
The University of Chicago
Center for Digital Accessibility

Introduction to ARIA

2

Jack Auses, CPACC
Accessible Web Technology Specialist
UChicago Center for Digital Accessibility
jauses@uchicago.edu

Hello!

mailto:jauses@uchicago.edu

3

What is ARIA?

4

WebAIM: Introduction to ARIA - Accessible Rich Internet Applications

Accessible Rich Internet Applications (ARIA) is an
accessibility enhancing suite of web standards.

What is ARIA?

https://webaim.org/techniques/aria/

5

When written semantically, much of HTML is accessible.
However, HTML, JavaScript, and CSS do not natively include
all the features required to make websites accessible to
people who use screen readers or who rely on

keyboard navigation.

ARIA is a way to address these deficiencies.

Why use ARIA?

6

Ideally, native HTML should be used to provide the semantics
required by screen readers. Sometimes this isn’t possible,
either because you have limited control over the code or are
creating something complex that doesn’t map to native

HTML elements.

In such cases, ARIA can be a valuable tool.

Only use ARIA when absolutely necessary

7

No ARIA is better than Bad ARIA - WAI-ARIA Authoring Practices 1.1

Functionally, ARIA roles, states, and properties are like CSS
for assistive technologies. For screen reader users, ARIA
influences the accessibility tree by controlling the audible
“rendering” of their non-visual experience. Incorrect ARIA
misrepresents visual experiences, with potentially devastating
effects for the non-visual experience.

No ARIA is better than bad ARIA

https://www.w3.org/TR/wai-aria-practices/#no_aria_better_bad_aria

8

Five rules of ARIA use

9

The first rule of ARIA is:
You do not use ARIA

10

WebAIM: Introduction to ARIA - Rules of ARIA Use

HTML is the foundation of web accessibility.
ARIA should not be used if native HTML can provide sufficient
structure and semantics! When used incorrectly, ARIA can
introduce significant accessibility barriers.

Rule #1: Use native HTML when possible

https://webaim.org/techniques/aria/#rules

11

WebAIM: Introduction to ARIA - Rules of ARIA Use

Most HTML elements have default semantics that are
conveyed to screen reader users. When necessary, ARIA can
override and change those semantics.

Rule #2: Don’t change native HTML semantics, unless you really have to

https://webaim.org/techniques/aria/#rules

12

Design Patterns and Widgets - WAI-ARIA Authoring Practices 1.2

ARIA design patterns define standard keyboard interactions
for custom widgets and controls such as tabs, accordions, and
other stateful UI components. This allows everyone to use the
widget with a keyboard, and ensures that instructions
provided by screen readers align with the actual functionality
in the page.

Rule #3: All interactive elements must be usable with the keyboard

https://www.w3.org/TR/wai-aria-practices-1.2/#aria_ex

13

WebAIM: Introduction to ARIA - Rules of ARIA Use

Any element that is keyboard focusable must have proper
semantics either via native HTML or ARIA roles so that it is
correctly identified as a link, button, form control, etc.
Similarly, interactive elements must be visible.

Rule #4: Interactive elements must be properly semantic and visible

https://webaim.org/techniques/aria/#rules

14

WebAIM: Decoding Label and Name for Accessibility

Text describing an interactive element must be presented to
screen reader users when the element is encountered—this is
called an “accessible name”. If native HTML methods aren’t
available, ARIA can be used to define accessible names.

Rule #5: All interactive elements must have an accessible name

https://webaim.org/articles/label-name/

15

Main features of ARIA:
roles, properties, and states

16

Three main features of ARIA | MDN

Roles define what an element is or does

Many of these are so-called landmark roles, which replicate
the semantics of HTML5 sectioning elements, such as
role="navigation" (<nav>) or role="contentinfo" (<footer>), but
there are others that describe page components, such as
role="search", role="tablist", role="tab", without a native
HTML counterpart.

Roles

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#enter_wai-aria

17

Three main features of ARIA | MDN

Properties are used to give elements extra semantics

For example, aria-required="true" specifies that a form input
needs to be filled in order to be valid, and aria-
labelledby="some-id" enables authors to reference other
elements on the page to define an accessible name, which is
not possible using the HTML <label> tag.

