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Abstract

We propose new methodology to estimate arbitrage portfolios by utilizing infor-
mation contained in firm characteristics for both abnormal returns and factor
loadings. The methodology gives maximal weight to risk-based interpretations
of characteristics’ predictive power before any attribution to abnormal returns.
We apply the methodology in simulated factor economies and on a large panel of
U.S. stock returns from 1965-2014. The methodology works well in simulation
and when applied to U.S. stocks. Empirically, we find the arbitrage portfolio has
(statistically and economically) significant alphas relative to several popular asset
pricing models and annualized Sharpe ratios ranging from 0.67 to 1.12. Data-
mining-driven alphas imply that performance of the strategy should decline after
the discovery of pricing anomalies. However, we find that the abnormal returns

on the arbitrage portfolio do not decrease significantly over time.
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1 Introduction

Many variables have shown some ability to predict the cross section of asset returns.
This predictive power could be due to their ability to predict the cross section of sys-
tematic risk (betas); their ability to predict asset mispricing (alpha); and spurious
cross-sectional relations due to overfitting (data snooping).

An influential approach to disentangling the risk vs. alpha explanations is the
method of Daniel and Titman (1997). In their approach, assets are sorted into port-
folios based on lagged beta estimates and firm characteristics. Returns on long—short
portfolios made of long and short legs with similar beta exposure but different levels of
the characteristics measure the pure returns to the characteristics. Similarly, returns
on long—short portfolios made of portfolios with similar levels of the characteristic but
different levels of beta exposure measure the pure risk premium.

An issue with the double sorting procedure arises when the true risk coefficients
are related to firm characteristics. The regression-based estimates of systematic risk
are noisy and potentially stale estimates of the true systematic risk. This may lead
to the characteristic predicting returns, holding estimated betas constant, not because
the characteristics predict abnormal returns, but because the characteristics are better
predictors of beta (Ferson and Harvey (1997) and Berk (2000)). Regression estimates
of systematic risks are known to be relatively imprecise. The issue of staleness of
the estimates come from the fact that they are usually backward-looking functions
of unconditional covariances and variances. For example, leverage in a firm’s capital
structure implies equity betas are time-varying and that time-series changes in equity
betas will be related to changes in the firm’s leverage. Since changes in firm size, book-
to-market equity ratio, and the firm’s past price movements are correlated with leverage
changes, commonly used characteristics (such as market capitalization, book-to-market
equity ratios, and momentum) might help us predict conditional betas, over and above
the predictive power of unconditional betas. Additional issues with double sorting are
that a) the approach handles one characteristic at a time and, hence, is unable to
analyze many characteristics simultaneously and b) sorting into portfolios may mask
important variation in returns relative to using individual assets.

We propose a new methodology that can accommodate many characteristics simul-

taneously; can use individual assets, rather than portfolios; and conditions systematic



risk on the current firm characteristics. Thus, the method addresses all three issues
raised above. The projected principal components procedure (PPCA) of Fan et al.
(2016) provides the key step to separately identify the contribution of characteristics
to risk and mispricing (alpha). The original PPCA procedure is a two-stage process:
(i) projection of raw data on instruments of interest and (ii) application of PCA on
the projected data. We extend the PPCA method to address our questions as follows.
First, we give the characteristics maximal explanatory power for risk premia before we
attribute any explanatory power to alphas.! In implementing this idea, we develop a
variant of the PPCA procedure, projecting time-series demeaned asset returns (which
eliminates alpha) onto the characteristics (and polynomials of the characteristics). In
this step, we estimate the relation between factor beta and characteristics by applying
PCA to the projected returns. Then, given the estimated systematic factor loading
function, we extract the relation between alpha and the characteristics that has max-
imal cross-sectional explanatory power as well as the property of being orthogonal to
the systematic factor loadings.

To illustrate the issue of characteristics versus noisy/stale estimates of beta, we sim-
ulate an economy in which the Capital Asset Pricing Model (CAPM) holds (i.e., alpha,
or abnormal returns, are identically zero) with betas being related, cross-sectionally
to a firm characteristic. The economy is simulated for 2,000 firms and 2,000 months.
We perform month-by-month rolling sorts of assets based on market betas estimated
over the previous sixty months and the characteristic. We report average returns of
double-sorted (first on characteristic and then on the estimated beta) portfolios in Ta-
ble 1 (full details about the simulation are available in the table legend). Although the
true return generating process is the CAPM, the return differences from sorting on the
characteristic appear to be much more important (last row) than the return differences
from sorting on estimated betas (last column). Thus, the table seems to be indicating
a strong relation between the characteristic and abnormal returns in an economy in
which no abnormal returns exist. In contrast, when we apply our procedure (described
below) to this economy, we find that the relation between abnormal returns and the
characteristic is insignificantly different from zero (p-value of 0.82).

Below, we also show that when there exists any relation between alpha and charac-

Kozak et al. (2018) argue that the distinction between risk premia and abnormal returns is not
totally clear, because abnormal returns correlated with risk exposures are the only ones that would
survive arbitrage activities by investors.



teristics, one can use our method to construct an arbitrage portfolio that exploits such
a relation. Our arbitrage portfolio weights are proportional to the estimated alpha
function. We first apply our estimator in simulation and explore its finite sample prop-
erties as well as robustness to model misspecification. The estimator performs well in
simulated factor economies, which we calibrate to mimic the CRSP/Compustat panel.

We apply the procedure to U.S. stock return data using the characteristics data set
of Freyberger et al. (2018). In the implementation, we use 36 months of data to estimate
the weights of the arbitrage portfolio and then hold the portfolio for one month. We
then roll the estimation forward by one period and repeat the process. Therefore, we
obtain portfolio returns that are out-of-sample relative to the estimation period. The
procedure is out-of-sample in the sense that the arbitrage portfolio weights for period ¢
only use information from periods prior to ¢. The arbitrage portfolio has (statistically
and economically) significant alphas relative to several popular asset pricing models
and annualized Sharpe ratios ranging from 0.67 to 1.12 (depending on the number of
factors we estimate).

One possible way that data snooping could creep into the analysis is through the
selection of firm characteristics, which may be based on studies that use data over the
same sample period used to estimate the portfolio weights. As a check for this, we test
for a trend in alpha over our sample period. Data snooping would lead us to expect a
negative trend over time. We do find a slightly negative trend, but it is economically
inconsequential and not statistically significant.

Our approach allows us to make a number of contributions to empirical asset pric-
ing. First, we provide useful guidance in portfolio construction for investors who want
to eliminate exposure to the common risks and focus on exploiting the mispricing of
traded securities. Second, we address, in a unified manner, the question of “betas vs.
characteristics” in a statistical factor pricing model (a long-standing issue since Fama
and French (1993) and Daniel and Titman (1997)).2 Our approach incorporates the
cross-sectional predictive power of asset characteristics for factor betas, as in Ferson and
Harvey (1997), Connor and Linton (2007), and Connor et al. (2012) for prespecified
factor models and Fan et al. (2016) and Kelly et al. (2018) for statistical factor models.

2See Chen et al. (2018) for the extension of Daniel and Titman (1997) on various characteristics.



1.1 Related Literature

The early literature on risk-based determinants of cross-sectional expected returns is
closely linked to the Capital Asset Pricing Model (CAPM) of Treynor (1962, 1999),
Sharpe (1964), Lintner (1965), and Mossin (1966), the Intertemporal CAPM (ICAPM)
of Merton (1973), and the Arbitrage Pricing Theory (APT) of Ross (1976). There
is a large literature that relates observable firm characteristics to expected returns,
over and above those implied by extant asset pricing models. Early contributions to
this literature were made by Banz (1981) (market capitalization), Stattman (1980) and
Rosenberg et al. (1985) (book-to-market equity ratio), and Fama and French (1992) who
provide an early synthesis of findings across multiple characteristics. The explanatory
power of firm characteristics has led to alternative specifications of asset pricing models
(e.g., Fama and French (1993, 1996)) and further testing of the ability of characteristics
to explain the cross section of returns beyond that implied by the expanded set of asset
pricing models. The recent meta study by Harvey et al. (2016) provides an extensive
overview of many of the variables (coined the “zoo of new factors” by Cochrane (2011))
that the literature has produced and also raises important statistical concerns related
to multiple hypothesis testing.

A large portion of the earlier empirical literature works at the portfolio level. That
is, rather than using individual assets to test models, researchers group assets into
portfolios and conduct tests on these portfolios. Due to concerns about masking pricing
errors by portfolio grouping, Connor and Korajczyk (1988) test the CAPM and a latent
factor version of the APT using a large cross section of individual assets. Their tests
assume that idiosyncratic correlations are non-zero only for firms in the same three-digit
SIC code. Gagliardini et al. (2016) also stress that the “pre-grouping” possibly masks
important variation in alphas and betas and develop a new methodology to test asset
pricing models on individual assets. Kim and Skoulakis (2018a,b) argue in a similar
fashion and propose various asset pricing tests using large cross-sectional individual
stock data over a short time horizon. In particular, Kim and Skoulakis (2018b) estimate
the rewards of firm characteristics after controlling for the risk of a given asset pricing
model. While their interest is in the evaluation of a specific asset pricing model, we
provide a methodology to form arbitrage portfolios in a general, latent factor structure
of returns without the need to specify the factors, ex ante.

Fan et al. (2016) make a methodological contribution by bridging the gap between



purely statistical factor models and characteristic-based models. We use their contri-
bution as the basis for our analysis and extend the method to explicitly estimate and
test for possible characteristic-related mispricing. Kelly et al. (2017, 2018) develop and
apply a similar methodology, instrumented principal component analysis (IPCA). Our
work is closely related to that of Kelly et al. (2018), who also investigate the question of
whether characteristics contain information on risk loadings, mispricing, or both. They
conclude that firm-level characteristics’ ability to predict the cross section of returns is
due to their ability to predict the cross section of risk loadings rather than mispricing,
while we find that characteristics explain both risk and mispricing.

It is important to clarify the differences in economic questions between this paper
and Kelly et al. (2018). Our focus is on identifying and utilizing both the cross-sectional
and temporal relation of characteristics to risk or mispricing. Hence, we use the charac-
teristics at the beginning of each estimation sub-interval of short horizon (of three years
in our empirical work) to estimate the cross-sectional relation between alphas, betas,
and characteristics but allow the cross-sectional relation to vary across sub-intervals.
We apply the identified temporal relation to the most recently observed characteristics
to construct our portfolio weights. In contrast, Kelly et al. (2018) allow the char-
acteristics to change period by period but hold the cross-sectional relation between
characteristics and either risk or alpha constant. While the dynamics in our proce-
dure are primarily coming from changes in the cross-sectional relation between alphas,
betas, and characteristics, along with updating characteristics across sub-intervals of
time, the dynamics in Kelly et al. (2018) come from the time series of characteristics,
holding the cross-sectional relation constant. Our procedure will tend to perform better
in situations where characteristics are relatively stable (e.g., market capitalization and
book-to-market equity) but whose relation to risk and alpha changes over time. This
would be the case if risk premia vary over time or if anomalies are arbitraged away
after discovery. The IPCA procedure will tend to perform better in situations where
characteristics have important short-term dynamics (e.g., short-term reversal and the
January seasonal) but whose relation to risk and alpha is stable over time. We also
apply IPCA to form out-of-sample arbitrage portfolios using data over a short time in-
terval in simulated economies and find the abnormal returns on the arbitrage portfolio

to be noisier than those from our procedure.?

