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Abstract 

Ecological Momentary Assessment (EMA) and/or Experience Sampling (ESM) methods 

are increasingly used in many research areas to study subjective experiences within changing 

environmental contexts. In these studies, many observations are often obtained for each 

subject, resulting in what is sometimes termed intensive longitudinal data. As a result, one 

can characterize not only a subject’s mean, but also their variance, and specify models for 

both. In this chapter, we focus on an adolescent study using EMA where interest is on 

characterizing changes in mood variation. We describe how covariates can influence the 

mood variances, and also allow for a subject-level random effect to the within-subject 

variance specification. This permits subjects to have influence on the mean, or location, and 

variability, or (square of the) scale, of their mood responses. These mixed-effects location 

scale models have useful applications in many research areas where interest centers on the 

joint modeling of the mean and variance structure. 
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Modeling Variation in Intensive Longitudinal Data 

Introduction 

Modern data collection procedures, such as ecological momentary assessments (EMA) 

(Shiffman, Stone, & Hufford, 2008; Smyth & Stone, 2003; Stone & Shiffman, 1994), 

experience sampling (de Vries, 1992; Feldman Barrett & Barrett, 2001; Scollon, Kim-Prieto, 

& Diener, 2003), and diary methods (Bolger, Davis, & Rafaeli, 2003), have been developed 

to record the momentary events and experiences of subjects in daily life. These procedures 

yield relatively large numbers of subjects and observations per subject, and data from these 

designs are sometimes referred to as intensive longitudinal data (Walls & Schafer, 2006). 

Such designs follow the “bursts of measurement” approach described by Nesselroade and 

McCollam (2000), who called for such an approach in order to assess intra-individual 

variability. In this approach, a large number of measurements are obtained over a relatively 

short time span (e.g., a week). As noted by Nesselroade and McCollam (2000), this increases 

the research burden in several ways; however, it is important for studying intra-individual 

variation and to explain why subjects differ in variability rather than solely in mean level 

(Bolger et al., 2003). In this chapter, we describe data from an EMA study of adolescents, 

where interest was on determinants of the variation in the adolescents’ moods. 

In mental health research, EMA procedures have been used in studying pediatric affective 

disorders (Axelson et al., 2003), eating disorders (Boseck et al., 2007; le Grange, Gorin, 

Dymek, & Stone, 2002), drug abuse (Epstein et al., 2009), schizophrenia (Granholm, Loh, & 

Swendsen, 2008; Kimhy et al., 2006), borderline personality disorder (Trull et al., 2008), 

stress and anxiety (de Vries, Caes, & Delespaul, 2001; Yoshiuchi, Yamamoto, & Akabayashi, 

2008), and sexual abuse (Simonich et al., 2004). Similarly, in smoking research, EMA studies 

include those studying relapse in people who are quitting smoking (Shiffman, 2005), relapse 
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among adolescent smokers (Gwaltney, Bartolomei, Colby, & Kahler, 2008), examining the 

urge to smoke (O’Connell et al., 1998), and our own EMA studies on adolescents 

(Mermelstein, Hedeker, Flay, & Shiffman, 2002, 2007). Recently, a number of review 

articles on EMA studies have been published in several diverse research areas that indicate 

the wide range of studies using EMA methods (aan het Rot, Hogenelst, & Schoevers, 2012; 

Armey, Schatten, Haradhvala, & Miller, 2015; Heron, Everhart, McHale, & Smyth, 2017; 

Liao, Skelton, Dunton, & Bruening, 2016; May, Junghaenel, Ono, Stone, & Schneider, 2018; 

Rodriguez-Blanco, Carballo, & Baca-Garcia, 2018; Serre, Fatseas, Swendsen, & 

Auriacombe, 2015; Walz, Nauta, & aan het Rot, 2014; Wen, Schneider, Stone, & Spruijt-

Metz, 2017). 

Data from EMA studies are inherently multilevel with, for example, (level-1) 

observations nested within (level-2) subjects. Thus, linear mixed models (LMMs, aka 

multilevel or hierarchical linear models) are often used for EMA data analysis, and several 

books and/or book chapters describe mixed model analysis of EMA data (Bolger & 

Laurenceau, 2013; Schwartz & Stone, 2007; Walls & Schafer, 2006). A basic characteristic 

of these models is the inclusion of random subject effects into regression models in order to 

account for the influence of subjects on their repeated observations. The variance of these 

random effects indicates the degree of variation that exists in the population of subjects, or 

the between-subjects variance. Analogously, the error variance characterizes how much 

variation exists within a subject, or the within-subjects variance. These variances are usually 

treated as being homogeneous across subject groups or levels of covariates. 

In EMA studies, it is common to have up to thirty or forty observations per subject, and 

this allows greater modeling opportunities than what conventional LMMs allow. In 

particular, one very promising extended approach is the modeling of both between-subject 

(BS) and within-subject (WS) variances as a function of covariates, in addition to their effect 
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on overall mean levels. For example, if a person’s mood is the outcome, then one can 

consider the effect of covariates on their mood level (e.g., how happy/sad they are on 

average), how similar/different they are in their mood levels to others (e.g., how 

homogeneous/heterogeneous are particular groups of subjects), as well as on their own 

variation in mood (e.g., how consistent/erratic their mood is). 

Momentary mood may be influenced by both stable trait factors and situational or 

momentary influences and contexts. A persistent debate among researchers interested in 

personality and psychopathology, for example, has been whether mood variability is a more 

stable trait or a more situationally specific state; parsing out the between-subject and within-

subject variances helps to better address this research question. Of interest to researchers has 

been whether mood variability is related to a host of standard personality traits (e.g., 

introversion, extraversion; e.g., Hepburn and Eysenck (1989)) or how much it may be 

influenced by being with others, such as contagion effects on mood (e.g., Neumann and 

Strack (2000)). Examining whether these influences on mood are more personality (e.g., 

extraversion) or situational (e.g., influenced by others) becomes possible by examining the 

effects of specific covariates on the BS and WS variances. 

Expanding on the work of Cleveland, Denby, and Liu (2000), Hedeker, Mermelstein, and 

Demirtas (2008) describe an extended LMM for variance modeling of EMA data, dubbed the 

mixed-effects location scale (MELS) model. Like all LMMs, this model allows covariates 

and a random subject effect to influence the mean response of a subject. However, this model 

also includes a log-linear structure for both the WS and BS variance, allowing covariates to 

influence both sources of variation. Finally, a random subject effect is included in the WS 

variance specification. This permits the WS variance to vary at the subject level, above and 

beyond the influence of covariates on this variance. In this chapter we more fully describe the 

MELS model, and show how it can be used to model changes in mood levels and mood 
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variation as a function of covariates. We will also describe some of the software programs 

that can be used to estimate the parameters of the MELS model towards the end of the 

chapter. A word of caution about the notation used in this chapter should be made. Because 

of the modeling of the variances, the notation of the MELS model is perhaps more involved 

than standard multilevel and/or hierarchical linear models (HLMs). For example, it is 

customary to use τ s to represent variances in HLMs, however in what follows τ s will be used 

to denote fixed-effects in the WS variance submodel. Similarly, we will use αs to represent 

fixed-effects in the BS variance submodel. We apologize for any confusion that our choices 

for notation creates. 