Properties

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#enter_wai-aria

18

States define the current conditions of elements
For example, aria-expanded="true" and aria-expanded="false"
convey to a screen reader that a collapsible element, like an
accordion, is currently either active/expanded/visible or
inactive/collapsed/hidden.

States

Three main features of ARIA | MDN

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#enter_wai-aria

19

Examples: when should you use ARIA?

20

ARIA’s role attribute can define landmarks that either
replicate the semantics of HTML5 elements such as nav and
header, or go beyond HTML5 to provide semantics to different
functional areas, e.g. search, tablist, tab, listbox, etc.

Defining landmarks

21

<body>

 <header>

 <h1>...</h1>

 <nav>

 ...

 </nav>

 </header>

<main>

 <article>...</article>

 <nav>

 ...

 </nav>

 </main>

<footer>...</footer>

</body>

Native HTML Landmarks

22

When native HTML can’t be used, or if retrofitting old code,
ARIA roles can be added to provide landmark cues for
assistive technologies.

Using ARIA roles to define landmarks

23

<body>

 <div role="banner">

 <h1>...</h1>

 <div role="navigation">

 ...

 </div>

 </div>

 <div role="main">

 <div role="article">...</div>

 <div role="navigation">

 ...

 </div>

 </div>

 <div role="contentinfo">...</div>

</body>

ARIA landmark roles

24

When a type of landmark appears more than once on a page,
we need to differentiate those landmarks for screen readers
using aria-label. This is most common with main and sub
navigation, but can also occur when there are multiple custom
widgets—like accordions—on a page.

When an ARIA landmark appears more than once per page

25

<body>

 <header>

 <h1>...</h1>

 <nav aria-label="primary">

 ...

 </nav>

 </header>

<main>

 <article>...</article>

 <nav aria-label="secondary">

 ...

 </nav>

 </main>

<footer>...</footer>

</body>

Multiple nav landmarks

26

ARIA live regions | MDN

By default, screen readers have difficulty announcing dynamic
content updates. We can use aria-live to inform screen
reader users when an area of content is updated, e.g. via
XMLHttpRequest, or DOM APIs.

Announcing dynamic content updates

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

27

If you have JavaScript or an API that dynamically changes the
contents inside a region after page load, adding the aria-live
property will instruct a screen reader to announce the content
as it is updated.

<section aria-live="polite">...</section>

aria-live

ARIA live regions | MDN

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

28

The aria-live property has three options:

1. off: Default. Updates are not announced.

2. polite: Updates are announced only if the user is idle.

3. assertive: Updates are announced to the user as soon as
possible.

aria-live options

ARIA live regions | MDN

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

29

With aria-live a screen reader’s default behavior will be to
read out only the bit of text that updates, ignoring any
surrounding text within the region.

aria-live and screen readers

ARIA live regions | MDN

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

30

The aria-atomic property can be used in conjunction with
aria-live to set whether or not the screen reader should
announce everything within the live region as a whole, even if
only part of the region changes. A value of true will announce
everything, along with the region’s label if one is defined.

<section aria-live="polite" aria-atomic="true">...</section>

aria-atomic

ARIA live regions | MDN

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

31

Ideally, elements should be labeled with visible, clearly written
text using native HTML methods. This approach is the
simplest, easiest to maintain, and helpful to people with
cognitive disabilities. However, ARIA is the only way to add
accessible labels or descriptions to an element if native
accessible text isn’t available.

Creating accessible labels and descriptions

32

Native HTML facilitates associations that support accessibility
—<label> for form inputs, <caption> for data table descriptions,
<th> for row and column headers in data tables, etc.

When HTML cannot create the necessary associations, ARIA
can be used.

Use ARIA when HTML labels are unavailable

33

ARIA provides several mechanisms for adding labels and
descriptions to elements with attributes such as aria-label
and aria-labelledby.

aria-label and aria-labelledby

34

The aria-labelledby property programmatically associates an
element with text that functions as a descriptive label, but
isn’t wrapped in a semantic HTML element such as <label>.
With aria-labelledby, the ARIA property references the id (or,
in some cases, multiple ids) of the element(s) acting as

its label.

aria-labelledby

35

In this example, the <section> element is labeled and identified
by the text “Search Filters” within the <h2>:

<section aria-labelledby="filter-heading">

 <h2 id="filter-heading">Search Filters</h2>

 ...