3This result does not mean that their method is deficient. Their asymptotic theory is based on



The rest of the paper is organized as follows. In Section 2, we describe our large
cross-sectional economy and propose an estimator of arbitrage portfolio weights. In
Section 3, we simulate an economy in which asset risks match those in the U.S. equity
markets and examine the performance of our estimator of an arbitrage portfolio. The
estimator performs well with empirically relevant sample sizes. In Section 4, we apply
our methodology to a large cross section of individual stocks in the U.S. equity market
and provide evidence that our arbitrage portfolio indeed generates strong profitability
after controlling for commonly used risk factors. We also test for time trends in the
abnormal returns on the arbitrage portfolio. One would expect that data mining would
lead to returns that dissipate over time. While we find a slight negative time trend, it

is not economically significant.

2 The Model

We assume that there exists a large number of securities indexed by ¢ = 1, --- | N,
and the return generating processes for those individual securities are stable for short
blocks of time (e.g., dozens of months) ¢ = 1, --- | T. We allow the return generating
process to change across time periods. The return generating process of each individual
security follows a K-factor model in which the factors are unobservable, latent factors.

In particular, the excess return of ¢-th asset at time t is generated by a factor model,
Ry,=a;+Bf+ey, i=1,--- Nandt=1,---,T, (2.1)

where B; = [Bi1 -+ Bix]| is the (K x 1) factor loadings of the i-th asset, f; is the
(K x 1) systematic factor realization in period ¢, and e;; is the zero-mean idiosyncratic
residual return of asset ¢ at time ¢t. Since our objective is to extract possible mispricing
from a large cross section of assets and construct an arbitrage portfolio, we explicitly
add a mispricing term, «;, to the return generating process (2.1). Throughout, we use
0., 1,,, and 0,,; denote the (m x 1) vectors of zeros and ones and the (m x [) matrix
of zeros, respectively. The return generating process of (2.1) is expressed compactly in
matrices:

R =al} +BF +E, (2.2)

large T. However, we intentionally design the simulation setup for small T to justify our theoretical
results and empirical applications.



where the (i, t) element of the (N x T') matrix of R is R;, respectively, a is the (N x 1)
vector of [ay - - - ay], the i-th row of the (N x K) matrix of B is 3, the ¢-th row of the
(T x K) matrix of F is f/=[f1+ -+ fk:], and the (i,t) element of the (N x T') matrix
of Eis e;;.

Our estimator is an extension of the Projected Principal Components Analysis
(PPCA) approach of Fan et al. (2016). While they allow the factor loading matrix,
B, to be a nonparametric function of firm characteristics, we allow both the mispricing,
a, and the systematic risk, B, to be functions of asset-specific characteristics. Let
X; = [zi1 --+ 2,1 be the (L x 1) vector of the characteristics associated with stock .
Define the (N x L) matrix of X, the i-th row of which is x;. We assume the following

structure for o« and B:

a=G,(X)+T,
B:Gﬁ(X>+F57

where G, (X) : RVl — RNV Gs(X) : RY*E — R¥*Eand the (N x 1) vector,
Iy, and the (N x K) matrix, I', are cross-sectionally orthogonal to the characteristic
space of X. We call G, (X) the “mispricing function” and Gg (X) the “factor loading
function.” There are a number of ways in which one could incorporate non-linearity into
the mispricing and factor loading functions. We chose X to be a large set of character-
istics, possibly containing suitable polynomials of some underlying characteristics, X*.
Hence, we treat G, (X) and G (X) as linear functions of a large set of characteristics

X. We then rewrite the return generating process (2.2) as follows:
R=(G,(X)+Tu) 17+ (Gs(X)+Ts)F +E. (2.3)

Next, we provide economic rationale on the return generating process given by (2.3).
First, we can learn about alpha and beta through G, (X) and Gg (X) even when data
are relatively infrequently observed (such as monthly) over short horizon (such as a
couple of years) by instrumenting characteristics. This is a strong advantage over other
factor extraction methods requiring large time series or high frequency observations.
Second, because we set T" as a short horizon, the process in (2.3) can be treated as a local

approximation as an unconditional model of a conditional model over a long horizon



model.* Third, the given process in (2.3) enables us to study the temporal relation of
characteristics to risk or mispricing. Many empirical researches® construct conditional
model by allowing the characteristics to change period-by-period but holding the cross-
sectional relation between characteristics and either risk or alpha constant, which is not
suitable for detecting anomalies to be arbitraged away after discovery. By estimating
(2.3) over rolling-window basis, we can learn about the dynamics of G,, (X) and Gg (X) .
Lastly, we do not need to necessarily have all important characteristics for risk and
mispricing (2.3). Because any information in the missing characteristics is captured by
I'y and I'g, our model already incorporates the possibility of misspecifying the set of
characteristics. Hence, if some important characteristics are missed, we may lose some
profit opportunities but it will not generate spurious alpha.

Note that the Arbitrage Pricing Theory (APT, Ross (1976)) implies that the sum of
squared pricing errors is finite, so that %a’ a — 0. Hence, in an economy governed by
the APT, it follows that w — 0, because 0 < w < %a’a. Allowing
for significant mispricing of assets implies the cross-sectional average of the squared

mispricing function G, (X) may be nonzero:
Assumption 1. As N — oo,

Ga (X)'Ga (X)
N

—6>0.

The above assumption specifies that the characteristics in X may contain information
about nontrivial levels of asset mispricing, a. It is beyond the scope of this paper
to examine the underlying cause of a nontrivial relation between the characteristics,
X, and a.% Assumption 1 does not imply that characteristics capture all potential
mispricing. Mispricing orthogonal to the characteristics is reflected in I',. The main
objective of this paper is to provide a method to detect the relation between X and
a while also allowing the characteristics to predict differences in systematic risk across
assets. Using the relation between X and both a and B allows us to form portfolios

that yield abnormal returns (if 6 > 0) while hedging out the systematic risk associated

4We thank Yuan Liao for pointing out this. Our approach also works under smooth transition of
X over short horizon. Simulation evidence is provided in Section 3.2.3.

SFor examples, see Kelly et al. (2018), Ferson and Harvey (1999), Ghysels (1998).

6See Jagannathan and Wang (2007), Baker and Wurgler (2006), Stambaugh and Yuan (2016),
Frazzini and Pedersen (2014) among many for potential causes of mispricing.



with the firm characteristics.
The following are standard regularity conditions on the characteristics and residual

returns.

Assumption 2. As N — 00, it holds that

(z) R % Vi and 22X — Vi, where Vi and VX are positive definite matrices,

G Gs(X)'T X'T Gs(X
(ii) B— 5 Op, W B Ogurcs Xoe B 0, =32 5 Ok, B(N) 5 Ogoxr
and —> Opr.

Condition (i) simply states that the cross section of returns and characteristics are not
redundant but well-spread over individual stocks. Condition (ii) imposes the various
cross-sectional orthogonality conditions between the mispricing function, mispricing
function residuals, factor loading function, factor loading function residuals, and resid-
ual returns.

Lastly, we assume mild restrictions to separately identify G, (X) and Gg (X). To
ease notation, we define the (T' x T) matrix Jp = Iy — & 71717, which corresponds to

time-series demeaning.

Assumption 3. As N — oo, we assume

(Z) GpX) Ga(X) — Og,
(i1) SpX)GpX) GB(X) =Ix and

(1i1) FJTF’ is a full rank (K x K) diagonal matriz with distinct diagonal elements.

Condition (i) restricts the mispricing function of G, (X) to be cross-sectionally or-
thogonal to the factor loading function of Gg(X). This assumption is without loss
of generality. If there is any correlation between G, (X) and Gg (X), the correlated
component can be assigned to the risk-based component reflected in Gz (X) by shifting
factors accordingly.” Conditions (ii) and (iii), are minor modifications of the commonly
assumed identification restrictions. Without this restriction, we cannot identify Gz (X)
separately because of the rotational indeterminacy of latent factor models. That is,
G; (X)FJr = G4 (X)H'HFJ7 for any invertible matrix H.

"For a similar restriction in literature, see equation (6) of Connor et al. (2012), who assume the
cross-sectional orthogonality between alpha and beta for identification.
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2.1 Methodology

Our Projected-PCA procedure first projects demeaned returns onto the cross-sectional
firm-specific characteristics. The factor loading function is then estimated by applying
a standard PCA procedure to the projected returns. Fan et al. (2016) show that the
estimated factor loading function converges to the true factor loading function as the
cross-sectional sample increases, even for small time-series samples. This allows us to
implement the procedure using rolling blocks of data to estimate portfolio weights for
the next month. It also allows for time variation in factor risk premia and the extent
to which any given characteristic can predict abnormal returns. We extend the PPCA
estimator to not only estimate factors, but also the mispricing function, which is not
part of Fan et al. (2016).

We achieve the goal of constructing an arbitrage portfolio in three steps. In the
first step, we demean returns and obtain an estimator of G (X) from applying Asymp-
totic Principal Components (APC) to demeaned projected returns. By demeaning the
returns, we focus purely on systematic risk not on expected returns or realized pre-
miums. In the second step, we estimate G, (X) by regressing (in the cross-section)
average returns on the characteristic space orthogonal to the estimated Gg (X) from
the first step. Although the average returns contain both mispricing and risk premiums
from systematic risks, we extract the information about the mispricing by imposing
orthogonality to the systematic risks. In the third step, we use the estimated G, (X)
to construct an arbitrage portfolio.

We define the convergence of large dimensional matrices as follows.