MELS Model 

Consider the following mixed-effects regression model (aka hierarchical linear or 

multilevel model) for the measurement y of subject i ( 1,2,...,  subjects)i N  on occasion j

 ( 1,2,..., occasions)ij n : 

  ij ij i ijy    x  , (1) 

where ijx  is the   1p   vector of regressors (typically including a “1” for the intercept as the 

first element) and   is the corresponding   1p   vector of regression coefficients. The 

regressors can either be at the subject level, vary across occasions, or be interactions of 

subject-level and occasion-level variables. In the multilevel terminology, subjects are at level 

2, while the repeated observations are at level 1. Thus, the level-2 random subject effect i   

indicates the influence of individual i  on his/her repeated level-1 measurements. The 

population distribution of these random effects is assumed to be a normal distribution with 

zero mean and variance 
2

 . The errors ij  are also assumed to be normally distributed in the 

population with zero mean and variance, 
2

  and independent of the random effects. Here, 
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2

  represents the BS variance and 
2

  is the WS variance. 

For simplicity, consider the null model with no covariates, namely, 0ij ijiy     . 

Here, i  represents a subject’s mean deviation from the population intercept 0 , the latter 

representing the population mean of the outcome variable in this model with no covariates. A 

subject’s mean is therefore 0 i  . If subjects are very similar to each other, then 0i    and 

2

  will approach 0. Conversely, as subjects differ, 0i   and 
2

  will increase from 0. 

Thus, the magnitude of the BS variance 
2

  indicates how different subjects are from each 

other in terms of their means. We refer to this as the degree of homogeneity/heterogeneity 

across subjects.  

Analogously, ij is subject i ’s error at time j , which represent deviations from their 

mean. If the observations from all subjects are all close to their means, 0ij   and 
2

  will 

approach 0. Alternatively, as the observations from subjects deviate from their means,  

0ij   and 
2

  will increase from 0. The magnitude of the WS variance 
2

  indicates how 

data vary within subjects, which we refer to as the degree of consistency/erraticism within 

subjects. 

To allow covariates (i.e., regressors) to influence the BS and WS variances, we can utilize 

a log-linear representation, as has been described in the context of heteroscedastic (fixed-

effects) regression models (Aitkin, 1987; Harvey, 1976), namely, 

     2 exp( )
ij ij  u  ,     (2) 

 

     2 exp( )
ij ij  τ .     (3) 

The variances are subscripted by i  and j  to indicate that their values change depending on 

the values of the covariates iju  and ij  (and their coefficients). Both iju  and ij  would 
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usually include a (first) column of ones for the reference BS and WS variances ( 0 and 0 ), 

respectively. Thus, the BS variance equals exp 0  when the covariates iju  equal 0, and is 

increased or decreased as a function of these covariates and their coefficients  . Specifically, 

for a particular covariate u
, if 0   , then the BS variance increases as 

*u  increases (and 

vice versa if 0   ). Note that the exponential function ensures a positive multiplicative 

factor for any finite value of  , and so the resulting variance is guaranteed to be positive. 

The WS variance is modeled in the same way. The coefficients in   and   indicate the 

degree of influence on the BS and WS variances, respectively, and the ordinary random 

intercept model is obtained as a special case if   =  = 0  for all covariates in iju  and ij  

(i.e., excluding the reference variances 0  and 0 ). 

We can further allow the WS variance to vary across subjects, above and beyond the 

contribution of covariates, namely,  

 2 exp( )
ij ij i   τ , (4) 

where the random subject (scale) effects i  are distributed in the population of subjects with 

mean 0 and variance 
2

 . The idea for this is akin to the inclusion of the random (location) 

effect in Equation (1), namely, covariates do not account for all of the reasons that subjects 

differ from each other. In this model, i  is a random effect which characterizes a subject’s 

mean, or location, and i  is a random effect which characterizes a subject’s variance, or 

(square of the) scale. These two random effects are correlated with covariance parameter  , 

which indicates the degree to which the random location and scale effects are associated with 

each other. 

A Better Understanding of the MELS Model Parameters 
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Here, we try to provide a more concrete description of the parameters of the mean and 

variance submodels with some simple illustrations. Consider, first, the modeling of the BS 

variance in Equation (2). It might seem odd that the BS variance can change depending on a 

time-varying variable, say iju . In fact, in Hedeker et al. (2008) we did not consider this 

possibility. However, this is clearly possible as we will now explain. Suppose that at each 

prompt a subject indicates whether they are alone or with others. This variable, denoted as 

Others, is therefore a time-varying (level-1) variable which could be coded 0 when a subject 

is alone and 1 if the subject is with others for that prompt. Suppose that the BS variance is 

decreased when subjects are with others. In other words, subjects are more heterogeneous in 

terms of their mood responses when those mood responses are obtained while they are alone, 

and less heterogeneous when their mood responses are obtained while they are with others. 

Figure 1 depicts such a situation. 

In Figure 1, the “alone” responses are grouped together on the left-hand side and the 

“with others” responses are on the right-hand side. Consider the solid lines first, which 

represent the mean and the effect on the mean attributable to being with others. Notice that 

the mean level is lower for alone (approximately 0) than with others (approximately 1). Thus, 

on average, being with others raises the mean level of mood by 1 unit. To represent subject 

heterogeneity, the figure presents the hypothetical data of two subjects, one below and one 

above the mean levels. These subject lines are depicted as dotted lines, and, as mentioned, 

their alone/with others responses are separated and grouped together on the left/right-hand 

side of the figure. For simplicity, only two subjects are presented, but for a real dataset there 

would be as many subject lines as there are subjects in the sample. Also, for each subject, the 

dots represent the prompt-level (level-1) responses. In Figure 1, each subject has many 

responses when alone and many responses with others, however in a real dataset the numbers 

of observations could vary considerably, both across subjects and the alone/with others 
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situations. Each subject’s dotted lines represent their mean mood level when alone and with 

others, respectively. Thus, the subject in the upper part of the figure (above the mean) has 

higher relative mood levels than the subject in the lower part of the figure (below the mean), 

both when alone and with others. Notice that the distance between the dotted lines of the two 

subjects is greater for the alone responses (a difference of about 4 units) than when the two 

subjects are with others (a difference of about 2.5 units). In other words, subjects are more 

similar to each other in their mood responses when those mood responses are obtained with 

others, relative to when they are alone. Or, the level of subject heterogeneity varies across the 

different values of the Others variable. This is precisely how a level-1 variable (Others) can 

influence the level-2 BS variance. 

In terms of a model of the BS variance, we might posit 

 2

0 1exp( )
ij ij    Others , (5) 

and according to our figure, 1 0  , since the BS variance is reduced for the “with others” 

responses (“with others” responses coded as 1, relative to the “alone” responses coded as 0). 

