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1. Fluids 
What is a fluid? Almost everything that we will discuss is soft matter under physiological 

temperature conditions: liquids and solutions, cytoplasm and cytosol, DNA and proteins in 

solution, membranes, micelles, colloids, gels… All of these materials can in some respect be 

considered a fluid. So, what is a fluid? 

 A substance that flows, deforms, and changes shape when subject to a force, or stress.  

 It has no fixed shape, but adapts its surface to the shape of its container. Gasses are also 

fluids, but we will focus on fluids that are mostly incompressible.  

For physicists, fluids are commonly associated with flow—a non-equilibrium property—and how 

matter responds to forces (i.e., “Newtonian fluids”). This topic—“rheology”—will be discussed in 

more detail later. From this perspective, all soft condensed matter can be considered a fluid.  

For chemists, fluids most commonly appear as liquids and solutions. Chemists typically use a 

molecular description for the solute, but less so for the solvent. However, chemists have a clear 

appreciation of how liquids influence chemical behavior and reactivity, a topic commonly called 

“solvation”.   

The most common perspective of fluids is as continuous dielectric media, however fluids can be 

multicomponent heterogeneous mixtures.  

For our biophysical purposes, we use the perspectives above, with a particular interest in the 

uniquely biological fluid: water. Since we are particularly interested in molecular-scale 

phenomena, we will add some additional criteria:  

 Composition: Fluids are dense media composed of particulate matter (atoms, molecules, 

proteins…) that can interact with one another. Since no two particles can occupy the same 

volume, each particle in a fluid has “excluded volume” that is not available to the remaining 

particles in the system.  

 “Structure”: Fluids are structured locally on the distance scale of the particle size by their 

packing and cohesive interactions, but are macroscopically disordered.   

 The midrange or mesoscale distances involve interactions between multiple particles, 

leading to correlated motions of the constituents.  

 “Flow” is a manifestation of these correlated structural motions in the mesoscale structure. 

 Most important: The cohesive forces (intermolecular interactions) between the 

constituents of a fluid, and the energy barriers to changing structure, are on the order of 
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kBT (“thermal energy”). Thermal forces are enough to cause spontaneous flow on a 

microscopic level even at equilibrium.  

Fluids may appear time-invariant at equilibrium, but they are microscopically dynamic. In 

many cases, “structure” (the positioning of constituents in space) and the “dynamics” 

(time-dependent changes to position) are intimately coupled.  

  

  



 

 3

Radial Distribution Function 

“Structure” implies that the positioning of particles is regular and predictable. This is possible in 

a fluid to some degree when considering the short-range position and packing of particles. The 

local particle density variation should show some structure in a statistically averaged sense. 

Structure requires a reference point, and in the case of a fluid we choose a single particle as the 

reference and describe the positioning of other particles relative to that. Since each particle of a 

fluid experiences a different local environment, this information must be statistically averaged, 

which is our first example of a correlation function. For distances longer than a “correlation 

length”, we should lose the ability to predict the relative position of a specific pair of particles. On 

this longer length scale, the fluid is homogeneous.  

The radial distribution function, g(r), is the most useful measure of 

the “structure” of a fluid at molecular length scales. Although it 

invokes a continuum description, by “fluid” we mean any dense, 

disordered system which has local variation in the position of its 

constituent particles but is macroscopically isotropic. g(r) provides a 

statistical description of the local packing and particle density of the 

system, by describing the average distribution of particles around a 

central reference particle. We define the radial distribution function 

as the ratio of ⟨ρ(r)⟩, the average local number density of particles at 

a distance r, to the bulk density of particles, ρ: 

( ) ( ) /   g r r  

In a dense system, g(r) starts at zero (since it does not count the 

reference particle), rises to a peak at the distance characterizing the 

first shell of particles surrounding the reference particle (i.e., the 1st 

solvation shell), and approaches 1 for long distances in isotropic 

media. The probability of finding a particle at a distance r in a shell 

of thickness dr is P(r) = 4πr2 g(r) dr, so integrating ρg(r) over the 

first peak in gives the average number of particles in the first shell.  