Definition. For two (N x m) random matrices A and B with a fixed m, we say that
as N increases A & B if as N increases = (A — B)' (A — B) 5 0,

The first step of our procedure is the estimation of Gz (X). Recall that the observed
returns in (2.3) are driven both by Gg (X) and G, (X). We eliminate the effect of
G, (X), by demeaning the observed returns:

RIr = (G (X) +To) 15Jr + (G (X) + ) F'Ir + EJrp
= (Gs (X) +T) FIr + EJr, (2.4)

where the last equality is from the property of 17.J7 = 14, (Iy — % 171%) = 1, — L1/, =

11



0’.. For further isolation of Gg(X), we project the demeaned returns of (2.4) on the
(linear) span of X by premultiplying by the projection matrix P = X (X'X) ™' X.
Then, we get

R = PRJ; = PG4 (X)F'J; + PTsF'J; + PEJ;. (2.5)

Note that PGg (X) = Gy (X), since Gg (X) is already in the linear span of X. Also,
the orthogonality of I's and X and the limits in Assumption 2(ii) make PI's and PE
negligible for large N. Hence, it holds that R = PRJ; ~ Gs (X) F'Jr with large N.
Finally, the following theorem shows that we can estimate G (X) by applying standard

principal component analysis to R.

Theorem 2.1. Let éﬁ (X) denote the (N x K) matriz, the k-th column, of which is /N
times the eigenvector of RTR’ corresponding to the k-th largest eigenvalue of RTR/, where
R is given by (2.5). Under Assumptions 2 and 3, as N increases, 6‘}6 (X) 5 Gsz(X).

To provide some intuition for the result, recall that R converges (in N) to G (X) F'J .
Therefore, % converges to G‘%T%)F’ J TF%J)V()/. From Assumptions 3(ii), w —
Ik, so each column of GBTE\}[() can be treated as an eigenvector. Furthermore, F'J7F is a
diagonal matrix by Assumptions 3(iii), and hence, each diagonal element of F'J7F can
be interpreted as an eigenvalue. Resorting to these observations, we recover Gg (X)
through the eigen-decomposition of % , as stated in 2.1.

Next, we proceed to estimate G, (X). Rather than demeaning R, as we did for the
estimation of Gg (X), we take the mean of R. by postmultiplying by the (7" x 1) vector

1178 From (2.3), the (N x 1) vector of average returns, zR17 = R, has the following

expression:
D ]- / ]_ / 1 ’
R = (Ga (X) + Fa) T]-T]-T + (Gﬁ (X) + Fﬂ) TF 1T + ?E ]-T
=Gy (X)+Ty+ (Gs(X) + 'y F + E, (2.6)

Our objective is to extract G, (X) from R. Note that simply projecting R to the
linear span of X does not work because R contains not only G, (X) but F. That is,

projecting R to the linear span of X confounds the cross-sectional predictability of

8We can weight the time series mean by post-multiplying any positive (T x 1) vector, i, such that
15i=1

12



returns due to mispricing with the predictability of returns due to factor risk premia.
Hence, we project R to the linear space of X, orthogonal to CA}[; (X). The following

theorem establishes that we can recover G, (X) with this approach.

Theorem 2.2. Define G, (X) = X0, where the (L x 1) wvector of 6 is given by the

solution of the following constrained optimization problem:
6 = arg mgin (R— XO)/ (R—X6) subject to éﬁ (X)' X6 = 0,

where (/iﬁ (X) is given by Theorem 2.1. Then, under Assumptions 2 and 3, as N
increases, Gq (X) & G, (X).

The problem in the above theorem is a conventional ordinary least square problem with
linear equality constraints and the closed form solution is easily obtained.
Alternatively, the estimator in Theorem 2.2 can be derived within the conventional

risk-adjusted approach as follows. Note that equation (2.7) can be rearranged as

R=Gs(X)F+ (G,(X)+ T, +Ts+E) (2.7)

and
R-Gs(X)F=G,(X)+ (To+IsF+E). (2.8)

Recall that our objective is to estimate G, (X). Equation (2.8) shows that we can
achieve this goal by regressing R — G (X) F on X. Because we do not directly observe
Gj (X) and F, we use ég (X) from Theorem 2.1 and estimate F by regressing R on
GB (X) , motivated by the expression (2.7). The two approaches yield identical results.

Finally, we construct an arbitrage portfolio that optimally exploits any mispricing
information in characteristics. Consider first the true but unknown (and thus infeasible)
arbitrage portfolio, w = +G, (X). Then, from (2.3), we find that the return of this

infeasible portfolio is given by

wR — (ic;a (X) Ga (X) + %Ga (X) ra) 1,

# (G0 (06 (X) + G (X T ) '+ 1.6 (X)E

From Assumptions 1-3, it is easy to verify that as N increases, + G, (X)' Gq (X) con-

13



verges to d > 0 and all other elements converge to zero such that wR 5 d1%.. The
following theorem states that the feasible portfolio, w = ﬁéa (X), achieves the same

asymptotic property.

Theorem 2.3. Define w = %Ga (X), where the (N x 1) vector of Gq (X) is given in

Theorem 2.2. Then, under Assumptions 1, 2 and 3 as N increases, WR a1/

The above theorem is the punchline of this paper: an investor can consistently recover
the arbitrage profits, should they exist, as the number of securities in the cross section
grows large. Our estimator does not require large T. Hence, we can estimate w over
one sample and calculate out-of-sample returns over a subsequent sample, as illustrated

in Figure 1. The details of the out-of-sample applications are described in Section 4.

3 Simulation

In this section we analyze the properties of our estimator in simulations. The purpose
of this exercise is three-fold. First, we illustrate the behavior of our estimator in finite
samples, similar to those of the U.S. stock market. Second, we explore the properties
of the estimator if the number of factors is not known. Third, we document that
our estimator is reasonably robust against model misspecification, in particular time-

varying characteristics.

3.1 Setup

We first describe the set of characteristics used for simulation. For the matrix X, we
consider 62 characteristics, which are available at the end of 2010, the beginning of
calibration period. The set of characteristics includes past returns such as momentum
(returns from t — 12 to ¢ — 2) and short-term reversal (returns from ¢ — 2 to t — 1),
the annual percentage change in total assets, return on operating assets, and operating
accruals (the full list is given in Table 2).

We then generate returns according to four popular asset pricing models, the CAPM,
the Fama-French three-factor model (FF3), the Hou, Xue and Zhang four-factor model
(HXZ4), and the Fama and French five-factor model (FF5). However, we depart from
those models by not restricting « to be zero. The number of factors, K, is set to the

corresponding number in each asset pricing model, i.e., K = 1 for the CAPM, K =3
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for the FF3, etc. We explore the effects of selecting too few or too many factors in later
sections.

We calibrate a;, 8;, and the variance of residual returns, o7, = E [¢2,] , of individ-
ual stocks for each of the four models from time series regression of excess returns of
individual stocks on a constant and the factor realizations over the 36-month period
from January 2011 to December 2013. For ease of interpretation, we normalize the
cross-sectional variation of «; so that the quantity ¢ in Assumption 1 corresponds to
1 basis point per month, as follows: we estimate a; from time series regression and fit

the cross-sectional relation a; = x;0 + e;. We rescale a; = ka;, where k = \/%, and

use the rescaled @; in the simulated returns (3.1). The choice of a 36-month geriod is
to follow our empirical application, in which we set Ty = 36 to estimate the arbitrage
portfolios and hold the portfolio for the following periods in an out-of-sample manner
as illustrated in Figure 1. There are 2,458 individual stocks with full time series over
the calibration sample period. Because the consistency of our arbitrage portfolios is
achieved with a large cross section of stocks, we consider N = 1,000 and N = 2,000,
which are sampled from the 2,458 individual stocks. In each repetition, we simulate
returns from

R = al;V5 + BF +E, (3.1)

where a and B are calibrated as in the above paragraph, F are bootstrapped from the
realized factors over the 600-month sample from January 1967 to December 2016, and
E are drawn from a normal distribution with the calibrated parameters as in the above

paragraph. We consider different cases of mispricing, i.e., 6 =0, 1, and 2.

3.2 Simulation Results
3.2.1 Correctly Specified Model

In our baseline scenario, we first investigate the performance of our estimator if we know
the correct number of factors. Figure 2 shows the results for using the Capital Asset
Pricing Model (upper—left panel), the Fama-French three-factor model (upper-right
panel), the Fama-French five-factor model (lower—left panel) and the Hou, Xue, and
Zhang model (lower-right panel). Our findings are consistent across all models used for

calibration. The weights of the arbitrage portfolio, w, are estimated using the returns
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overt =1,---,36, and the return of the arbitrage portfolio is computed in the following
month, ¢ = 37, as in our empirical application. That is, we use Ty = 36 and 7' = 37 in
the setup of Figure 1. We report the mean of the out-of-sample return as well as 95%
confidence intervals for each level of § = 0,1, and 2 and N = 1,000 and N = 2,000 from
10,000 repetitions. The confidence intervals are considerably narrower with N = 2,000
than those with N = 1,000. This result is empirically relevant because we can obtain
a cross section of this size in the U.S. stock market. As expected, when ¢ = 0, or there
do not exist any arbitrage opportunities, our arbitrage portfolio yields zero returns

w — 1b.p./month. Hence,

(Ga(X)VE)' (Ga(X)V0)
~ . In

on average. Recall that «a; is rescaled so that

the arbitrage portfolio is suppose to generate § = limy_,

fact, we observe that, when § = 1 or 2, the average of arbitrage portfolio returns
corresponds to the target size of § b.p./month, suggesting that our arbitrage portfolio

actually generates arbitrage profits.

3.2.2 Unknown Number of Factors

In the previous section, we used the true number of factors in extracting factor loadings
from the projected returns. In application, we do not know the correct number of
factors. Estimating the number of factors is a long-standing problem in panel-data
analysis for which many tests have been proposed, e.g., Connor and Korajczyk (1993),
Bai and Ng (2002) or Ahn and Horenstein (2013), and is a nontrivial task. We therefore
examine the effect of selecting too few or too many factors. Figure 3 reports the results
when we set the number of extracted factors to be one more than the true number
of factors. We find that the arbitrage portfolio’s performance in Figure 3 is almost
identical to those in Figure 2, where we set the number of extracted factors to be
the number of true factors. Hence, we conclude that extracting one additional factor
more than the true number does not seem to harm the performance of our arbitrage
portfolios materially. This result is not too surprising because our arbitrage portfolio
weights still achieve orthogonality to the systematic factors. In contrast, if the number
of extracted factors is less than the number of true factors, our methodology does not
guarantee that the arbitrage portfolio weights are orthogonal to betas with respect to
systematic factors. Figure 4 reports the performance of our arbitrage portfolios when
we extract one less factor than the underlying model for the CAPM, FF3, HXZ4, and
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FF5. We find that the average returns are far off from the target level and the portfolio
returns are much more volatile (presumably due to the exposure to systematic factors)
relative to the case of overestimation (Figure 3 (too many) vs Figure 4 (too few)). As
a a guideline for empirical analyses, we should therefore try to select too many rather
than too few factors, as the effects of selecting too few are far more severe than those
of selecting too many. In the empirical analysis, we will explore the variation of the

results as we change the number of factors.