Notice that even though the  coefficients can be negative, the exponential function ensures 

that the resulting variance is a positive value. Also, for simplicity, here we simply have a 

single (level-1) covariate in our BS variance model, but more generally the model could 

include level-2 variables (e.g., a subject’s gender), other level-1 variables (e.g., day of the 

prompt), and cross-level interactions. 

As depicted in Figure 1, the WS (level-1) variance 
2

  is constant. Thus, the dispersion of 

the dots around the subjects’ mean levels is the same across subjects and both levels of the 

Others variable. This implies that subjects are equally consistent in their mood reports, and 

likewise that the mood responses obtained when alone or with others are also equally 

consistent. Suppose, however, that the mood responses obtained when alone vs with others 
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are not equally consistent. This would imply that the level-1 WS variance could be influenced 

by covariates, say, 

 2

0 1exp( )
ij ij    Others , (6) 

in a similar manner as the BS variance model. More generally, the WS variance could be 

influenced by covariates at level-1, level-2, or cross-level interactions. Additionally, subjects 

themselves could vary in their response consistency/erraticism, over and above the effects of 

covariates. Certainly, in terms of mood, there is likely to be a large unique subject component 

to the consistency/erraticism of their responses. To extend the WS variance model, consider 

 2

0 1exp( )
ij ij i     Others  (7) 

where i  is the random effect of subject i  on the WS (level-1) variance. More consistent 

subjects would have negative values of i , while more erratic subjects would have positive 

i  values. Similar to the random subject effects i  on the mean (or location), these random 

subject effects i  on variance (or scale) are assumed to be normally distributed in the 

population of subjects with mean 0 and variance 
2

 . 

Figure 1, with constant error variance, would assume that 
2

1 0   . Namely, there is 

no effect of Others on the dispersion of points, and all subjects have the same degree of 

dispersion (i.e., no subject heterogeneity in the WS variance). Alternatively, Figure 2 

illustrates the effects of Others and subjects on the dispersion of points (i.e., the WS 

variance). Notice that the subject in the upper part of the plot has more dispersed points than 

the subject in the lower part of the plot, for both “alone” and “with others” observations. 

Thus, the top subject is more erratic and would have a larger value of i  than the bottom 

subject. Also, for each subject, the dispersion of points is greater when subjects are alone than 
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with others, which would imply that 1 0  . To summarize the effects of the level-1 Others 

variable that is illustrated in Figure 2: it raises the mean level ( 1 0   ), while reducing both 

the level-1 and level-2 variances ( 1 0   and 1 0  , respectively). Thus, when subjects are 

with others, their mood levels are elevated, more similar to each other, and more consistent. 

A final parameter in the MELS model is the association or covariance between the 

random location and scale parameters  . Based on Figure 2, the subject in the top part has 

both a higher mean level and a greater dispersion of points, than the subject in the lower part 

of the figure. This would imply a positive covariation between these two random effects, or 

namely, 0  . 

Further Interpretation of Variance Effects 

Suppose now that the BS variance submodel includes a subject-level (level-2) variable 

iMale (coded 0 for females and 1 for males), in addition to the time-varying (level-1) variable 

ijOthers (coded 0 for alone and 1 for with others). 

 2

0 1 2p= ( )ex
ij i ij    Male Others  (8) 

Holding the variable Others constant, the BS variance equals exp( 0 ) for females, and 

exp( 0 1  ) for males. The ratio of the BS variances (male to female) equals exp( 0 1  )/ 

exp( 0 ) = exp( 1 ). Thus, exponentiating the slope parameters in the BS variance model 

yields variance ratio interpretations: the ratio of the BS variances for a unit change in the 

regressor. This is akin to the interpretation in a Poisson regression model (see Chapter 8 for 

example), which also has a log link function, in which the exponentiated slopes have rate 

ratio interpretations. Similarly, the exponentiated slopes in the WS variance submodel 

represent ratios of the WS variances for a unit change of the regressor. Thus, for the variance 
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submodels, reporting of the variance ratios (exp for BS variance, and exp for WS 

variance), along with 95% confidence intervals, can be useful. Notice that a variance ratio of 

1 would imply no effect of the variable on the variance, so if the 95% confidence interval 

includes 1 then the variable does not have a statistically significant effect at the 0.05 level. 

Coding of Regressors 

The mean, BS variance, and WS variance submodels are all regression models, and so the 

coding of the regressors is an important aspect to consider. For example, in the BS variance 

submodel above, if both regressors Male and Others are dummy-coded variables (0 or 1), 

then 0 represents the BS variance when females are alone (i.e., when both regressors equal 

0). Alternatively, if both variables were coded 1 or 2, then the slopes would be the same, but 

the intercept 0 would represent the BS variance when both variables equal 0 (which does not 

occur). 

For continuous regressors, the coding of the variables is perhaps of greater consideration. 

Suppose that instead of a subject’s sex, we included their age in the model: 

 2

0 1 2  ex ( )p
ij i ij     Age Others . (9) 

In this case, 0 would represent the BS variance when a subject aged 0 is alone. Such an 

interpretation is often an extrapolation outside of the data range (unless, perhaps, one was 

studying infants). Thus, for a continuous variable like Age it often makes sense to subtract off 

the lowest level in the sample, or to center the variable around its mean. This is especially 

important if one includes interactions. For example, suppose we included an interaction of 

age by being with others: 

 1 2 3

2

0( )  exp
ij ii iij j        Age Ot Age Other rshe s . (10) 
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Here, with the interaction in the model, the main effect of Others 2( )  represents the effect 

of being with others versus being alone for subjects of zero age. Again, in most studies this 

would be an extrapolation away from the data range, and essentially uninterpretable. 

Subtracting off the sample’s low value or its mean from iAge  greatly helps here, so that 2

would represent the effect of being with others versus being alone for subjects at the lowest 

or mean age level. Also, the scaling of continuous regressors is worth considering. For 

example, one might want to express the age variable in deciles, say iAge /10, so that the 

coefficients associated with age pertain to a 10-unit change in age (rather than a unit change 

in age). These considerations can lead to more interpretable results, as well as ease the 

computational complexity inherent in estimation of the model parameters. 

Between-Subject and Within-Subject Effects 

As is well-known in the multilevel literature, the effects of time-varying (level-1) 

variables can be decomposed into BS and WS effects (Hedeker & Gibbons, 2006; Neuhaus & 

Kalbfleisch, 1998; van de Pol & Wright, 2009). For example, suppose we are considering the 

following mean submodel for our modeling of mood ( ijy ): 

 0 1 2ij i ij ijiy        Age Others . (11) 

Suppose that we obtain a positive effect for ijOthers (i.e.,
2

ˆ   0  ).  Does this indicate that (a) 

mood is elevated for a subject when they are with others, or does it indicate that (b) the 

average mood is elevated for subjects that tend to be with others to a greater extent? This 

latter interpretation (b) is the BS effect, namely the association between a subject’s average 

mood ( iy ) and their average of being with others ( iOthers ). In this case of a dummy variable, 

this average would be the proportion of prompts that a subject reports being with others. The 

former interpretation (a) is the WS effect, or the relationship for a given subject momentary 
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mood (
ij iy y ) and being with others ( ij iOthers Others ), relative to their averages on both 

variables. In Equation (11) above, it is assumed that the BS and WS effects (of being with 

others) are equal. This may not be the case, and in EMA studies it is often the momentary or 

WS effect that is of greatest interest. To allow for separate BS and WS effects, we simply 

augment the model in the following way: 

 0 1 2 3( )i iij i ij ijiy           Age Others Others Others . (12) 

Here, 2 represents the BS effect and 3 is the WS effect of the time-varying ijOthers

variable. Because the model of Equation (11) is nested within the model of Equation (12), 

under the assumption that the BW and WS effects are equal, one can use a likelihood-ratio 

test to assess this assumption. However, because of the primary interest in the WS effect in 

EMA studies, the model of Equation (12) would generally be preferred, regardless of the 

results of such a test.  

