘prose-translation’ of the symbol as ‘implies’ or 
‘follows’. Weyl summarizes his point by saying: “[...] in principle we must 
sharply distinguish between the symbol → occurring within the system, and 
such words as “follows” which we use to make meaningful communications 
about the game.” (We note in passing that Weyl’s “split” has strong similari-
ties with Wittgenstein’s “split” between calculus and prose.) Weyl goes on 
to make the following claim about the importance of this distinction: 

[...] a split of essentially the same nature has been brought about by quantum 
physics: namely the split between the physical phenomenon under observa-
tion on the one hand and the measurement on the other. The first can be ade-
quately described only by the quantum-mechanical symbolism; about the lat-
ter we can and must talk in the intuitive terms of classical physics. […] In 
quantum theory we learn that measuring one quantity sometimes utterly de-
stroys the possibility of measuring another quantity. This is a matter of prin-
ciple and not of human deficiency. 

The principle referred to here is Heisenberg’s uncertainty principle, which 
asserts a fundamental limit to the precision with which certain pairs of phys-
ical properties of a particle, such as position and momentum, can be known 
simultaneously. As a consequence of the uncertainty principle there is an 
inconsistency of classical logic with the facts of measurement of variables in 
quantum mechanics, such as the position and momentum of a particle. The 
classical distributive law of propositional logic 

(A and (B or C)) ↔ ((A and B) or (A and C)) 

fails. If p is a particle moving to the right on a line and A is the proposition 
that “p moves to the right” and B is “p is in the interval [-1, 1]” and C is “p is 
not in the interval [-1, 1]”, then (B or C) is true, and so is (A and (B or C)). 
But (A and B) and (A and C) are both false since they assert tighter re-
strictions on simultaneous values of position and momentum than is allowed 
by the uncertainty principle. The ‘uncertainty’ of the uncertainty principle is 
not due to inaccuracy of the methods and instruments of measurement; it 
arises from the wave nature in the quantum mechanical description of nature, 
which is why it is a matter of principle.  

                               
136 Weyl (2009, p. 187). 
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The failure of the distributive law has been taken to mean that a radical 
revision of classical logic would be necessary in quantum physics. In his 
early papers on quantum logic, Hilary Putnam exclaimed that “The world 
has a non-classical logic!”137 

But doesn’t Putnam here presuppose that the ‘symbolic world’ of quan-
tum physics is a kind of copy or representation of physical reality, rather 
than a symbol, a complex symbolical construction? It is not clear to me that 
the symbolic world of Eddington and Weyl has a logical structure that would 
somehow have an independent existence. If the symbolic world “has a log-
ic”, this logic must be a symbolic construction as much as everything else in 
the symbolic world of quantum physics. 

Let us look at another of Weyl’s examples of the limitations of the use of 
“the intuitive prose of classical physics”. He presents an algebraic-
arithmetical equation indicating the propagation of a plane monochromatic 
light wave.138 The equation contains several parameters, such as the wave 
frequency ν, the intensity a2, time and space coordinates t, x, y, z, etc. . To 
speak only in the formal language of the algebraic-arithmetical equation, 
avoiding all terms that refer to ideas of space and sense qualities would be 
too pedantic according to Weyl. But, nevertheless, he insists that “in princi-
ple, one must hold to the position that nothing of the intuitive contents and 
essence of these terms enters into the systematic symbolical construction of 
the physical world!” 

Weyl raised the question of whether this two-level view of language is 
only a feature belonging to an early stage of the development of quantum 
physics, a feature that will be overcome in its future development. But Weyl 
is inclined to answer this question negatively. He says that in quantum phys-
ics 

…one has to distinguish sharply between the hidden physical process which 
can only be represented by the symbolism of quantum physics, although it 
may be referred to by such words as electron, proton, quantum of action, etc., 
and the actual observation and measurement. According to Bohr, we have to 
talk about the latter in the intuitively comprehensible language of classical 
physics; or ought we better say: in the language of everyday life? […] It may 
very well be that we can never dispense with our natural understanding of the 
world and the language in which it is expressed, perhaps a little purified and 
enlightened by classical physics, and that the symbolism of quantum physics 
will never be able to offer a substitute for it. In this case we would have here 
a true dialectic which cannot be resolved/lifted by any historical development 
….139  

                               
137 As he expressed it in his paper The curious story about quantum logic (Putnam, H., 2012, 
p. 173). 
138 Weyl (2009, p. 107). 
139 Weyl (1948, 340-341), quoted in Scholtz (2006, pp. 302-303). 
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As Schultz points out, in Weyl’s mature views on this issue a reference to  