3.2.3 Time-Varying Characteristics

The theory developed so far assumes that characteristics do not vary over time. In
this section, we explore how our estimator will behave if this assumption is violated.
We assume that each characteristic follows an AR(1) process. We find the AR(1)
parameters of each characteristic as follows. For each characteristic and each firm, we
have 36 observations of the characteristic over our calibration period. We estimate the
AR(1) autoregressive coefficient over this time period and the variance of the residuals
for each firm. We then determine the average AR(1) coefficient as the average across
firms and also determine the variance of the residuals (for each characteristic) in the
same way.

Across simulations, we fix the initial characteristic over the calibration period as X.
Let x;. and z; ., denote the (7, ¢) element of X and X4, respectively. Then, we generate
X, with z; .y = Tie + pe (Ti e — Tie) + 0y, where p. and o2 are the estimated AR(1)
coefficient and variance of residuals of a certain characteristic ¢, and €;; is drawn from

N (0,1) as i.i.d over i and t. We then generate Ry, the t-th column of R, as follows:
Rt = at\/g + Bft + Et:

where a; = X;_;0 and E, is the ¢-th column of E.

Figure 5 reports the performance of our arbitrage portfolios when the returns are
generated with the time-varying alpha a;_; = X0, induced by time-varying character-
istics. We find that our methodology is robust to the empirically relevant dynamics in

the characteristics.
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3.2.4 Further Robustness Checks

To further investigate the robustness of our estimator, we introduce correlated residuals.
In each simulation, we randomly construct 50 clusters of equal numbers of stocks and
generate the residual shocks so that the residual correlation between stocks in the
same cluster is 0.1 and that between stocks in different clusters is zero. We calibrate
the within-cluster residual correlation using the average correlation of residual shocks
within a same industry relative to commonly used asset pricing models such as CAPM
or FF3. The results are reported in Figure A.1 in the online appendix.

We also repeat the analysis using a different time period for calibration. In an alter-
native calibration, we use the data from the beginning of 2006 through 2008. This time
period contains the extremely volatile second half of 2008. We report these results in
the online Appendix, in Figure A.2. In addition, we provide simulation evidence of the
robustness of our method to missing characteristics. For this end, in each repetition,
we use 62 characteristics for simulating returns but drop randomly picked ten charac-
teristics for computing w. We plot the results in Figure A.3 of the online appendix.
As an additional test, we also rerun the simulations and randomly select firms with
replacement in each iteration, thereby illustrating the robustness to a slightly different
composition of the panel. Overall, the performance of the estimator is very stable across

all these modifications.

4 Empirical Application

In this section we discuss the set of characteristics and the application of our method-

ology to U.S. stock market data.

4.1 Data

The data are the same as in Freyberger et al. (2018); we use stock return data from
the Center for Research in Security Prices (CRSP) monthly file. As is common in
the literature, we limit the analysis to U.S. firms’ common equity, which is trading
on NYSE, Amex or Nasdaq. Accounting data are obtained from Compustat. As in
Freyberger et al. (2018), we use accounting data from the fiscal year ending in calendar

year t — 1 for estimation starting from the end of June of year ¢ until the end of May
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of year t 4 1, predicting returns from the beginning of July of year ¢ until the end June
of year t + 1. Table 2 provides an overview of the characteristics used for estimation of
the mispricing function and the factor loading function.

To alleviate potential concerns about survivorship bias, which may arise because of
backfilling, we require that a firm have a least two years of data in Compustat. Our
sample period is from 1965 through 2014. For the full sample, we have approximately

1.6 million observations in our analysis.”

4.2 Estimation

In the spirit of Ferson and Harvey (1994), we initially assume that the factor loading
function and the mispricing function are linear in the characteristics.!©

Figure 1 illustrates how we implement the arbitrage portfolio in an out-of-sample
manner. We estimate w with the returns over ¢ = 1,---,36, and the return of the
arbitrage portfolio is measured in the following month, ¢t = 37. We call the first period
t=1,---,36 the estimation period and the second period t = 37 the holding period.
Let Xy and X34 denote the characteristics at the beginning of estimation and hold-
ing periods, respectively. For example, we first use X, to obtain the projected and
demeaned return of R over the estimation period corresponding to Px,RJ3 in (2.5)
(from a panel regression using 36 months from January 1965 to December 1967). The
t-th column of the (N x 36) matrix R is the demeaned projected return for the ¢-th
month. Then we compute the N x N matrix % and the first K eigenvectors of the
matrix. We then project the average returns onto characteristics subject to orthogo-
nality to the estimated factor loadings as in Theorem 2.2 to obtain 6. In computing the
arbitrage portfolio weights as in Theorem 2.3 for the following month of January 1968,
we update characteristics with X34 in computing w such that w = %X;;GOA. We repeat
this process month by month until June 2014. In order to make the results comparable
in scale to common equity factors, we scale the portfolio weights so that the in-sample

standard deviation is 20% per year.

9The appendix in Freyberger et al. (2018) contains a detailed description of the construction of the
data as well as numerous references to papers that have employed these characteristics in empirical
applications.

ONote that our methodology allows for (parametric) nonlinearities, which we explore in Appendix
A. However, the results from employing these polynomial expansions are however very similar to the
linear case and are therefore relegated to the appendix.
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4.3 Performance of the Mispricing Portfolio

In this section we document the out-of-sample performance of the arbitrage portfolio.
Table 3 shows the summary statistics for returns of the arbitrage portfolio for different
numbers of eigenvectors. From Table 3 we see that the returns and Sharpe ratios in-
crease with the number of eigenvectors until about six eigenvectors. Employing more
than six eigenvectors does not seem to materially harm the properties of the portfolio,
but there also does not seem to be an improvement in any performance metric. Over-
all, the Sharpe ratios are very high, ranging from 0.67 (one eigenvector) to 1.12 (six
eigenvectors). The increase in Sharpe ratios with increasing number of eigenvectors is
driven by increasing means, not decreasing standard deviations, because the standard
deviation is always normalized to be 20% in-sample. The out-of-sample standard devia-
tion is close to the in-sample standard deviation. The table also displays the maximum
drawdown, which ranges between 34.55% and 43.86%. These drawdown numbers are
relatively moderate compared to the maximum drawdowns of common factors over the
same time period. The four factors in Fama-French-Carhart model have maximum
drawdowns of 55.71% (market factor), 52.78% (size factor), 44.68% (value factor) and
57.51% (momentum factor) over our sample period. In addition, skewness, kurtosis,
and the best and worst month are also reported in Table 3.

The large Sharpe ratios of Table 3 could be driven by high exposures to common
risk factors and therefore not be related to possible mispricing. Therefore, aiming
to understand better the abnormal performance of the mispricing portfolio, we run
a time-series regression of the arbitrage portfolio’s returns onto common risk factors.
In Tables 4 (one estimated factor) and 5 (six estimated factors), we report the risk-
adjusted returns of the arbitrage portfolio with respect to the CAPM (column 1), the
Fama and French (1992) three-factor model (column 2), the Fama-French three-factor
model augmented with the Carhart (1997) momentum factor (column 3), the Fama
and French (2015) five-factor model (column 4), the Fama-French five-factor model
augmented with the momentum factor (column 5), the Hou et al. (2015) four-factor
model (column 6) and the HXZ model augmented with the momentum factor (column
7).

We limit our main discussion to the cases in which we extract one factor (one eigen-
vector) and six factors (six eigenvectors). The results for all other cases are contained in

the online appendix. In Table 4 with one eigenvector, we can see that the alpha becomes
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larger for the Fama-French model augmented with the momentum factor because of the
arbitrage portfolio’s negative exposure to momentum. Including the momentum factor
leads to a large increase in the adjusted R? of the regression. As we increase the number
of eigenvectors, the alphas become closer across the alternative benchmarks. For ten
eigenvectors, only the exposure to the size factor, smb, remains significant. Moreover,
as we increase the number of eigenvectors, the R? of the factor models decreases. This
indicates that the return generating process is driven by multiple factors. We illustrate
the relation between out-of-sample alpha and adjusted R? and the number of eigenvec-
tors used in the estimator in Figure 6. We can see that the alpha and the R? “flatten
out” after approximately six (alpha) and four (R?) eigenvectors.

Figure 7 summarizes the correlation of the arbitrage portfolios (using 1 through
10 eigenvectors) with common risk factors. If we look at the correlation between the
arbitrage portfolios, we see that the correlation between the arbitrage portfolio with
one eigenvector and the other arbitrage portfolios drops as the number of eigenvectors
increases, albeit it never drops below 0.75. If we compare the correlation of the arbitrage
portfolios with five or more eigenvectors, we see that the correlation is consistently
high, suggesting that the portfolio does not change very much after we extract five
common factors. The correlation between the mispricing portfolios and the common
factors is relatively low except for the size factor, which again is consistent with the
factor regressions in Tables 4 and 5 and the additional factor regressions in the online

appendix.

4.4 Properties of the Arbitrage Portfolio

In this section, we explore the properties of the arbitrage portfolio more deeply. In
particular, we open the “black box” and study the firm characteristics of the companies
in the mispricing portfolio. Furthermore, we discuss the time-series properties of the
returns, the properties of the portfolio weights, as well as possible diminishing excess

returns over time.

4.4.1 Time-Series Properties

To develop further intuition about the performance of the arbitrage portfolio, we explore

its time-series properties more closely. In Figure 8 we plot the cumulative return.
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During the recent financial crisis, the portfolio indeed has negative returns in 2007
and 2008, but experiences positive returns in subsequent years. Overall, the returns
are positive in 38 out of 44 years. However, the mispricing portfolio does not have
significantly different returns during NBER recessions versus other periods. With a
simple regression of the portfolio return on a constant and an NBER recession indicator,
i.e. 1 = a+ 8 x NBER; + ¢, we obtain point estimates of & = 0.0161 (significant at
the 1% level) and B = 0.000937, with a p-value of 0.89. This strongly suggests that the
portfolio returns are not systematically related to the business cycle.

In addition, we also explore whether the excess returns of the mispricing portfolio
diminish systematically over time. In Figure 9, we plot the monthly excess returns
of the mispricing portfolio and a linear time trend. Visual inspection suggests that
excess returns do not diminish systematically over time. If we test for a time trend,
by regressing the mispricing portfolios” returns on a constant and a time variable, i.e.
r. = a+ B xt+ g, we find the following point estimates: a = 0.0233, which is
highly significant and B = —0.000025, which is not significant at the 10% level, with
a p-value approximately 11%. This confirms that the excess returns appear not to
diminish systematically over time. This finding is important in the context of the work
of McLean and Pontiff (2016) and Linnainmaa and Roberts (2018), who document
that many anomalies have become significantly weaker post publication. While it is
possible that data snooping will lead to reduced future performance of the arbitrage
portfolio, many of the predictive characteristics are the result of research done decades
ago. We conclude that the significant average excess returns are at least partially due

to mispricing of assets.