This decomposition can also be applied to the variance submodels, for example: 

 2

0 1 2 3exp( ( ))
ij

i ii ij        Age Others Others Others , (13) 

for the BS variance. Here, the BS effect 2  characterizes heterogeneity/homogeneity for 

subjects that are more/less with others. The WS effect 3  is what is depicted in Figure 2, 

namely the degree to which subject heterogeneity (dispersion of the dotted lines) is affected 

when a subject is with others, relative to being alone. Similarly, the WS variance submodel 

can include WS and BS effects of time-varying (level-1) variables: 

 2

0 1 2 3exp( ( ) )
ij

iij iii         Age Others Others Others . (14) 

The BS effect 2  represents the degree of consistency/erraticism comparing subjects with 

different levels of being with others, while the WS effect 3  reflects consistency/erraticism 
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differences when a subject is with others, relative to being alone. Again, the WS effect is 

depicted in Figure 2, in which subjects display more consistency in their responses when they 

are with others. 

Variance-Covariance and Standardization of the Random Effects 

The random location i and scale i  effects follow a bivariate normal distribution (in the 

population of subjects) with means equal to 0 and variance covariance matrix   given by:  

 
2

2

 

 

 

 

 
   

 
. (15) 

Here, 
2

  is the variance of the location effects, 
2

  is the variance of the scale effects, and 

  is the covariance of the two. For estimation of the model parameters, it is beneficial to 

standardize the random effects (i.e., as standard normals). The reason for this is that the 

maximum likelihood solution requires integration over the bivariate normal distribution of 

the random effects, and this is facilitated if the random effects are always in standardized 

form, rather than taking on a different unstandardized form for each dataset. To standardize 

the random effects, we can use the Cholesky factorization (Bock, 1975), or matrix square-

root, of the variance covariance matrix, namely  SS , where S is the lower triangular 

Cholesky factor (or matrix square-root). 

 
1 1 1

2 2 2
2 3 2 2

00
      

/ /

ij

ij ij

iji i i

ij iji i i

s

s s
   





  

     
 (16) 

Here, 1i and 2i are the standardized location and scale random effects, respectively, with 

means of 0 and variances of 1. In this representation, the Cholesky elements 1ijs , 2ijs , and 3ijs  

would be estimated, and subscripts i  and j are included on these elements because the BS 
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variance 2

ij can vary across subjects and/or occasions. The model can now be written as  

 1 1 ij ij ij i ijy s    x   (17) 

where 
1 exp( )

ij ij ijs    αu , and the errors 
ij have variance given by 

 2

2 1 3 2exp( )
ij ij ij i ij is s    τ . (18) 

In this representation, the covariance of the random effects (  ) is obtained as the product 

of the Cholesky elements 1 2 ij ijs s , and the variance of the random scale ( 2

 ) equals 

2 2

2 3 ij ijs s . 

Alternative formulation for association of location and scale 

Suppose that instead of allowing the location and scale random effects to be correlated, 

we assume that they are independent (i.e.,  = 0, and therefore 2ijs = 0), but that the location 

random effect 1i explicitly influences the WS variance. In this case, the WS variance could 

be expressed as 

 2

1 2( )exp
ij l i iij     τ    . (19)    

where the regression coefficient l  represents the (linear) influence of the location random 

effect 1i on the (log of the) WS variance. These two models of the WS variance are 

essentially the same, although in Equation (18) the parameter 2ijs is indicative of the 

covariance between the random location and scale effects, whereas in Equation (19) the 

parameter l  represents the effect of the random location effect on the WS variance. Also, the 

Cholesky element 3ijs  in Equation (18) is replaced by the (simpler) square root of the random 

scale   in Equation (19). We have merely shifted from a correlation-like association 



MODELING VARIATION 18 
 

 

 

between the mean and variance to a regression setting in which the mean influences the 

variance. 

Although equivalent in the present case, the latter representation can be more easily 

generalized to represent various forms of the relationship between the random location effect 

and the WS variance. For example, one can easily extend the model to allow for a quadratic 

relationship, namely, 

 2 2

1 1 2x ( )e p
ij ij l i q i i       τ    . (20) 

Here, l  and q  represent the linear and quadratic effect, respectively, of the random location 

effect 1i on the (log of the) WS variance. A quadratic relationship between the mean and 

variance would seem to be useful for rating scale data with ceiling and/or floor effects, where 

subjects that have mean levels at either the maximum or minimum value of the rating scale 

also have near-zero variance. For example, if the rating scale goes from 1 to 10, then any 

subject with a mean level near either 1 or 10 would almost certainly have a very small 

variance, giving rise to the potential for a quadratic relationship between the mean and 

variance. In this regard, the program MIXREGLS (Hedeker & Nordgren, 2013) allows for 

three possibilities: (1) no association (  0)l q   ; (2) linear association only 

( 0,  0)l q   ; and (3) linear and quadratic association ( 0,   0)l q   . 

Intraclass correlation 

The expectation of ijy , ( )ijE y , is simply ijx  , as in an ordinary multiple regression 

model. Given that the MELS model allows extensive modeling of the BS and WS variances, 

the variance of ijy  is a bit more involved. For example, for the situation in which the random 

location 1i  has a quadratic effect on the WS variance ( . .,  0)qi e   , the variance of ijy  varies 

as a function of the random location effect. However, for the simpler situation in which 
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 0q   (i.e., the random location 1i  has only a linear effect on the WS variance), the variance 

of 
ijy  is given by 

 2 21
( ) exp( ) exp

2
( [ ])ij ij ij lV y  u    . (21) 

This is the sum of the contributions of the BS and WS variance submodels. Within the latter, 

the factor is 
1 2 2

2
[ ]l    based on the expectation of log-normally distributed variables 

(Skrondal & Rabe-Hesketh, 2004). The covariance for any two observations j  and j  that 

are nested within the same subject i  (e.g., two different observations made on the same 

subject) equals  

 2( , ) exp( ) for 
ijij ij ijC y y j j u  . (22) 

As in an ordinary random-intercept multilevel model, this is simply the BS variance. 