</section>

aria-labelledby example

36

The aria-label property allows you to apply the label text
directly in the attribute value.

aria-label

37

In this example, even though the <h2> text is “Filters”, this
<section> will be labeled by the more specific aria-label value
of “Search Filters”:

<section aria-label="Search Filters">
 <h2>Filters</h2>
 ...
</section>

aria-label example

38

Considerations
Using ARIA to define labels comes with some constraints

and warnings.

Constraints of ARIA labels

39

Short note on aria-label, aria-labelledby, and aria-describedby

In order to be assigned an ARIA label, an element must be
labelable—either a link, button, or form control, or having
specific HTML or ARIA semantics. Many elements are not
labelable—such as <p>, <div>, and —unless assigned an
appropriate ARIA role.

ARIA labels only work on labelable elements

https://www.tpgi.com/short-note-on-aria-label-aria-labelledby-and-aria-describedby/

40

ARIA labels override HTML elements’ default text and
accessible names.
If a form input already has an associated <label> and an aria-
label or aria-labelledby, the <label> will not be read. Do not
override a <label> with ARIA unless additional context is
required for a screen reader user to understand it.

ARIA labels override HTML

41

Understanding Success Criterion 2.5.3: Label in Name

The Web Content Accessibility Guidelines (WCAG) requires
that the visible text label for an element be included within its
accessible name (which is read by a screen reader). When
using ARIA labels, ensure consistency between what sighted
users see and what screen reader users hear.

ARIA labels and visible text

https://www.w3.org/WAI/WCAG21/Understanding/label-in-name

42

In the following example, the link text “Read More” is too
vague and—if not rewritten—requires an aria-label:

Read more

Vague link text

43

Incorrect:  
Read More

Correct: 
Read more

Fixing vague link text with aria-label

44

WebAIM: Testing with Screen Readers - Questions and Answers

The best way to ensure that ARIA labels and descriptions
have been implemented correctly is to listen with a screen
reader. You can also inspect the accessible name and
description of an element using your browser’s

developer tools.

Test with a screen reader

https://webaim.org/articles/screenreader_testing/

45

When using HTML, CSS, and JavaScript to create a complex
widget or modify a native control, accessibility can suffer—
custom controls might not be keyboard accessible and screen
reader users will find it difficult to determine what the feature
does if there are no semantics or other clues.

Enhancing the a11y of non-semantic controls and custom widgets

46

In these situations, ARIA can help fill in the blanks with a
combination of roles like button, listbox, or tablist; properties
like aria-required; and states such as aria-expanded to provide
further information as to the element’s purpose.

ARIA can extend the a11y of HTML

47

One of the key strengths of HTML with respect to accessibility
is the built-in keyboard support of elements such as buttons,
form controls, and links. Generally, you can use the tab key to
move between controls, the enter/return key to select or
activate controls, and other keys such as the up and down
arrows to move between options in a <select> box.

Enhancing keyboard a11y

48

However, sometimes you will end up having to write code that
either uses non-semantic elements for buttons and other
controls, or uses focusable controls for not quite the right
purpose. You might be trying to fix some bad code you’ve
inherited, or you might be building a complex widget that
requires it.

Enhancing keyboard a11y

49

In terms of making non-focusable code focusable, ARIA
extends the tabindex attribute with some new values:

tabindex

50

tabindex="0"
This value allows elements that are not normally focusable
(such as <div>, , <p>, and <a> with no href) to

receive focus.

This is the most useful value of tabindex.

tabindex="0"

51

tabindex="-1"
Removes interactive elements from the default tab order. In most
cases, this is not desirable. However, if added to a non-interactive
element, tabindex="-1" allows that element to receive programmatic
focus with focus() scripting.