4.4.2 Firm Characteristics

In Figure 10 we show a comparison of the long and short side for nine well-known char-
acteristics for the mispricing portfolio using six eigenvectors. All of the characteristics
in Figure 10 are well-known cross-sectional return predictors: the book-to-market ra-
tio (Fama and French (1992)), the debt-to-price ratio (Litzenberger and Ramaswamy
(1979)), market equity (often referred to as “size,” e.g., Banz (1981)), profitability (re-
cently reexamined by Ball et al. (2015)), investment (Fama and French (2015)), operat-
ing accruals (Sloan (1996)), last month’s turnover (Datar et al. (1998)), and short-term

reversal as well as (standard) momentum, both of which are documented in Jegadeesh
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and Titman (1993)).

From Figure 10 we can see that the mispricing portfolio is typically long smaller
firms and short larger firms, which is consistent with the positive loading on the size
factor in Table A.4. Another clear pattern emerging from the figure is that the arbitrage
portfolio is typically long firms with low returns in the month preceding the portfolio
formation. It is, however, very remarkable that there is no noticeable pattern for
book-to-market, momentum, and investment, which is again consistent with small and
insignificant loadings on the corresponding factors in Table A.4. Interestingly, the
pattern for profitability is not very clear in the figure, but the portfolio has a significant
negative loading on the “robust minus weak” factor in Table A.4. We show the cross-
sectional comparison for all 62 characteristics in Figure A.4 in the online Appendix.

Since the mispricing portfolio tends to be long smaller firms, it is important to
analyze if the results are driven by very small and illiquid stocks. To address this
concern, we repeat the entire analysis but exclude Micro-Cap firms, which are smaller
than the 10% NYSE size quantile. Discarding all firms below the 10% NYSE size
quantile eliminates more than 10% of the firms because the average NYSE firm is
larger than the average firm on NASDAQ. In fact, the 10% NYSE size cutoff reduces
the sample size on average by 38% each month. Table 7 summarizes the results for this
exercise. The mispricing portfolio (with six eigenvectors) still produces an annualized
Sharpe ratio of 0.90-considerably larger than that of the market portfolio. Moreover,
the alphas against common factor models are still in excess of 1% per month and all
significant at the 1% level (using Newey and West (1987) standard errors). The results
are therefore not driven by very small firms and are consistent with the notion that
characteristics provide information for both factor loadings but also contain information
about mispricing. Table 8 shows a summary of the adjusted R? of the mispricing
portfolio in various factor models when we exclude all firms below the 10% NYSE
size percentile. The adjusted R? are only slightly larger than for the case of all firms,

indicating again that the main results are not driven by microcap firms.

4.4.3 Portfolio Weights

The theory does not impose any limits or discipline on the portfolio weights of the
mispricing portfolio. In the implementation, we scale the portfolio weights such that

the in-sample standard deviation of the mispricing portfolio is 20% annualized. Since
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all of the analyzing is with excess returns, we do not require the weights to sum to zero
since the portfolio is already a “zero-investment portfolio.” Artificially imposing such a
constraint will “destroy” the orthogonality between G (X) and Gﬁ (X) and therefore
render the interpretation of the mispricing portfolio problematic since we can no longer
identify mispricing and risk exposures separately. It is therefore a potential concern that
the portfolio allocates an unrealistically large amount into individual assets. In Figure
11, we plot the median, minimum, maximum as well as the 5% and 95% quantile of the
weights in each month. From the upper panel, we see that the portfolio weights were
more extreme in the very early part of the sample, in which the size of the cross section
was also considerably smaller. The largest weight (in absolute value) over the entire
sample is approximately 18%. In later parts of the sample, the weights are considerably

smaller, with the largest weights often being less than 2% in absolute value.

5 Conclusion

We propose new methodology to simultaneously recover conditional factor realizations
(returns on “smart-beta” portfolios), estimate conditional factor loadings, estimate con-
ditional alphas using firm-level characteristics, and construct arbitrage portfolios. Our
methodology extends the method of Projected Principal Components of Fan et al.
(2016) to separately identify risk and mispricing. In an extensive simulation study, we
show that our methodology works well in a finite sample and is also robust against var-
ious forms of misspecification, in particular, it does not break down with time-varying
characteristics. The methodology only requires a large cross section and can accommo-
date a short time span.

In the empirical application in the CRSP/Compustat panel from 1968 to 2014, we
find that characteristics carry significant information about mispricing despite giving
maximal explanatory power to the statistical factor model. Alphas against popular
factor models range between 1% and almost 2% per month.

We see a number of avenues for future research. A natural next step is to investigate
the properties of the estimated factors in greater detail and apply them in traditional
settings such as mutual performance measurement. Moreover, the results about non-
linear expansions of the factor loading function indicate that the transformation from

characteristics to factor loadings may be a complicated function. Exploring optimal
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transformation is also a possible direction for future research.
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A Incorporating Nonlinearities

In Section 2, we have not taken a parametric stand on the functional form of Gz (X).
In the application, we have assumed that Gz (X) is a linear function. In this section,
we briefly outline one possible way to incorporate nonlinearities into Gg (X). In Fan
et al. (2016), Gz (X)is approximated by a series expansion in a nonparametric additive
setting. The assumption of additivity (Gg(X) = >_ g(x1) + g(x2) + ... + g(x)) has
the appealing property that Gg(X) can be estimated without the so-called “curse of
dimensionality” because the rate of convergence does not depend on the dimension of
X, so that it can be estimated with many characteristics. However, it introduces a
complication in the asymptotic theory, namely that the series expansion also grows
with the cross-sectional sample size. Since our interest is primarily applied and to
avoid these technicalities, we assume that Gg (X) can be well approximated by a fixed
order polynomial expansion. In the application we will use Legendre polynomials to
incorporate nonlinearities in the estimation of Gg (X).!!

In Table A.9 we show alphas of the arbitrage portfolio against various factor mod-
els when we use fourth-order Legendre polynomials in the estimation of G (X). The
alphas are slightly smaller than in the linear specification but mostly still in excess
of one percent per month and strongly statistically significant. Table A.10 shows the
corresponding R?’s for higher-order expansions of Gg (X). Interestingly, the R?’s are
slightly lower than in the linear specification. This suggests that nonlinearities are help-
ful for estimating factors. Overall, however, the results of the higher-order expansions
are consistent with the the linear specification and do not erode the arbitrage profits.

However, they leave interesting avenues for future research.

1T egendre polynomials are frequently used in econometrics to approximate unknown functions and
fall into the more general class of “orthogonal polynomials.” We refer to Bierens’s (2014) handbook
chapter for a deep theoretical treatment of orthogonal polynomials.
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B Proofs

Let P denote the projection matrix X (X'X) " X.

Lemma B.1. Let Y be a (N xT) matriz. Assume that the first K eigenvalues of Y'Y
are distinct and strictly positive. Define F and D such that the k-th column of the (N x K)
matriz F is the eigenvector of Y'Y corresponding to the k-th largest eigenvalue of Y'Y and
the k-th diagonal element of the (K x K) diagonal matriz D is the k-th largest eigenvalue
of Y'Y. Define the (N x K) matriz A such that the k-th column of A is the eigenvector
of YY' corresponding to the k-th largest eigenvalue of YY'. Let A = YF (f"f‘>_1, where
F = FDY2. Then, it holds that

A=A

Proof The k-th largest eigenvalue of Y'Y is the k-th largest eigenvalue of YY” (see Greene
(2008) page 970). Hence, A is identified by the following two conditions:

)

)

) AA =1Ig
ii) A'Y

Y'A = D.

)

Using eigen-decomposition, we express the (7' x T') matrix of Y'Y as QVQ':
Y'Y =QVvVQ. (B.1)

Note that the (T' x K) matrix made out of the first K columns of Q is F and that the first

K diagonal elements of V correspond to the diagonal elements of D :
F=Q[Ix Ogyr_xy) and D = [Ix Oy rr)] V [Ix Opxirro)) - (B.2)
We prove the lemma by showing that A satisfies the two conditions of i) and ii) in the

—~ ~ ~ ~ [~ ~\ —1 ~ [~ ~\ —1 —~
above when we set A = A. Because A = YF (F'F) —YF (F'F) D05 — YFD 05, it
follows that

K/K — D—0.5:/E\1/Y/Y:/F\D—O.5 — D—0.5 [IK OKx(T—K)] Q/QVQ,Q [IK OKx(T—K)]/D_Oﬁ
=D [IK OKX(T—K)] Vv [IK OKX(T_K)]/Dfo"5 =D DD %5 = Ik, (B.3)
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where the second and fourth equalities are from equation (B.1) and equation (B.2), and
that

K/YY/K — D—O.5f\/Y/YY/Yf\D—O.5 — D—0.5f\/Qv2Q/f\D—U.5
=D [Ix Ok s (T—r)] QQV*QQ [Ix OKx(T—K)]/D_0'5
=D %% [Ix Ogxir_i)] V? [Ix Oxxr—i)) D™°

2
=D ([IK Ok (r—x)| V [Ix OKx(T—K)]/> D%

_ D70.5D2D70.5 — D7 (B4)

where the second equality is from equation (B.1) and the third and sixth equalities are
from equation (B.2). Finally, the two equalities of equations (B.3) and (B.4) prove the

lemma. O

Lemma B.2. Let ég (X) denote the (N x K) matriz, the k-th column of which is /N
times the eigenvector o RTRI corresponding to the first k-th eigenvalue o RTR,,

~ ~ ~~ [~ ~\—1 ~ ~
R is given by (2.5) as in Theorem 2.1. Define Gz (X) = RF <F’F) , where F = FD/2;

where

the k-th column of the (T x K) matriz F is the etgenvector of R/TR corresponding to the k-th
largest eigenvalue of %; and the k-th element of the (K x K) diagonal matriz D is the k-th
largest eigenvalue of %. Then, it holds that

(i) Gg (X) = Gg (X)

(ii) PGy (X) = G (X).

Proof Note that % = (%) (%)l and ﬁ&ﬁ = (%),<%> and that éﬁ (X) =

~ _ s~ ~\—1
VN \/%F (F’ F) . Hence, (i) directly follows from Lemma B.1.
~ ~ [~ ~\ —1 ~ [~ ~\ —1 ~
We turn to (ii). Because PG (X) = PPRI;F (F’F) — PRJ,F (F’F) = Gy (X),

(ii) is true from (i). This completes the proof of the lemma. O

Lemma B.2 shows there are two equivalent methods to estimate the factor loading matrix.

A direct approach is to calculate ég (X) by calculating the eigenvectors of the N x N matrix
% (which is not feasible for very large cross-sectional samples). The second approach is to
first estimate the factors by asymptotic principal components (Connor and Korajczyk (1986))

using the eigenvectors of the much smaller K x K matrix LNR and then to run regressions of

returns on the factors to estimate the factor loadings é/g (X).