However, here, because the BS variance is modeled in terms of covariates it can vary across 

values of these covariates iju . Expressed as a correlation, this yields the intraclass correlation 

(ICC), denoted as ijr ,  

 
1 2 2

2

exp

exp exp [ ]

( )

( ) ( )

ij

ij

ij ij l

r

 




  

u

u



  

 (23) 

Note that the ICC, which is equal to the BS variance divided by the sum of the BS and WS 

variance, represents the proportion of total unexplained variation that is at the subject level. 

Here, the word unexplained refers to the residual variation of the dependent variable not 

explained by the mean submodel covariates x. In the MELS model, the ICC can be obtained 

for specific values of the covariates  and ij iju  , which can include both time-invariant and 

time-varying covariates. This is why r  carries both i  and j  subscripts in Equation (23). 
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Thus, another use of the MELS model can be to examine the degree to which the ICC varies 

across particular covariate values, or sets of covariate values. 

Example 

Data for the analyses reported here come from a longitudinal, natural history study of 

adolescent smoking (Mermelstein et al., 2002). Students included in the study were either in 

8th or 10th grade at baseline, and self-reported on a screening questionnaire 6-8 weeks prior 

to baseline that they either had never smoked, but indicated a probability of future smoking, 

or had smoked in the past 90 days, but had not smoked more than 100 cigarettes in their 

lifetime. Written parental consent and student assent were required for participation. The data 

collection modalities included self-report questionnaires, a week-long time/event sampling 

method via palmtop computers (EMA), and in-depth interviews. Data for the current analyses 

came from the EMA portion. Adolescents carried the hand held computers with them at all 

times during the 7 consecutive day data collection period and were trained to both respond to 

random prompts from the computers and to event record (initiate a data collection interview) 

smoking episodes. Questions included ones about place, activity, companionship, mood, and 

other subjective items. The hand-held computers date and time-stamped each entry. For the 

analyses reported, we treated the responses obtained from the random prompts at baseline. In 

all, there were 17,402 random prompts obtained from 510 students with an approximate 

average of 34 prompts per student (range = 3 to 58). 

The dependent variable considered is a measure of the subject’s negative affect (NegAff) 

at each random prompt. This measure consists of the average of several individual mood 

items that were identified via factor analysis. Each item was rated from 1 to 10 with higher 

values indicating higher levels of negative mood. Over all prompts, and ignoring the 

clustering of the data, the marginal mean of NegAff was 2.41 (sd=1.49). Of interest is the 
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degree of heterogeneity in this mood measure in terms of both WS and BS variation. To get a 

sense of this, Figures 3-4 provide histograms of the subject-level means and variances, 

calculated for each subject based on their negative affect responses. The variances are 

expressed on the natural log scale to reflect the metric in which they will be modeled. Notice 

that both means and variances vary rather considerably across subjects. Modeling of the BS 

variance will attempt to relate covariates to the variability in the distribution of the subject 

means of negative affect depicted in Figure 3. In other words, what might be related to the 

homogeneity/heterogeneity in subject mean levels of negative affect. Similarly, modeling of 

the WS variance will examine if there are covariates that are related to the variability levels in 

the distribution of the subject variances of negative affect depicted in Figure 4. This might 

help us better understand the factors that explain why subjects are more/less consistent/erratic 

in negative affect. 

To begin, we will estimate a null model with no covariates, and no association between 

the random location and scale effects. This can be written as: 

 0 1ij i ijy      , (24) 

with 

 2

0exp( )
ij  , (25) 

and 

 2

0exp( )
ij i    . (26) 

For consistency, we include the subject and occasion subscripts i  and j , respectively, on the 

variances in the above equations, though without covariates, the BS variance does not vary 

with i or j and the WS variance only varies with i (subjects). The estimates from this model 
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are 0
ˆ 2.407(se 0.034)   , 0

ˆ 0.164(se 0.049)    , 0̂ 0.074(se 0.049)    , and 

ˆ 1.061(se 0.038)   .  In contrast to a null multilevel model, here the BS and WS variance 

parameters are estimated on the log scale ( 0 0
ˆ ˆand   , respectively), and this model 

additionally includes the random subject scale effect (whose contribution is estimated as the 

standard deviation ˆ
 ).  Here, the mean negative affect is estimated as 2.407, and following 

Equation (21), the BS variance is estimated as exp(−0.164) = 0.849, and the WS variance is 

estimated as exp(−0.074 + 0.5 × 1.0612) = 1.630.1 

Using Equation (23), an estimate of the intraclass correlation is obtained as: 

  0.849  1.630  0.342ijr    , (27) 

which indicates that approximately one-third of the variation in negative affect is at the 

subject level. Notice that, without covariates in the variance submodels, the ICC does not 

vary with subjects or occasions, and so the subscripts i  and j  are, strictly speaking, not 

necessary here. 

From this null model, it is interesting to examine the estimates of the random scale 

effects, since these random scale effects are a distinguishing feature of the MELS model 

relative to a standard multilevel model. As in multilevel models, the random effects are 

estimated using empirical Bayes estimation. Figures 5-7 provide histograms of the observed 

data for selected subjects with low scale, average scale, and high scale, respectively. In each 

of these histograms, estimated values of the location and scale random effects are listed as 

“Loc” and “Scale,” respectively, and the number of observations for each subject is listed as 

                                                      
1 Estimates from a null multilevel are similar:  

2 2

0
ˆ ˆ ˆ2.435, 0.869,  and 1.379.

 
       
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“n.” Since the random effects are expressed as standard normals, these estimates are akin to z-

values. The y-axis in these histograms represents percentages of each subject’s responses, 

with maximums of 100%, 60%, and 40% for the three figures, respectively. Figure 5 provides 

histograms of six subjects with very low scale estimates (-3 to -5.5), who also have very low 

location estimates (approximately -1.5). Notice that these are subjects with the bulk of their 

responses in the lowest level of negative affect. Thus, they are very consistently low in their 

negative affect responses. Figure 6 includes subjects with near-zero estimates of scale, and 

with various levels of location. These subjects provide average levels of variability in their 

negative affect responses. Finally, Figure 7 includes subjects with high scale estimates 

(approximately 1.7 to 1.9), and with various positive location estimates. These are subjects 

who are more erratic in their negative affect responses, largely providing responses across the 

entire range of negative affect. Note that a standard multilevel model would assume that all 

subjects have the same level of dispersion across the response categories, but these plots 

clearly indicate that subjects do differ in terms of their consistency/erraticism in negative 

affect. 

Building from the null model, in terms of covariates, we will examine GenderF, which is 

a subject (level-2) covariate coded 0 for males and 1 for females, Others, which is a time-

varying (level-1) covariate coded 0 if the subject was alone or 1 if with others, Age15 which 

is the subject’s age at baseline minus 15 (since the average age in the sample was 14.93), and 

COPEc, which is a grand-mean centered version of a coping scale measurement at baseline. 