‘concrete activities of people’ comes into play and allows us to adopt even an 
‘antropic’ perspective with respect to mathematical knowledge. […] we find 
that mathematical symbols are understood within the context of a communi-
cative practice that has strong parallels to material practices, in the way that 
symbols are handled, and with multiple links to the other scientific and tech-
nical activities.140 

Here one comes to think of the ‘anthropological’ element that enters in Witt-
genstein’s work on rule-following in the middle of the 30th, as it comes to 
expression, for instance, in the following remarks from Wittgenstein’s Re-
marks on the Foundations of Mathematics,  

Following a rule is a human activity. (p. 331) 

The agreement of people in calculation is not an agreement in opinions or 
convictions. (p. 332)  

Language, I should like to say, relates to a way of living. (p. 335) 

The words “language”, “proposition”, “order”, “rule”, “calculation”, “exper-
iment”, “following a rule”, relate to a technique, a custom. (p. 346) 

… what the correct following of a rule consists in cannot be described more 
closely than by describing the learning of ‘proceeding according to the rule.’ 
And this description is an everyday one, like that of cooking or sewing, for 
example. It presupposes as much as these. It distinguishes one thing from an-
other, and so it informs a human being who is ignorant of something particu-
lar. (p. 392). 

I know of no evidence, however, for the opinion that Weyl should have been 
influenced by Wittgenstein’s work in the 1930th and 1940th. Weyl had read 
the Tractatus. It is listed as one of the references in Weyl’s article Über den 
Symbolismus der Mathematik und Mathematischen Physik  (1953), and Weyl 
makes some short comments on a few remarks in the Tractatus. But there is 
nothing in this article that would show the Tractatus to have been an im-
portant influence for Weyl.  

The similarities we find in Weyl’s and Wittgenstein’s early symbolic 
views of mathematics, are rather due to their common source of inspiration: 
Heinrich Hertz. 

When he raises the question of the origin and nature of the procedure of 
symbolic construction, Weyl refers to Heinrich Hertz.141 He quotes at length 
the crucial passage from the beginning of the introduction to Hertz’ Princi-

                               
140 Scholtz (2006, p. 305). 
141 Weyl (2009, p. 107, 108). 
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ples of Mechanics, where Hertz explains that we create symbols of external 
objects in such a way that “logically necessary consequences of the symbols 
are always the symbols of caused consequences of the symbolized objects”. 
It is a crucial feature of Hertz’ symbolic view that the symbols, being our 
concepts of objects in nature, are not assumed to have anything further in 
common with the objects except this requirement. As Hertz puts it: “We 
neither know, nor do we have means to find out whether our representations 
of the objects have anything in common with the objects themselves except 
that one fundamental relation alone.” As pointed out before, it was this fea-
ture of Hertz’ work that Ernst Cassirer had in mind when he wrote that 
“Heinrich Hertz is the first modern scientist to have effected a decisive turn 
from the copy theory of physical knowledge to a purely symbolic theory.”.142 

It may seem as though symbolic mathematics in Weyl’s conception only 
refers to very advanced mathematics, such as the mathematics used in mod-
ern theoretical physics. But the essence of introducing a symbolism, accord-
ing to Weyl, is a transition from description to construction, by means of the 
“splitting up of judgments” mentioned before, and such transition occurs 
already at the most elementary levels of mathematics as in the creation of the 
sequence of natural numbers 1, 2, 3, … Here we have according to Weyl a 
typical example of the construction of a symbolism.  

Weyl asks us to imagine hearing two sequences of sounds, one after the 
other.143 In reproducing the sounds of the first sequence by recollection when 
listening to the second we may ascertain that the second sequence projects 
beyond the first. “This time there were more sounds than the first time.” 
Here we have a description, which can be understood without any reference 
to symbols. But, we may proceed in a different way. While listening to the 
sounds we put strokes on paper one after the other, one stroke for each 
sound. We may thus get the number-symbols | | | | called 4 for the first se-
quence, and | | | | | | called 6 for the second one, and now we ascertain from 
the symbols: 6 ˃ 4. In doing this the two sequences of sounds may already 
have disappeared into silence. So the stroke-symbols are in that sense time-
resisting and serve the purpose of preservation and communication, which 
are crucial features of a symbolic construction. For relatively small number-
symbols like these we see immediately that 6 ˃ 4, but for larger numbers a 
certain manipulation in the symbolism may be necessary: We cross out the 
first stroke from each symbol and repeat this operation until one symbol is 
exhausted. 