This can be useful for elements that should not be navigated to
directly using the tab key, but need to have keyboard focus set to
them, such as a modal dialog window that should receive focus
when it is opened.

tabindex="-1"

52

Here we have given some <div>s that are supposed to
function like <button>s the ability to be focused by adding the
tabindex="0" attribute:

<div role="button" tabindex="0">First Button</div>

<div role="button" tabindex="0">Second Button</div>

<div role="button" tabindex="0">Third Button</div>

Retrofitting a custom button

53

Ideally you would use <button> tags instead of any ARIA:

<button>First Button</button>

<button>Second Button</button>

<button>Third Button</button>

Semantic HTML button

54

Deque University Code Library

There are a whole host of other ARIA roles that can identify
common UI features that go beyond what’s available in
standard HTML, for example combobox, slider, tabpanel, tree.

ARIA roles that go beyond native HTML

https://dequeuniversity.com/library/

55

Common tab structure
The following is simple tab pattern markup with a
containing the tabs a user would click and the corresponding
tab panels that become visible or invisible depending on
which tab is selected. The tab functionality is controlled by
JavaScript. Nothing is conveyed to a screen reader about the
purpose of this widget, nor are the tabs keyboard accessible.

Tabs

56

<div class="my-tabs">

 <li id="tab-one">Tab 1

 <li id="tab-two">Tab 2

 <div class="tabpanel-group">

 <div id="panel-one">...</div>

 <div id="panel-two">...</div>

 </div>

</div>

Basic tab pattern

57

Adding roles
A first step to improving the accessibility of this tab widget is
to define the tablist, tab, and tabpanel roles for assistive
technology using ARIA.

Adding roles to a tab pattern

58

<div id="my-tabs">

 <ul role="tablist">

 <li id="tab-one" role="tab">Tab 1

 <li id="tab-two" role="tab">Tab 2

 <div class="tabpanel-group">

 <div id="panel-one" role="tabpanel">...</div>

 <div id="panel-two" role="tabpanel">...</div>

 </div>

</div>

Adding roles to a tab pattern example

59

Adding properties
We now move on to adding ARIA properties to the elements
in the widget so the tabs are programmatically related to their
corresponding tabpanels. We will also make the tabs keyboard
accessible by using the tabindex attribute.

Adding properties to a tab pattern

60

<div id="my-tabs">

 <ul role="tablist">

 <li id="tab-one" role="tab" aria-controls="panel-one" tabindex="0">Tab 1

 <li id="tab-two" role="tab" aria-controls="panel-two" tabindex="0">Tab 2

<div class="tabpanel-group">

 <div id="panel-one" role="tabpanel">...</div>

 <div id="panel-two" role="tabpanel">...</div>

 </div>

</div>

Adding properties to a tab pattern example

61

Adding states
Finally, we will use ARIA to define the active/inactive states of
the tabs and tabpanels with aria-selected and aria-hidden
attributes. These states would be toggled via JavaScript.

In the following example, Tab 1 has been clicked and is active.

Adding states to a tab pattern

62

<div id="my-tabs">

 <ul role="tablist">

 <li id="tab-one" role="tab" aria-controls="panel-one" tabindex="0" aria-selected="true">Tab 1

 <li id="tab-two" role="tab" aria-controls="panel-two" tabindex="0" aria-selected="false">Tab 2

<div class="tabpanel-group">

 <div id="panel-one" role="tabpanel" aria-hidden="false">...</div>

 <div id="panel-two" role="tabpanel" aria-hidden="true">...</div>

 </div>

</div>

Adding states to a tab pattern example

63

Final thoughts

64

ARIA provides methods to convey information to assistive
technology that isn’t possible with native HTML, such as
defining a place where dynamic content is loaded or the
expanded/collapsed state of a custom widget.

ARIA can extend the accessibility of native HTML

65

However, ARIA is often used as a polyfill for non-semantic
HTML or bad information architecture, such as defining
landmark roles when native HTML tags exist or correcting for
vague link text like “click here” or “read more”.

ARIA can also improve bad HTML

66

Strive to leverage well-structured and semantic native HTML
in your code and meaningful accessible text in your content
as much as possible and only use ARIA when absolutely
necessary.

Use ARIA only when necessary

67

Questions?

68

The Center for Digital Accessibility is here to provide digital
accessibility resources for campus. Please contact us at
digitalaccessibility@uchicago.edu.