For the prompt-level variable Others, we created both a BS and WS version (Others_BS and 

Others_WS) as described in the preceding section, namely ( )ij i ij iX X X X   .  Here, 

Others_BS, the first term on the right-hand side, equals the proportion of random prompts in 

which a subject was with others, and Others_WS, the latter term on the right-hand side, is the 
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prompt-specific deviation relative to a subject’s proportion.  Thus, it equals 0  or 1i iX X   

if the subject was alone or was with others, respectively, for the given random prompt. 

Finally, the time of the prompt was recorded and the following indicators were created and 

treated as covariates: 9am-2pm, 2pm-6pm, 6pm-10pm, and 10pm-3am; leaving 3am-9am as 

the reference time indicator. All covariates were included in the mean, BS and WS variance 

submodels. 

Table 1 lists the maximum likelihood estimates, standard errors, z-, and p-values for these 

regressors in terms of the (a) mean submodel, (b) BS variance submodel, and (c) WS 

variance submodel. For the mean submodel, all of the time interval effects are positive, but 

only the first two are statistically significant. The estimated effects for these two intervals 

equal 0.054 ( 2.25, .024)z p  and 0.063  2.56,   .01)(z p  , respectively. Thus, though 

these effects are not large, negative affect is significantly elevated during 9am-2pm and 2pm-

6pm, relative to the early morning period of 3am-9am. For the Others variable, both the BS 

and WS versions indicate diminished negative affect ( 3.08,  0.002,z p    and 

 10.83,  0.001z p    respectively). Thus, being with others to a greater extent (higher on 

Others_BS) as well as the momentary effect of being with others (Others_WS) decrease 

negative affect. Neither age nor gender have significant effects on negative affect, but the 

coping variable does 8.03,  0.001)(z p   , with higher coping scores leading to lower 

negative affect. 

Turning to the effects on the BS variance, most of the variables do not have statistically 

significant effects. There are two notable exceptions: being with others (Others_WS) and 

higher scores on the coping variable decrease subject heterogeneity ( 6.83,  0.001z p   , 

and 6.90,  0.001z p   , respectively). 

For the effects on WS variance, nearly all variables have significant effects. All time 
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interval effects are positive indicating increased WS variability in the mood responses 

relative to the early morning reference period of 3am-9am (all have 0.001)p  . Being with 

others to a greater extent (higher on Others_BS) as well as the momentary effect of being 

with others (Others_WS) decrease WS variation on negative affect 3.13,  0.002(z p   , 

and 7.25,  0.001z p   , respectively). Females exhibit greater WS variance on negative 

affect ( 3.32,  0.001)z p  , while higher values of coping lead to diminished WS variance 

( 4.88,  0.001)z p   . Finally, in terms of the random scale effect, it is highly significant 

( 25.64,  0.001)z p   indicating that subjects exhibit different degrees of 

consistency/erraticism on negative affect, over and above the covariate effects on the WS 

variance of this outcome. Also, the location effect on the WS variance is positive and highly 

significant 16.22,  0.001)(z p  , indicating that subjects with higher levels of negative 

affect are more erratic, and that subjects with lower levels of negative affect are more 

consistent in their responses. The latter is suggestive of a floor effect of measurement in that 

subjects with below-average means on negative affect (say means of 1 or 2) must be 

consistent in their responses in order to have such a low mean. 

Table 2 lists the exponentiated estimates, and 95% confidence limits, of the effects in the 

BS and WS variance submodels. For the intercepts in these submodels, the exponentiated 

values represent the reference BS and WS variance, respectively. Namely, the variances when 

all of the regressors equal zero. In the present case, for the BS variance, that would 

correspond to the 3am-9am time interval for males aged 15 with average coping values who 

are always alone. For the WS variance, it would also be for subjects with average levels of 

both the random location and scale effects. For the regressors, as mentioned above, the 

exponentiated estimates correspond to variance ratio estimates which indicate the ratio of 

variance per unit increase in the regressor. For example, for genderf it is the (estimated) BS 
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(or WS) variance for females divided by the same quantity for males. In this metric, if the 

95% confidence limit includes a ratio of one, then the variable’s effect is not statistically 

significant at the α = 0.05 level. For the effects on the BS variance, only Others_WS and 

COPEc have intervals that do not include one. Thus, when subjects are with others the BS 

variance is reduced by a factor of 0.74. In percentage terms, this would represent a 100-74 = 

26% reduction in subject heterogeneity (in the mean levels of negative affect). Conversely, a 

unit increase in coping leads to a 58% (100-42) reduction in the BS variance. The standard 

deviation for the coping variable equals 0.54, so a unit change on coping represents a large 

change (i.e., nearly a two sigma change on coping). As noted, nearly all variables had 

significant effects on the WS variance, and so the corresponding CIs do not include unity. For 

the time intervals, with 3am-9am as the reference, we see increases in subject erraticism of 

19%, 28%, 35%, and 43% for the four time bins, respectively (the variance ratios are 

multiplied by 100 and then 100 is subtracted off to yield the percentage increases in WS 

variance). Subjects who are always with others are 61% (100-39) less erratic than subjects 

that are always alone. When a subject is with others, they are 20% (100-80) less erratic than 

when they are alone. Females are 34% (134-100) more erratic than males, and a unit increase 

in coping leads to a 32% (100-68) reduction in WS variance. 

Figure 8 presents coefficient plots for the covariate effects on the mean, BS, and WS 

variance submodels, including 95% confidence intervals (CIs). These plots are useful as a 

visual representation of the regressor effects. For the effects on the mean submodel, the figure 

indicates the estimated regression coefficients, 95% CIs, and a reference line of zero. If the 

CI does not include zero for a variable, then that variable’s effect is statistically significant at 

the two-tailed 0.05 level. For the BS and WS variance submodels, the plots provide estimates 

of the variance ratios associated with each variable, and their corresponding 95% confidence 

intervals. As mentioned, if the CI for a variance ratio includes one, then the effect of that 
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variable is not statistically significant at the two-tailed 0.05  level. As we have already 

interpreted the effects of this analysis, we will not repeat that here. However, there are a few 

things that the plots help to reveal. For example, it is apparent that the CI for Others_BS is 

quite large in all submodels. The scaling of this variable plays a role here, as the effect is for 

a unit change on this variable. For Others_BS, this represents a comparison of a mean of 1 on 

Others_BS versus a mean of 0 on Others_BS. In other words, comparing subjects who are 

always with others to subjects that are always alone. Clearly, a different scaling of this 

variable might yield a more interpretable effect for this variable (e.g., a change of say .1 on 

this variable, rather than a unit change). The plots also reveal how a variable’s effect on the 

three submodels might behave similarly (or not). Thus, both coping and being with others 

have a consistent negative effect on the mean, BS variance, and WS variance. 