                               
142 Cassirer (1957, p. 20). It is sometimes suggested that Weyl’s main source of inspiration for 
his symbolic approach was not so much Hertz but rather Cassirer’s “Philosophy of Symbolic 
Forms”. But that is doubtful in view of Weyl’s critical remarks about Cassirer’s very wide use 
of the notion of ‘symbolic form’. Weyl finds it difficult to read Cassirer’s Philosophy of 
Symbolic Forms as “variations on a single theme” (Weyl, 2009, p. 195). 
143 Weyl (2009, p.117). Weil uses this example several times in his publications. 
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If the ordinary number-signs 1, 2, 3, … belong to the symbolism, we 
would also have the rules or conventions: 

1  =  |,    2  =  | |,    3  =  | | |, … 

where the equality sign means that one symbol may be replaced by the other. 
An arbitrary numerical stroke sign | | | | | | |, say, is thus of the form: 

(((((((|)|)|)|)|)|)|) 

which we may call “the normal form” of this numeral. Here we see that the 
number-signs that are ‘smaller than’ | | | | | | | are proper parts of this number-
sign. We take this relationship to define ‘smaller than’. Calling this number-
sign “arbitrary” means here that the process of constructing numeral stroke-
signs is without end; no limit to the length of a number-sign is stipulated. In 
order to define the general numerical stroke-sign, we introduce an arbitrary 
letter “n”, and define the general numerical stroke-sign as the sign complex-
es obtained from “n” after eliminating “n” by either replacing “n” by “n |” or 
replacing “n” by “|”. The stroke sign | | | |, for instance, is obtained after four 
operations, deriving in turn n, n |, n | |, n | | |, | | | |; here we have replaced “n” 
by “n |” three times in succession, and then replaced “n” by “|”. Here the 
symbol “n |” is the successor-operation, usually written n+1, and the symbol 
“n” is the number-variable. 

Defining the general numerical stroke-sign in this way is what Weyl ex-
presses in mathematical prose by saying that we have embedded the “the 
actually occurring number symbols into the sequence of all possible num-
bers. This sequence originates by means of a generating process in accord-
ance with the principle that from a given number a new one, the following 
one, can always be generated by adding the unit.”144 And he adds that “Only 
then does arithmetic proper come into existence with its characteristic prin-
ciple of the so-called complete induction, the conclusion from n to n+1.” 

Weyl also points out that it is “the determination of numbers which is of 
an essentially symbolic character. ‘There were 4 tones’ is unintelligible 
without reference to a symbol.”145 The determination of the number of ob-
jects of a collection, takes place through counting, but as R.L. Goodstein has 
emphasized, counting is at bottom not a process of discovery, but of trans-
formation.146 This is so because the only difference between counting objects 
of a collection, and transforming a number-sign pattern lies in the initial step 
of replacing each object by “ |”, i.e. regarding each object of the collection as 

                               
144 Weyl (2009, p. 118). 
145 Weyl (1949, p. 36). 
146 Goodstein (1956, p. 124). This article by Goodstein deserves more attention by philoso-
phers of mathematics. It would have deserved the title “The origin and foundation of modern 
arithmetic”. 
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a unit, as one. So imagining this replacement as having been carried out for a 
collection of objects, we are regarding the collection of objects as a number-
sign. Counting then consists in transforming the collection, regarded as a 
number-sign, into a conventional numeral which presents the numeral in its 
“normal form”. 

As mentioned before, there is an ambiguity in the conventional use of the 
words “sign” and “symbol” (in Weyl’s account, for instance). The word 
“sign” is often used for the symbol expressed by that sign, and conversely 
the word “symbol” is sometimes used for the sign expressing a symbol, and 
the context is taken to be sufficient to indicate what is meant. There is of 
course an important difference between “sign” and “symbol”, as between a 
numeral (or number sign) on one hand and a number on the other. The num-
ber 2 is the role or function of the number sign 2 in the arithmetical symbol-
ism. The numbers sign 2 and the Roman number sign II are different signs, 
but they express the same symbol, the same number when they are used, for 
instance, as page-numbers in books. 

One important thing to understand about this arithmetical example is how 
the construction of a symbolism is not just the introduction of a notation; it is 
also the introduction of an operative symbolism, i.e. rules for operating with 
signs. And, of course, it is not the introduction of signs as ‘syntactical ob-
jects’ (in the sense of Carnap and Tarski) to denote abstract or ideal objects 
having an independent existence in an ontological or mental realm. Weyl 
expresses the non-ontological nature of his symbolic conception of arithme-
tic as follows: 

If one wants to speak, all the same, of numbers as concepts or ideal objects, 
one must at any rate refrain from giving them independent existence; their 
being exhausts itself in the functional role which they play and their relations 
of more or less. (They certainly are not concepts in the sense of Aristotle’s 
theory of abstraction.)147 

The concept of truth will not be of any special importance in Weyl’s symbol-
ic arithmetic, any more than in symbolic mathematics in general. The reason 
is of course that the propositions of symbolic mathematics are not about 
some independently existing objects or states of affairs. 

                               
147 Weyl (1949, p. 36). 
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