Contact the CDA

mailto:digitalaccessibility@uchicago.edu

69

Slide 1

• WebAIM: Introduction to ARIA - Accessible Rich Internet Applications

• Introduction to ARIA | Web Fundamentals | Google Developers

• ARIA - Accessibility | MDN

Slide 7

• No ARIA is better than Bad ARIA - WAI-ARIA Authoring Practices 1.2

Slides 10–11, 13

• WebAIM: Introduction to ARIA - Rules of ARIA Use

Slide 12

• Design Patterns and Widgets - WAI-ARIA Authoring Practices 1.2

Slide 14

• WebAIM: Decoding Label and Name for Accessibility

Additional reference materials

https://webaim.org/techniques/aria/
https://developers.google.com/web/fundamentals/accessibility/semantics-aria
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://www.w3.org/TR/wai-aria-practices/#no_aria_better_bad_aria
https://webaim.org/techniques/aria/#rules
https://www.w3.org/TR/wai-aria-practices-1.2/#aria_ex
https://webaim.org/articles/label-name/

70

Slides 16–18

• Three main features of ARIA | MDN

Slides 26–30

• ARIA live regions | MDN

Slide 39

• Short note on aria-label, aria-labelledby, and aria-describedby

Slide 41

• Understanding Success Criterion 2.5.3: Label in Name

Slide 44

• WebAIM: Testing with Screen Readers - Questions and Answers

Slide 54

• Deque University Code Library

Additional reference materials

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#enter_wai-aria
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://www.tpgi.com/short-note-on-aria-label-aria-labelledby-and-aria-describedby/
https://www.w3.org/WAI/WCAG21/Understanding/label-in-name
https://webaim.org/articles/screenreader_testing/
https://dequeuniversity.com/library/

digitalaccessibility.uchicago.edu

Thank you!

https://digitalaccessibility.uchicago.edu

	Structure Bookmarks
	Document
	Introduction to ARIA
	Hello!
	What is ARIA?
	What is ARIA?
	Why use ARIA?
	Only use ARIA when absolutely necessary
	No ARIA is better than bad ARIA
	Five rules of ARIA use
	The first rule of ARIA is: You do not use ARIA
	Rule #1: Use native HTML when possible
	Rule #2: Don’t change native HTML semantics, unless you really have to
	Rule #3: All interactive elements must be usable with the keyboard
	Rule #4: Interactive elements must be properly semantic and visible
	Rule #5: All interactive elements must have an accessible name
	Main features of ARIA: roles, properties, and states
	Roles
	Properties
	States
	Examples: when should you use ARIA?
	Defining landmarks
	Native HTML Landmarks
	Using ARIA roles to define landmarks
	ARIA landmark roles
	When an ARIA landmark appears more than once per page
	Multiple nav landmarks
	Announcing dynamic content updates
	aria-live
	aria-live options
	aria-live and screen readers
	aria-atomic
	Creating accessible labels and descriptions
	Use ARIA when HTML labels are unavailable
	aria-label and aria-labelledby
	aria-labelledby
	aria-labelledby example
	aria-label
	aria-label example
	Constraints of ARIA labels
	ARIA labels only work on labelable elements
	ARIA labels override HTML
	ARIA labels and visible text
	Vague link text
	Fixing vague link text with aria-label
	Test with a screen reader
	Enhancing the a11y of non-semantic controls and custom widgets
	ARIA can extend the a11y of HTML
	Enhancing keyboard a11y
	Enhancing keyboard a11y
	tabindex
	tabindex="0"
	tabindex="-1"
	Retrofitting a custom button
	Semantic HTML button
	ARIA roles that go beyond native HTML
	Tabs
	Basic tab pattern
	Adding roles to a tab pattern
	Adding roles to a tab pattern example
	Adding properties to a tab pattern
	Adding properties to a tab pattern example
	Adding states to a tab pattern
	Adding states to a tab pattern example
	Final thoughts
	ARIA can extend the accessibility of native HTML
	ARIA can also improve bad HTML
	Use ARIA only when necessary
	Questions?
	Contact the CDA
	Additional reference materials
	Additional reference materials
	Thank you!

	Intro to ARIA training