Software 

In terms of the major statistical packages, Hedeker and Mermelstein (2012) and the 

supplemental materials of Hedeker et al. (2008) and Li and Hedeker (2012) provide examples 

of SAS PROC NLMIXED code. Unlike many software procedures, SAS PROC NLMIXED 

includes programming features and requires starting values for all model parameters. For this, 

it is advisable to estimate somewhat simpler models to get reasonable starting values for most 

of the model parameters. For example, using SAS PROC MIXED (or some other standard 

software program for multilevel models) can provide good starting values for the regression 

coefficients and some of the variance parameters. Another software option for the MELS 

model is the free stand-alone MIXREGLS software program (Hedeker & Nordgren, 2013).2 It 

runs on the Windows operating system and the manual describes program usage, including 

how it can be accessed via R. Also, Leckie (2014) provides software to run the MIXREGLS 

                                                      
2 This program is available at the website: https://voices.uchicago.edu/hedeker/mixwild_mixregls 
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program from within Stata. The analyses presented in this chapter were done using 

MIXREGLS, while the coefficient plots in Figure 8 were obtained using the coefplot module 

developed in Stata (Jann, 2014). An extension of MIXREGLS, that includes a graphical user 

interface (GUI), has recently been developed and is also accessible at the aforementioned 

website. This program, named MixWILD (Dzubar et al., 2020), allows for multiple random 

location effects (i.e., random slopes), and is available for both the Windows and Mac OS X 

operating systems. SAS PROC NLMIXED, MIXREGLS, and MixWILD all use full-

likelihood estimation; details are provided in the Appendix of Hedeker and Nordgren (2013). 

Another option for estimation is the use of Bayesian software. For this, Rast, Hofer, and 

Sparks (2012) describe estimation using BUGS/JAGS software. Similarly, Leckie, French, 

Charlton, and Browne (2014) discuss Bayesian estimation using the Stat-JR statistics package 

(Charlton et al., 2013) for an example with clustered data (students in neighborhoods). Lin, 

Hedeker, and Mermelstein (2018) provide code and details using Stan in the supplemental 

materials. These articles using Bayesian estimation also provide various extensions to the 

MELS model presented in this chapter. Similarly, the most recent version of Mplus (Muthén 

& Muthén, 1998-2017) also uses Bayesian estimation methods and has capability to estimate 

MELS models and extensions. 

Discussion 

This chapter has illustrated how the MELS model can be used to model differences in 

variances, and not just means, across subject and time-varying covariates. As such, the MELS 

model can help to identify predictors of both within-subjects and between-subjects variation, 

and to test hypotheses about these variances. Additionally, by including a random subject 

effect on the WS variance, this model can examine the degree to which subjects are 

heterogeneous in terms of their variation on the outcome variable. Our example with negative 
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affect clearly shows that subjects are quite heterogeneous in terms of their mood variation, as 

one might expect. 

More applications of this class of models clearly exist. For example, many questions of 

both normal development and the development of psychopathology address the issue of 

variability or stability in emotional responses to various situations and/or contexts. Often, a 

concern is with the range of responses an individual gives to a variety of stimuli or situations, 

and not just with the overall mean level of responsivity. Intraindividual variability in mood 

reflects a different aspect of one’s emotional life than overall mean levels, and is important in 

itself in predicting future behavior and psychological states (Eid & Diener, 1999; Kuppens, 

Van Mechelen, Nezlek, Dossche, & Timmermans, 2007). Emotion dysregulation is at the 

core of several psychological disorders (e.g., borderline personality disorder, bipolar 

disorder), and understanding more about what factors or covariates may influence affective 

instability may help in guiding treatment and predictability of future behavior. EMA provides 

a window into the affective lives of individuals and provides opportunity to both monitor and 

intervene, in the moment, in real-time, to help correct or prevent disruptive mood 

dysregulation (Ebner-Priemer & Trull, 2009) . Having the analytic ability to tease apart 

controlling variables on individual level mood variability may help enhance the 

understanding and treatment of psychological disorders. The MELS model also allows us to 

examine hypotheses about cross-situational consistency. 

Modern data collection procedures, such as EMA and/or real-time data captures, usually 

provide a fair amount of both WS and BS data, and so give rise to the opportunity for 

modeling of both WS and BS variances as a function of covariates. One might wonder about 

how much WS and BS data are necessary for estimation and variance modeling purposes. For 

random coefficient models, Longford (1993) noted the difficulty with providing general 

guidelines about the degree of complexity, for the variation part of a model, that a given 
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dataset could support. This would also seem to be true here. Nonetheless, carrying out some 

simulations with relatively small sample sizes (e.g., 20 subjects with 5 observations each) 

gives the general impression that the primary issue is that the estimation algorithm does not 

often converge, but instead has estimation difficulties of one sort or another, in small sample 

situations. This improves dramatically as the number of subjects and observations increases 

to even modest sizes of 100 subjects and 10 observations. 

Various extensions of the MELS model presented in this chapter have been developed. Li 

and Hedeker (2012) extends the model to three levels to allow for the nesting of observations 

within days within subjects. This permits one to model the within-days within-subjects 

variance, within-subjects between-days variance, and the between-subjects variance as 

functions of covariates. Pugach, Hedeker, and Mermelstein (2014) describes a bivariate 

MELS model that can be used to additionally model the association between the bivariate 

outcomes. Kapur, Li, Blood, and Hedeker (2015) builds on this work to the multivariate 

outcome setting using Bayesian estimation methods. Ferrer and Rast (2017) extend the 

MELS model for dyadic data, including multiple random location and scale effects. Leckie et 

al. (2014) describe MELS models with multiple random location and scale effects applied to 

clustered data where students are nested within schools. Lin, Hedeker, and Mermelstein 

(2018) extends the model to multiple waves of EMA data, and allows multiple random 

location and scale effects. Brunton-Smith, Sturgis, and Leckie (2016) develops a MELS 

model for cross-classified random effects. For longitudinal data with skewness, detection 

limits, and measurement errors, Lu (2017) develops a Tobit MELS model. For longitudinal 

human stature data, Goldstein, Leckie, Charlton, Tilling, and Browne (2017) develop a non-

linear growth MELS model that includes multiple location and scale random effects. Scherer, 

Huang, and Shrier (2016) and Courvoisier, Walls, Cheval, and Hedeker (2019) describe 

approaches for MELS modeling of time-to-event data. For missing EMA data, Cursio, 
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Mermelstein, and Hedeker (2019) and Lin, Mermelstein, and Hedeker (2018) develop 

methods that jointly model the missingness and the outcomes. Hedeker, Demirtas, and 

Mermelstein (2009) describes an extension of the model for ordinal EMA outcome data, and 

Hedeker, Mermelstein, Demirtas, and Berbaum (2016) further extends this approach for 

cross-sectional ordinal questionnaire data. Finally, Walters, Hoffman, and Templin (2018) 

comprehensively evaluate and develop methods for power analysis using the MELS model. 

As this is a relatively new modeling technique, certain limitations and cautions should be 

mentioned. The MELS model assumes that the random location effects are normally 

distributed and that the random scale effects are log-normally distributed. It is unclear how 

robust this model is to violations of these assumptions. To some extent, this can be examined 

empirically using the approach of Liu and Yu (2008) for estimating models with non-normal 

random effects. Attention should also be paid to outliers and influential observations, as these 

might have undue effects on estimation of the model parameters, especially the variance 

parameters. 

