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Field-Level Methane Measurements
Pétron et al. (2012)9 provided the first measured fluxes from an
unconventional gas field at the landscape scale, and reported a
“best estimate” of 4% (range of 2.3% to 7.7%) from production
and processing streams. Similar atmospheric sampling studies
for other modern gas and oil basins10-13 indicate fugitive losses
from local production and natural gas processing ranging
from 3.7% to 17%  of  natural gas production (Fig. 2).  Addi-
tional studies focusing on transmission and distribution streams
of the natural gas lifecycle are ongoing.

Relative Climate Impact
Several studies14-16 have used detailed climate modeling to
assess the climate impact of modern natural gas systems and
infer a limit of fugitive losses within which gas may offer

climate benefit relative to other fossil fuels. Wigley (2011) found
a switch from coal to natural gas across all emission scenarios
(lifecycle losses of 0%-10% of production) resulted in warming
over the next 20+ years. Myrvold and Caldiera (2012) found that
a transition to gas would require 100 y or more to achieve just
25% reduction in warming.  Alvarez et al. (2012) report a
maximum lifecycle methane emissions of 3.2%, above which
conversion to natural gas will exacerbate climate change.
Alvarez et al., however, use old IPCC values for the  forcing
enhancements of methane. Adjusting their calculations to match
the most recent IPCC consensus indicates an emissions limit of
just 2.8%  (Fig. 3) -  a value already far exceeded in all 5 of
the field sampling studies from Fig 2.

Figure 2. Range of  methane losses from modern natural gas and
oil production across regions as calculated from atmospheric mea-
surements. Regions measured are TX-OK-KS (Miller et al. 2013);
Weld County, CO (Pétron  et al. 2012); Los Angeles Basin, CA
(Peischl et al. 2013); Uintah Basin,  UT (Karion et al. 2013);  Mar-
cellus Shale, PA-WV-OH (Caulton et al. 2014).

Figure 3. Maximum life-cycle losses from the  natural gas sector
as a function of time until net climate benefit after substitution of
natural gas for coal in a single emission pulse (dashed), emissions
for the service life (50 years) of a power plant (dotted), and perma-
nent power plant fleet conversion (solid). Accounting for IPCC
2013 revised radiative forcing of methane drops the maximum loss
rate to 2.8% - a value far exceeded in all atmospheric sampling
studies.