Lemma B.3. Under Assumptions 2 and 3(ii), it holds that as N increases, % 2 JrFF 37,
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Proof From (2.5), we have that
R = I+l + 13,

where ll = PGﬁ (X) F/JT, lg = PPQF,JT and lg = PEJT. Hence,

3

Note that

1 Gjs(X) Gy (X
il = J7F ( ( )N 5 ( )> F'J; = J;FF J; (B.6)

from Assumption 3(ii) and that

1 Gs(X)'T
NZ/IZQ =JrF (W) F/JT 2) JTFOKXKF/JT = 07«1 (B7)

from Assumption 2(ii) and that

Gs (X)'E

1 /
—1I'ls = J+F

) Jr B IrFOgurIr = Opur (B.8)

from Assumption 2(ii) and that

1 X\ /x/x\ ! /XT B
Nlél? — J;F <fv> ( ~ ) < Nﬁ> F'Jr 5 JrFO0k« [ V' 0px F'Ip = Opyr

(B.9)

from Assumptions 2(i) and 2(ii) and that

1 X\ /xX'X\ ' /X'E B
Nllglg = JTF (ﬁ) ( > ( > JT ﬁ) JTOTXLVXIOLxTJT = 0T><T (B.IO)

N N N

from Assumptions 2(i) and 2(ii) and that

1 E'X\ /X'X\ ! /X'E B
Nzgzg :JT< ~ ) ( ~ > ( N )JT B I707% LV 0L x1I 7 = Orsr (B.11)

from Assumptions 2(i) and 2(ii).
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. . . . R'R P
Finally, plugging the results of equations (B.6)-(B.11) into (B.5), we have that =~ —

JrFF'Jr, completing the proof of the lemma. O

Proof of Theorem 2.1 The following seven steps complete the proof of éﬁ (X) RN G (X).

Step 1. F % J7F (F'37F) %% Recall that BB % J,FF/Jr from Lemma B.3 and F is the
(T x K) matrix, each column of which is an eigenvector of % Note that (JTF (F’JTF)_O'5)/ (JTF (F'JpF)™"
Ix and that

(3,7 (F’JTF)*O'E’)'JTFF’JT (37F (FarF) %) = FarF,

which is a diagonal matrix from Assumption 3(iii). Thus, J7F (F'J7F) "% is the (T x K)
matrix, each column of which is an eigenvector of J7FF'J7. Due to the continuity of eigen-
decomposition, it follows that F % J;F (F'J-F)~ %5

Step 2. D & F'J;F: In Step 1, we show that F'J;F is the diagonal matrix whose
diagonal elements are eigenvalues of JrFF'J7. Due to the continuity of eigendecomposition,
it follows that D % F'J7F.

Step 3. F 5 J7F: From Steps 1 and 2, it holds that F = FD%5 % JF (F'J;F) "% (F/J;F)%° =
JrF.

Step 4. F'JF (]?*’}7‘)_1 2 Ig: From Step 3, it holds that F'J 7 F (}T"i‘) B IR (PR =
Ixk.

Step 5 ég (X) = PRI,F <1‘~1’]:'~ﬂ)71 % Gy (X): Using the expression of PRIy in (2.5),
we find that

Gs(X) = Gy (X)F'IF (17"1?“) T L PIGF I (ﬁ’ﬁ)_l + PEJ,F (17"1?“)_1 ,

which gives

Gg (X) - Gg (X) = mq + mg + ms,

~ [~ ~\ —1 ~ f~ ~\ —1 ~ [~ ~\ —1
where m; = G (X) (F’JTF (FF) - IK> ;mz = PTGFIrF (FF)  andmg = PEISF (FF)

Hence,

% (éﬂ (X) —Gp (X))/ (ég (X) - Gg (X)) = i i %m;mj. (B.12)
i=1 j=1
Note that
St = (wark (F) 1) SO0 (o () )
B (I —Ig) Tx (I — Ix) = Ogxk (B.13)
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from Step 4 and Assumption 3(ii) and that

R "Gy (X)'T R
%m’lmQ - (F’JTF (F’F) - IK> B(N)BF’JTF (F’F)

P (I —1x) O Ik = Oxxk (B.14)

from Step 4 and Assumption 2(ii) and that

%m’lmg _ (F’JTf‘ (f"f‘>_l — IK>/ GB(NX)/EJTE‘ (ﬁ/ﬁ>_l

L (I —Ix) Oxxrd7F (F'I7F) ™ = 0pusc (B.15)
from Step 4 and Assumption 2(ii) and that

L, =) F/BX XX\ 7! X/Fﬁ 1w (o) !
- FF) FI,F |22 F'J F(FF)
N2 ( ™\ N N N r

B Ik0kw Vi OrxiIx = Ok xk (B.16)
from Step 4 and Assumptions 2(i) and 2(ii) and that

L, _ (PE 1z Flﬁx X'X\ 7 (X'E = () !
~mbmg = (F F) FIrF | - ) IrF (F F)

2 Ik 0k %L V' 0LxrIrF (F'I7F) ' = Ok (B.17)

from Step 4 and Assumption 2(i) and 2(iii) and that

1, -1, E'X)\ /X'X\ ! /X'E ~(~,~)—1
- - F (FF
~mhm (F F) FJT< ~ - ~— ) Ir

L (F'37F) " FIr07. V00, drF (F'IrF) ' = Ok (B.18)

Finally, plugging the results of equations (B.13)-(B.18) into equation (B.12), we have that
1 ~ !/~
3 (G (X) = 65 (X)) (G (X) - G5 (X)) B O

= é/g (X): See Lemma B.2(i).
Step 7: Gg (X) 2 Gg (X): This follows from Steps 5 and 6. O

Lemma B.4. Consider (A}g (X) defined in Theorem 2.1. Let Y be a (N x m) matriz. If
%Y’Y B Vy, a positive definite matriz, then the probability limit of %(A}lg (X)'Y is identical
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to the limit of %Gg (X)'Y.

Proof It suffices to show that G (X)'Y N 5(X)Y & 0k sm. Let Gg (X),, é/j (X);,
and Y; denote the i-th column of Gg (X), the i-th column of Gg (X), and the j-th column
of Y. Then, the (i, j) element of NGﬁ (X)'Y CA} (X)"Y has the following expression:

1 / 1 -~ / . 1 ~ / ‘
NG,B (X)iYJ - NGﬁ (X)iY] - N (GB (X)z - Gﬁ (X)z) YJ'

Using the Cauchy—Schwarz inequality, we have that

2

(3 (000~ G 0) ¥, = 5 (65000~ G 0,) (€50, - G (X),) (V37 ).

Because NY’ Y & Vy, a positive definite matrix, by assumption and Theorem 2.1 says that

/
1 (Gﬁ (X), — Gg (X).) (Gg (X), — Gg (X)Z) 20, it holds that L (Gg (X), — Gg (X)i) Y; 4
0. Hence, £G4 (X)'Y — NGﬂ (X)'Y % 0 ym, completing the proof of the lemma. O

~ !/

Lemma B.5. Consider CA}B (X) defined in Theorem 2.1. Then, as N increases, +Gg (X) R 2
F.

Proof From Lemma B.4 and Assumption 2(i), it suffices to show that Gz (X)' R 2 F.
From the expression of R in (2.3),

Gs(X)R Gs(X)Go(X)  Gg(X)'To\., [(Gs(X)Gs(X) GzX)T , Gs(X)E
ﬂN :</3 & +/3N >1T+(,8 Nﬁ +ﬂN ﬂ>F+BN .

Then, from Assumptions 2(ii), 3(i), and 3(ii), it follows that +Gg(X)'R 2 F, which in

conjunction with Assumption 2(i) and Lemma B.4 completes the proof of the lemma. O

Lemma B.6. The minimization problem in Theorem 2.2 has the following closed form ex-

pression:

~ I _ ~ ~ ~ -1 . _

0= (X'X) ' X'R - (XX) ' X'Gj (X) (Gﬁ (X)' G (X)) Gs (X)'R.
Proof We use the following Lagrangian to solve the constrained minimization problem:

min (R — X6)' (R —X6) + AGj (X)'X6.
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The first order conditions give

2X'’X  XGyX)|[6] [2XR
Gj (X)X 0 A o |

0] [ 2XX XGs(X) T axR
A | GaX)X 0 o |’

where the invertibility is guaranteed by Assumption 2(i) and the property of Paﬁ (X) =

which yields

ég (X) in Lemma B.2(ii). Then, standard block matrix inversion gives

~

0= (X'X)"'XR- (X'X) ' X'Gs(X) (éﬁ (X)' Gg (X)>_1 Gs (X)'R,

which completes the proof of the lemma. ]

Proof of Theorems 2.2 and 2.3  Recall that P = X (X'X) ' X'. From Lemmas B.2(ii)
and B.6, we have that

~

~ N ~1 . —
Ga (X) = PR - Gy (X) (Gs (X) G4 (X)) Gs(X)'R,
which in conjunction with the expression of R in (2.6) yields

G (X) — Gq (X) =01 + na + 3,

with n; for ¢ = 1,2,3 are given by ny = P (Fa+F5F+E) ny = Gg(X)F, and n3 =
~ ~ ~ -1 . _
~Gj (X) (Gﬁ (X)' G (X)) G (X)'R. Then,

3
1 /- ' 1,
+ (Ga(X) = Ga (X)) (Ga(X) = Ga (X)) = Z_ ~rinj. (B.19)
Note that
1, XTo  XTgp 1 /XT, XTs— XEI1r
Nn1n1<N+N T N "N tYNT
1
<0L+0LxKF+OLxT> (0L+OLxKF+0LxT;> =0 (B.20)
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from Assumptions 2(i) and 2(ii) and that

L, Gs(X)'Ta | Gg(X) T , Gs(X)E1r\ =
1 _ F T F
N < A TN 7T

LN (OK —‘rOKXKF—i-OKxTi)/F: 0 (B.21)

from Assumption 2(ii) and that

_ 1\’ _
B <0K + 0 uiF + 0KXT1T> F=0 (B.22)

from Lemmas B.4 and B.5 and Assumption 2(ii) and that

1 — (Gs(X) G (X)\ = p
nnz2 =F < 5 " 5 F L FF. (B.23)
from Assumption 3(ii) and that
1, o (Gs(X)Gs(X)\ Gg(X))R1y p —s
— =-F L r_FF B.24
N”2n3 ( N N T - ( )

from Lemmas B.4 and B.5 and Assumption 3(ii) and that

1, 1 R'Gs(X)Gs (X)) R1r p —ie
“nhng = =L T hEE B.2
NBBT T TN N T (B.25)

from Lemma B.5. Finally, plugging the results of equations (B.20)-(B.25) into equation (B.19),

we have that

% (éa (X) = Ga (X)>/ (éa (X) = Ga (X)) 20, (B.26)

which proves Theorem 2.2.