Recommended Readings 

In terms of technical articles, Hedeker et al. (2008) describes development and 

application of the MELS model to an EMA dataset including many covariates. However, this 

initial paper did not allow for the possibility that time-varying (level-1) covariates could 

influence the BS variance. As detailed in this chapter, and illustrated in Figures 1 and 2, this 

is clearly possible. Hedeker, Mermelstein, and Demirtas (2012) further describes application 

of the MELS model, including piecewise linear effects of covariates on the mean, BS 

variance, and WS variance submodels. As mentioned, the software program MIXREGLS is 

described in Hedeker and Nordgren (2013), which includes estimation details in the 

Appendix. Two examples are included with the program and described in the manual. In the 

context of educational data consisting of students nested within schools, Leckie et al. (2014) 
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comprehensively describe MELS models with multiple random location and scale effects. 

They also include results of a simulation study that shows why inclusion of the random scale 

is necessary for correct inference for the covariates of the level-1 variance submodel. 

Recently, several applications of the MELS model have been published in the substantive 

literatures. Ong, Hedeker, Wyatt, and Manber (2016) applied the MELS model to examine 

sleep variability in a sample of subjects with chronic insomnia. Piasecki, Hedeker, Dierker, 

and Mermelstein (2016) examined mood variability and nicotine dependence in adolescent 

smokers. From the same adolescent study, Gorka, Hedeker, Piasecki, and Mermelstein (2017) 

used the MELS model to test for the unique and interactive effects of alcohol coping motives 

and internalizing symptoms on mood changes during drinking. Gerhart et al. (2018) 

examined relationships between negative mood mean and variability with pain levels, 

comparing a sample of chronic low back pain subjects and their pain-free spouses. Geukes et 

al. (2017) applied the MELS model to analyze self-esteem level and variability in narcissists. 

Sandhu and Leckie (2016) examined orthodontic pain trajectories in adolescents. Maher, 

Huh, Intille, Hedeker, and Dunton (2018) examined variability in physical activity and its 

association with mental health outcomes among obese adults, and Maher, Dzubur, et al. 

(2018) further examined mood variability and its effect on physical activity and sedentary 

behavior. Clearly, use of the MELS model is increasing as researchers learn about its use and 

capabilities. 

Try This with the Data 

The dataset used in this chapter is available (named VarModel.dat) and includes the 

variables in the following order: id, PosAff,  NegAff,  t1,  t2,  t3,  t4, Others_BS, Others_WS, 

genderf, age15, COPEc. In this chapter, we have presented analyses of the negative affect 

outcome NegAff. Readers are encouraged to replicate the analyses presented, as well as 
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running similar models on the positive affect outcome (i.e., the variable PosAff). 
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Table 1 

Mixed-effects location scale model of negative affect, 510, 17,402,iN n   maximum 

likelihood estimates, standard errors, z-values, and p-values. 

Variable Estimate Std Error z-value p-value  

Beta (regression coefficients) 

Intercept 2.869 0.175 16.355 0.001 

9am-2pm 0.054 0.024 2.252 0.024 

2pm-6pm 0.063 0.025 2.562 0.010 

6pm-10pm 0.048 0.025 1.901 0.057 

10pm-3am 0.024 0.041 0.582 0.560 

Others_BS -0.701 0.227 -3.083 0.002 

Others_WS -0.229 0.021 -10.831 0.001 

genderf 0.016 0.067 0.234 0.815 

age15 0.020 0.030 0.669 0.504 

COPEc -0.523 0.065 -8.032 0.001 

     
Alpha (BS variance parameters: log-linear model) 

Intercept -0.070 0.296 -0.236 0.814 

9am-2pm 0.063 0.055 1.150 0.250 

2pm-6pm 0.092 0.056 1.647 0.100 

6pm-10pm 0.006 0.057 0.109 0.913 

10pm-3am 0.047 0.090 0.526 0.599 

Others_BS -0.572 0.401 -1.426 0.154 

Others_WS -0.299 0.044 -6.833 0.001 

genderf 0.054 0.132 0.409 0.682 

age15 0.054 0.059 0.914 0.361 

COPEc -0.872 0.126 -6.898 0.001 

     
Tau (WS variance parameters: log-linear model) 

Intercept 0.227 0.229 0.992 0.321 

9am-2pm 0.174 0.042 4.110 0.001 

2pm-6pm 0.248 0.043 5.797 0.001 

6pm-10pm 0.297 0.043 6.918 0.001 

10pm-3am 0.355 0.064 5.528 0.001 

Others_BS -0.930 0.297 -3.133 0.002 

Others_WS -0.220 0.030 -7.254 0.001 

genderf 0.296 0.089 3.321 0.001 

age15 -0.038 0.040 -0.938 0.348 

COPEc -0.391 0.080 -4.884 0.001 
 

    
Random scale standard deviation 

Std Dev 0.719 0.028 25.64 0.001 
     

Random location (mean) effect on WS variance 

  Loc  Eff 0.676 0.042 16.217 0.001 
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Table 2 

Variance ratios and 95% confidence intervals (lower, upper).  

 

Variable Ratio Lower   Upper 

Alpha (BS variance parameters) 

Intercept 0.933 0.523   1.665 

9am-2pm 1.065 0.957   1.185 

2pm-6pm 1.097 0.983   1.224 

6pm-10pm 1.006 0.900   1.126 

10pm-3am 1.048 0.879   1.250 

Others_BS 0.564 0.257   1.239 

Others_WS 0.742 0.681   0.808 

genderf 1.055 0.815   1.366 

age15 1.055 0.940   1.184 

COPEc 0.418 0.327   0.536 

          

Tau (WS variance parameters) 

Intercept 1.255 0.802   1.964 

9am-2pm 1.190 1.095   1.294 

2pm-6pm 1.282 1.179   1.394 

6pm-10pm 1.346 1.237   1.464 

10pm-3am 1.426 1.257   1.617 

Others_BS 0.394 0.220   0.706 

Others_WS 0.803 0.756   0.852 

genderf 1.344 1.129   1.600 

age15 0.963 0.890   1.042 

COPEc 0.677 0.578   0.791 

          

Random scale standard deviation 

Location Effect 1.966 1.817   1.085 

          

Random location (mean) effect on WS variance 

Std Dev 2.052 1.942   2.168 
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Figure 1 . Visual representation of the mean and BS variance submodels. 
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Figure 2 . Visual representation of the mean, BW and WS variance submodels. 
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Figure 3 . Histogram of subject-level means of negative affect. 
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Figure 4 . Histogram of subject-level ln(variances) of negative affect. 
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Figure 5 . Null Model of Negative Affect: Data histograms from subjects with low scale 

estimates. 
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Figure 6 . Null Model of Negative Affect: Data histograms from subjects with near-zero 

scale estimates. 
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Figure 7 . Null Model of Negative Affect: Data histograms from subjects with large scale 

estimates. 
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Figure 8 . Modeling of Negative Affect: (a) regression coefficients and 95% confidence 

intervals, (b) BS variance ratios and 95% confidence intervals, (c) WS variance ratios and 

95% confidence intervals. 
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