The radial distribution function is most commonly used in gasses, liquids, and solutions, since it 

can be used to calculate thermodynamic properties such as the internal energy and pressure of the 

system. But is relevant at any size scale, such as packing of colloids, and is useful in complex 

heterogeneous media, such as the distribution of ions around DNA. For correlating the position of 

different types of particles, the radial distribution function is defined as the ratio of the local density 

of “b” particles at a distance r from “a” particles, ( ) ( ) /   ab abg r r . In practice, ( )ab r  is 
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calculated by looking radially from an “a” particle at a shell at distance r and of thickness dr, 

counting the number of “b” particles within that shell, and normalizing the count by the volume of 

that shell. 

Two‐Particle Density Correlation Function1       

Let’s look a little deeper, considering particles of the same type, as in an atomic liquid or granular 

material. If there are N particles in a volume V, and the position of the ith particle is ri , then the 

number density describes the position of particles, 

   
1

N

i
i

r r r


     

The average of a radially varying property given by X(r) is determined by   

21
( ) ( )4

V
X r X r r dr

V
     

Integrating  r  over a volume gives the particle number in that volume.  

2( )4
V

r r dr N    

When the integral is over the entire volume, we can use this to obtain the average particle density:  

2
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
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Next, we can consider the spatial correlations between two particles, i and j. The two-particle 

density correlation function is 

      
1 1

,
N N

i j
i j

r r r r r r
 

          

This describes the conditional probability of finding particle i at position ri and particle j at position 

rj. We can expand and factor ρ( r , r  ) into two terms depending on whether i j  or i j : 

           
(1) (2)

, 1

( , )

i i i jr r N r r r r N N r r r r

r r

            

  
 

The first term describes the self-correlations, of which there are N terms: one for each atom.  

     (1)
i iN r r r r          

The second term describes the two-body correlations, of which there are N(N‒1) terms.  
                                                 
1.  J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Ed. (Academic Press, New York, 1986); D. A. 

McQuarrie, Statistical Mechanics. (Harper & Row, New York, 1976). 
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  (2) 2, ( , ) /g r r r r     is the two-particle distribution function, which describes spatial 

correlation between two atoms or molecules. For isotropic media, it depends only on distance 

between particles,   ( )g r r g r  , and is therefore also called the radial pair-distribution 

function.    

We can generalize g(r) to a mixture of a and b particles by writing ( )abg r : 

   
/

ab
ab

b

r
g r

N V


  

 24b abV
N dr r r    

Potential of Mean Force 

One can use g(r) to describe the free energy for bringing 

two particles together as 

    lnBW r k T g r    

W(r) is known as the potential mean force. We are taking a 

free energy which is a function of many internal variables 

and projecting it onto a single coordinate. W(r) is a 

potential function that can be used to obtain the mean 

effective forces that a particle will experience at a given 

separation f W r   .  
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Excluded Volume 

One of the key concepts that arises from a particulate description of matter is excluded volume. 

Even in the absence of attractive interactions, at short range the particles of the fluid collide and 

experience repulsive forces. These repulsive forces are a manifestation of excluded volume, the 

volume occupied by one particle that is not available to another. This excluded volume gives rise 

to the structure of solvation shells that is reflected in the short-range form of g(r) and W(r). 

Excluded volume also has complex dynamic effects in dense fluids, because one particle cannot 

move far without many other particles also moving in some correlated manner.  

The excluded volume can be related to g(r) and W(r), making note of the virial expansion. If we 

expand the equation of state in the density of the fluid (ρ): 

21 ( )
B

p
B T

k T



    

The second virial coefficient B2 is half of the excluded volume of the system. This is the leading 

source of non-ideality in gasses reflected in the van der Waals equation of state.   
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