Next, we turn to Theorem 2.3.
w'R=wR+ (w-w)'R

We explain that wR % §1%, in the text. Hence, it suffices to show that (W — w)’ R shrinks
to zero. Let R; denote the ¢-th column of R. Using the Cauchy—Schwarz inequality, we have
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that

(G -a. <X>)]/V(Ga (X) - Ga (X)) R

where the last limit is from (B.26) and Assumption 2(i). This completes the proof of Theorem
2.3. O
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Figures and Tables

Figure 1: Out-of-sample Implementation of the Arbitrage Portfolio

Construct v’tr Hold VI:I

A A
[ | [ |

1 2 o To-1 Ty Tg+l .. T

>
>

This figure illustrates how to implement the arbitrage portfolio in an out-of-sample man-
ner. We construct w with the first set of data ¢t = 1,--- , T, and hold the constructed
portfolio of w over the second set of data t = Ty +1,--- ,T in an out-of-sample manner.
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Figure 2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correctly specified model)

v}
[N

=0 d=0 D=1 o =1 P=2 D=2 =0 D=0 D=1 o =1 =2 D=2
N =1000 N = 2000 N = 1000 N = 2000 N = 1000 N = 2000 N =1000 N =2000 N = 1000 N = 2000 N = 1000 N = 2000

II I lII I

d =0 d =0 d =1 d =1 d =2 d =2 b =0 b =0 b =1 b =1 b =2 d =2
N =1000 N =2000 N =1000 N =2000 N = 1000 N = 2000 N =1000 N =2000 N =1000 N =2000 N =1000 N = 2000

=4

This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢ = 1 to ¢t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the mispricing portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model.
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Figure 3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kyrong = Kirue + 1 (selecting too many factors)
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This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too many factors in
constructing the mispricing portfolio, i.e. Kyong = 2 for the CAPM, Kyyong = 4 for
the Fama-French three-factor model, Kyyong = 6 for the Fama-French five-factor model,
and Kyyong = 5 for the Hou-Xue-Zhang four-factor model.
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Figure 4: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kyrong = Kirue — 1 (selecting too few factors)
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This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too few factors in
constructing the mispricing portfolio, i.e. Kyong = 0 for the CAPM, Kyyong = 2 for
the Fama-French three-factor model, Kyyong = 4 for the Fama-French five-factor model,
and Kyyong = 3 for the Hou-Xue-Zhang four-factor model.
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Figure 5: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Time-Varying Characteristics
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This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the mispricing portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. Time-varying characteristics are
generated by fitting an AR(1) process to the empirically observed characteristics. The
construction is detailed in Section 3.2.4.
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Figure 6: Alpha and adjusted R? for Varying the Number of Eigenvectors
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This figure shows the monthly alpha of the mispricing portfolio against the CAPM, the
Fama-French three- and five-factor model, and their “momentum augmented” versions

for one through ten eigenvectors. The sample period is from January 1968 to June
2014.
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Figure 7: Correlation Matrix with Common Factors
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This figure shows the correlation matrix between the mispricing portfolios with 1
through 10 eigenvectors, r((l), 7“((1), . 7“&10), and the Fama-French three and five fac-
tors as well as the momentum factor. The sample period is January 1968 to June

2014.
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Figure 8: Price Path and Yearly Returns of the Mispricing Portfolio
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The top panel of the figure shows the logarithmic price path (i.e., the cumulative
returns) of the mispricing portfolio (using six eigenvectors). The areas shaded in gray
depict NBER recessions. The lower panel shows the yearly returns of the mispricing
portfolio (with five eigenvectors). The sample period is January 1968 to June 2014.
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Figure 9: Monthly Returns of the Arbitrage Portfolio 1968-2014
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This figure shows the monthly excess returns of the mispricing portfolio (six eigenvec-
tors) from 1968 through 2014 and a linear time trend (red). It is apparent that there
is no economically meaningful decline in monthly excess returns.
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Figure 10: Firm Characteristics of the Long and Short Leg of the Mispricing Portfolio
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This figure shows the normalized rank of nine cross-sectional return characteristics for
the long and short leg of the mispricing portfolio. The firm characteristics are the book-
to-market ratio, the debt-to-price ratio, market equity (size), profitability, investment,
operating accruals, last month’s volume, the return one month before portfolio forma-
tion (r2_1) and the return from 12 to 2 month before portfolio formation (r12_5). Each
month, the characteristics are normalized to be in the unit interval, i.e., the normalized
characteristics is computed as ¢, = fa;f‘f;‘f), where ¢;; denotes the “raw” characteristic
value and N, denotes the number of firms in month t. The rank normalization facili-
tates an easy comparison cross-sectionally and over time. The sample period is January
1968 to June 2014.
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Figure 11: Portfolio Weights
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This figure shows the median, minimum, maximum, and the 5% and 95% quantiles
of the portfolio weights of the mispricing portfolio (with five eigenvectors). The solid
black line is the median portfolio weight in a given month, the dark-gray area depicts
the 5% and 95% quantiles of the weights in a month and the light-gray area depicts the
monthly minimum and maximum. The upper panel shows these statistics from 1968
through 1990. The lower panel shows the statistics on the portfolio weights from 1991

through 2014.
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Table 4: Risk-Adjusted Returns with One Eigenvector

CAPM FF3 FF34+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

alpha 0.94*  0.79** 1.13% 1.09*** 1.33% 1.49* 1.51*
(0.24)  (0.19) (0.21) (0.23) (0.23) (0.24) (0.23)
mktrf 0.39***  0.26™* 0.18*** 0.19** 0.14**
(0.08)  (0.08) (0.07) (0.08) (0.07)
smb 0.82%** 0.80*** 0.68*** 0.69***
(0.12) (0.14) (0.12) (0.13)
hml 0.18 0.06 0.37* 0.18
(0.13) (0.11) (0.16) (0.12)
umd —(.38*** —0.35** —0.18*
(0.11) (0.10) (0.10)
rmw —0.55%** —0.46***
(0.11) (0.13)
cma, —0.43* —0.25
(0.24) (0.18)
mkt 0.17** 0.16**
(0.07) (0.07)
me 0.50% 0.54*
(0.11) (0.13)
ia —0.20 —0.19
(0.15) (0.14)
roe —0.91*** —0.74***
(0.14) (0.12)
Adj. R? 0.09 0.26 0.34 0.29 0.36 0.37 0.38
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (% per month) and factor loadings on the factors by Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with one eigenvector is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table 5: Risk-Adjusted Returns with Six Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 163" 1.63™  1.72"" 1.89" 1.947 1.99" 1.98"
(0.24)  (0.23) (0.24) (0.24) (0.25) (0.26) (0.27)
mktrf 0.31**  0.15* 0.13* 0.10 0.09
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.68°*  0.68* 055"  0.55"
(0.13) (0.13) (0.12) (0.11)
hml —0.09  —0.12 0.06 0.02
(0.12) (0.11) (0.15) (0.14)
umd —0.11 —0.08 0.03
(0.10) (0.08) (0.10)
rmw —0.53"*  —0.51%
(0.12) (0.14)
cma —0.34*  —0.30*
(0.20) (0.18)
mkt 0.12 0.12
(0.08) (0.07)
me 0.53%* 0.53%
(0.13) (0.13)
ia ~0.39* —0.39**
(0.16) (0.16)
roe —0417 —0.44%
(0.13) (0.14)
Adj. R 007 021 0.21 0.24 0.24 0.23 0.23
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with six eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table 6: Risk-Adjusted Returns with respect to alternative factor models.

SY MP  FF3+UMD+LIQ FF34+UMD+BAB FF3+UMD+STREV

(Intercept) — 2.04*** 1.67* 1.79*** 1.69**
(0.26) (0.24) (0.26) (0.25)
mktrf 0.02 0.13* 0.14* 0.12
(0.09) (0.08) (0.07) (0.08)
smb 0.60** 0.68*** 0.68*** 0.67*
(0.14) (0.14) (0.13) (0.14)
mgmt —0.33"**
(0.11)
perf —0.24™
(0.08)
hml —0.13 —0.05 —0.13
(0.12) (0.12) (0.12)
umd —0.11 —0.08 —0.10
(0.10) (0.09) (0.09)
ligf 0.12
(0.08)
bab —0.15
(0.11)
strev 0.07
(0.10)
Adj. R? 0.22 0.22 0.22 0.21
Num. obs. 557 557 557 557

**5p < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the several alternative
factor models. The mispricing portfolio with six eigenvectors is estimated every month using the
steps outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Figure A.1: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correlated errors)
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This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the mispricing portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. We generated correlated errors,
by creating industry clusters, with “within correlation”. Details of the data-generation
are given in Section 3.2.4.



Figure A.2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (calibration period 2006 - 2008)

DO
)

—

SRR

=0 d=0 D=1 o =1 P=2 D=2 =0 D=0 D=1 o =1 =2 D=2
N =1000 N = 2000 N = 1000 N = 2000 N = 1000 N = 2000 N =1000 N =2000 N = 1000 N = 2000 N = 1000 N = 2000
1 I

[z 1 I

d=1 ¢=1 ®=2 ®=2 =0 =0 =1 =1 ®=2 ®=2
N =1000 N =2000 N =1000 N =2000 N = 1000 N = 2000 N =1000 N =2000 N = 1000 N =2000 N = 1000 N = 2000

—_

(=}

This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean
of the arbitrage portfolio in the out-of-sample period over 10,000 simulations. In this
simulation, we use the correct number of factors in constructing the mispricing portfolio,
i.,e. K =1 for the CAPM, K = 3 for the Fama-French three-factor model, K = 5 for the
Fama-French five-factor model, and K = 4 for the Hou-Xue-Zhang four-factor model.
For this figure, we calibrate to the period from 2006 through 2008 to also cover parts
of the more volatile recent financial crisis.



Figure A.3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Missing Characteristics
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This figure shows the simulation results of the mispricing portfolio when the return
generating process is calibrated to the CAPM (upper—left panel), the Fama-French
three-factor model (upper-right panel), the Fama-French five-factor model (lower—left
panel) and the Hou-Xue-Zhang four-factor model (lower-right panel). The arbitrage
portfolio w is constructed with the returns from ¢t = 1 to t = 36, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the mispricing portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. For each repetition, we use 62
characteristics for simulating returns but drop randomly picked ten characteristics for
computing w. The construction is detailed in Section 3.2.4.
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Table A.1: Risk-Adjusted Returns with Two Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 0.96™ 091"  1.12° 117 1317 1.347 1.35"
(0.23)  (0.19) (0.21) (0.22) (0.22) (0.23) (0.22)
mktrf 0.32* 020"  0.16" 0.14* 0.12
(0.08)  (0.08) (0.07) (0.07) (0.07)
smb 0.60**  0.59"* 0.49** 0.49"**
(0.13) (0.14) (0.12) (0.13)
hml 0.01 —0.07 0.19 0.08
(0.12) (0.10) (0.14) (0.12)
umd —0.23" —0.20* ~0.10
(0.10) (0.09) (0.10)
rmw —0.46™*  —0.40"
(0.10) (0.11)
cma 043" —0.33*
(0.19) (0.16)
mkt 0.16* 0.15*
(0.07) (0.07)
me 0.40%** 0.42%*
(0.12) (0.13)
ia —0.27* —0.27*
(0.14) (0.13)
roe —0.53"  —0.44%
(0.13) (0.13)
Adj. R 008  0.19 0.22 0.22 0.24 0.24 0.24
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with two eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.2: Risk-Adjusted Returns with Three Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 1207 117 1.34" 146" 1.56™ 156" 157
(0.23)  (0.20) (0.22) (0.22) (0.23) (0.24) (0.24)
mktrf 0.327*  0.18* 0.15* 0.12 0.10
(0.08)  (0.09) (0.08) (0.08) (0.07)
smb 0.63**  0.63™* 049"  0.50"*
(0.16) (0.17) (0.14) (0.14)
hml —0.05  —0.11 0.12 0.03
(0.13) (0.12) (0.16) (0.13)
umd —0.18 —0.15 —0.05
(0.11) (0.10) (0.11)
rmw —0.55"*  —0.51%
(0.11) (0.14)
cma —0.38°  —0.31*
(0.20) (0.17)
mkt 0.14* 0.14*
(0.07) (0.07)
me 0.46%** 0.47%
(0.15) (0.15)
ia —0.31* —0.31*
(0.15) (0.15)
roe —0.48"  —(.44%
(0.13) (0.14)
Adj. R 007  0.19 0.21 0.23 0.24 0.23 0.23
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with three eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.3: Risk-Adjusted Returns with Four Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 135" 134 145" 1.63" 1.69° 1747 173"
(0.24)  (0.22) (0.23) (0.23) (0.24) (0.24) (0.25)
mktrf 0.32*  0.18"  0.16" 0.12 0.11
(0.08)  (0.09) (0.08) (0.08) (0.08)
smb 0.617*  0.61* 047 047"
(0.15) (0.16) (0.14) (0.14)
hml —0.06  —0.10 0.10 0.05
(0.13) (0.12) (0.16) (0.13)
umd —0.13 —0.10 0.02
(0.11) (0.10) (0.11)
rmw —0.57  —0.54%
(0.12) (0.14)
cma —0.38°  —0.33"
(0.20) (0.18)
mkt 0.14* 0.14*
(0.08) (0.08)
me 0.45%* 0.44%**
(0.15) (0.15)
ia —0.36* —0.36"*
(0.15) (0.14)
roe —0A47 —0.49%
(0.13) (0.14)
Adj. R 007  0.18 0.19 0.22 0.22 0.22 0.22
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with four eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.4: Risk-Adjusted Returns with Five Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha LA7T™ 146™ 158 1,73 1.80" 1.82° 1.82°
(0.24)  (0.22) (0.23) (0.23) (0.24) (0.25) (0.25)
mktrf 0.33**  0.18"  0.16" 0.13 0.11
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.617* 0.6 048" (.48
(0.15) (0.16) (0.14) (0.14)
hml —0.08  —0.13 0.08 0.02
(0.13) (0.12) (0.15) (0.13)
umd —0.13 —0.10 0.00
(0.10) (0.09) (0.11)
rmw —0.52"*  —0.50"*
(0.12) (0.14)
cma —037"  —0.32"
(0.21) (0.19)
mkt 0.15* 0.15*
(0.07) (0.07)
me 0.46*** 0.46%**
(0.15) (0.15)
ia —0.37* —0.37*
(0.16) (0.16)
roe —0.427%  —(.42"
(0.13) (0.14)
Adj. R 007  0.19 0.20 0.22 0.22 0.22 0.22
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with six eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.



Table A.5: Risk-Adjusted Returns with Seven Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD  HXZ4  HXZ4+UMD
alpha 1.64*  1.63*** 1.70%* 1.87% 1.91% 1.97% 1.96***
(0.25)  (0.24) (0.24) (0.25) (0.26) (0.27) (0.27)
mktrf 0.29**  0.13 0.11 0.08 0.07
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.70%* 0.69*** 0.56*** 0.56%**
(0.13) (0.13) (0.11) (0.11)
hml —0.09 —0.11 0.03 —0.00
(0.12) (0.11) (0.15) (0.14)
umd —0.08 —0.05 0.06
(0.09) (0.08) (0.10)
rmw —0.52%** —0.51***
(0.13) (0.14)
cma, —0.27 —0.25
(0.20) (0.18)
mkt 0.10 0.10
(0.08) (0.08)
me 0.55% 0.53**
(0.14) (0.12)
ia —0.38** —0.38**
(0.17) (0.17)
roe —0.40*** —0.45***
(0.13) (0.14)
Adj. R? 0.06 0.20 0.20 0.23 0.23 0.22 0.22
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with seven eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.

10



Table A.6: Risk-Adjusted Returns with Eight Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 163" 1.62°  1.70"" 187 191 1.96 1.96
(0.25)  (0.24) (0.24) (0.25) (0.26) (0.27) (0.28)
mktrf 0.29*  0.12 0.11 0.08 0.07
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.71%*  0.71%* 058" (.58
(0.14) (0.14) (0.12) (0.12)
hml —0.09  —0.12 0.01 —0.02
(0.12) (0.11) (0.14) (0.13)
umd —0.09 —0.06 0.05
(0.09) (0.08) (0.10)
rmw —0.53"*  —0.51%
(0.14) (0.15)
cma —0.25 —0.22
(0.19) (0.18)
mkt 0.09 0.10
(0.08) (0.08)
me 0.57%** 0.55%
(0.14) (0.13)
ia ~0.39* —0.39**
(0.17) (0.17)
roe —0.407*  —0.44%
(0.14) (0.15)
Adj. R 005  0.20 0.20 0.23 0.23 0.22 0.22
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with eight eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.7: Risk-Adjusted Returns with Nine Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 1.60***  1.59*** 1.65*** 1.83*** 1.86%** 1.93*** 1.92%**
(0.25)  (0.24) (0.25) (0.25) (0.26) (0.28) (0.28)
mktrf 0.27*** 0.10 0.09 0.06 0.05
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.71%** 0.71%** 0.56*** 0.56***
(0.14) (0.14) (0.12) (0.12)
hml —0.09 —0.11 0.01 —0.02
(0.12) (0.12) (0.14) (0.13)
umd —0.08 —0.05 0.07
(0.10) (0.09) (0.10)
rmw —0.55%** —0.54***
(0.14) (0.15)
cma —0.23 —0.20
(0.19) (0.18)
mkt 0.08 0.08
(0.07) (0.08)
me 0.55%** 0.53***
(0.14) (0.13)
ia —0.35" —0.36™*
(0.18) (0.18)
roe —0.42% —0.48*
(0.14) (0.15)
Adj. R? 0.04 0.19 0.19 0.22 0.22 0.20 0.20
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with nine eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.8: Risk-Adjusted Returns with Ten Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 1.62% 161"  1.68™ 1.86" 1.89" 1.95" 1.947
(0.26)  (0.24) (0.25) (0.26) (0.26) (0.28) (0.28)
mktrf 0.26*  0.09 0.08 0.05 0.04
(0.08)  (0.08) (0.08) (0.08) (0.08)
smb 0.72°  0.72% 057 057
(0.14) (0.14) (0.12) (0.12)
hml —0.08  —0.11 0.01 —0.02
(0.12) (0.11) (0.14) (0.13)
umd —0.08 —0.05 0.07
(0.10) (0.09) (0.10)
rmw —0.54"%  —(.53%
(0.14) (0.15)
cma —0.22 —0.20
(0.19) (0.18)
mkt 0.06 0.07
(0.07) (0.08)
me 0.56%** 0.55%
(0.14) (0.13)
ia —0.35" —0.35
(0.18) (0.18)
roe —041% =047
(0.14) (0.16)
Adj. R 004 018 0.19 0.21 0.21 0.20 0.20
Num. obs. 557 557 557 557 557 557 557

**xp < 0.01, **p < 0.05, *p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou et al.
(2015). The mispricing portfolio with ten eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.9: Alphas For Fourth Order Legendre Polynomials

# Eigenvectors CAPM FF3 FF3+UMD FF5 FEF5+UMD HXZ4 HXZ4+UMD

1 0.86  0.69 0.95 0.94 1.12 1.29 1.30
2 0.80  0.77 0.83 0.96 0.99 1.10 1.08
3 0.95 091 0.95 1.11 1.12 1.25 1.23
4 0.98  1.00 0.85 1.19 1.06 1.22 1.19
5 1.07  1.08 0.95 1.26 1.14 1.31 1.28
6 121 1.21 1.09 1.38 1.27 1.45 1.41
7 1.17 1.7 1.02 1.33 1.20 1.40 1.36
8 1.13  1.15 0.98 1.30 1.16 1.35 1.31
9 1.08  1.08 0.89 1.24 1.08 1.28 1.24
10 1.06  1.06 0.87 1.21 1.04 1.25 1.21

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama and
French (2015) and the g-factor model (HXZ4) by Hou et al. (2015). The mispricing is constructed
using one through ten eigenvectors. It is estimated every month using the steps outlined in Section
2. The sample period is January 1968 to June 2014.
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Table A.10: Adjusted R? For Fourth Order Legendre Polynomials

# Figenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 0.03 0.22 0.26 0.25 0.28 0.29 0.29
2 0.02 0.12 0.12 0.14 0.14 0.14 0.14
3 0.02 0.14 0.14 0.16 0.16 0.15 0.16
4 0.01 0.12 0.13 0.14 0.15 0.10 0.15
5 0.01 0.12 0.13 0.14 0.15 0.12 0.15
6 0.01 0.14 0.15 0.16 0.16 0.13 0.16
7 0.01 0.15 0.16 0.17 0.18 0.13 0.17
8 0.01  0.15 0.16 0.17 0.18 0.14 0.17
9 0.01 0.15 0.16 0.16 0.18 0.13 0.17
10 0.00 0.15 0.16 0.16 0.18 0.13 0.17

This table reports R? in the regression of our arbitrage portfolio on the factors by Fama and
French (1993), Carhart (1997), Fama and French (2015) and the g-factor model (HXZ4) by Hou
et al. (2015). The mispricing is constructed using one through ten eigenvectors. It is estimated
every month using the steps outlined in Section 2. The sample period is January 1968 to June
2014.
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