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5. Hydrophobicity 

Hydrophobic Solvation: Thermodynamics  

Why do oil and water not mix? What is hydrophobicity? First, the term is a misnomer. Greasy 

molecules that do not mix with water typically do have favorable interaction energies, i.e., 

∆Hint < 0. Walter Kauzmann first used the term “hydrophobic bonding” in 1954. This naming has 

been controversial from the beginning, but it has stuck presumably, because in this case ΔG is 

what determines the affinity of one substance for another rather than just ΔH. Generally speaking, 

the entropy of mixing governs the observation that two weakly interacting liquids will 

spontaneously mix. However, liquid water’s intermolecular interactions are strong enough that it 

would prefer to hydrogen bond with itself than solvate nonpolar molecules. It will try to avoid 

disrupting its hydrogen bond network if possible. 

The hydrophobic effect refers to the free energy penalty that one pays to solvate a weakly 

interacting solute. Referring to the thermodynamic cycle above, ∆Gsol, the reversible work needed 

to solvate a hydrophobic molecule, is dominated by step 1, the process of forming a cavity in water. 

The free energy of solvating a hydrophobic solute is large and positive, resulting from two factors: 

1) ∆Ssol < 0. The entropy penalty of creating a cavity in water. We restrict the configurational 

space available to the water within the cavity. This effect and the entropy of mixing (that 

applies to any solvation problem) contribute to 1S .  

2) ∆Hsol > 0. The energy penalty of breaking up the hydrogen bond network ( 1H ) is the 

dominant contributor to the enthalpy. This can be estimated from a count of the net number 

of H-bonds that needs to be broken to accommodate the solute: ∆Hsol increases by 1–3 kcal 

mol−1 of hydrogen bonds. The interaction energy between a hydrocarbon and water (ΔH2) 

is weakly favorable as a result of dispersion interactions, but this is a smaller effect. (At 

close contact, van der Waals forces lower the energy by ~0.1-1.0 kcal mol−1). Therefore

sol 1H H   . 

The net result is that ΔGsol is large and positive, which is expected since water and oil do not mix. 

These ideas were originally deduced from classical thermodynamics, and put forth by Frank and 

Evans (1945) in the “iceberg model”, which suggested that water would always seek to fulfill as 

many hydrogen bonds as it could—wrapping the network around the solute. This is another 

misnomer, because the hydrophobic effect is a boundary problem about reducing configurational 

space, not actual freezing of fluctuations. Hydrogen bonds continue to break and reform in the 

liquid, but there is considerable excluded configurational space for this to occur. Let’s think of this 

as solute-induced hydrogen-bond network reorganization.  

http://bpc.uchicago.edu/
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Water Configurational Entropy 

Let’s make an estimate of ∆Ssol. Qualitatively, we are talking about limiting the configurational 

space that water molecules can adopt within the constraints of a tetrahedral potential. 

Approximation 

 Bulk water: 4 HBs/tetrahedron 
Within a tetrahedral lattice the orientation of an H2O has: 

6 configurations: 1,2 1,3 1,4 
   2,3 2,4 3,4 

Ωbulk = 6 

At a planar interface, you satisfy the most hydrogen bonds by making one 

dangling hydrogen bond pointing toward the surface 

So an estimate for the entropy of hydrophobic solvation if these configurations are equally 

probable is sol surf bulkln( ) ln 2BS k k       per hydrogen bond of lost configurational space: 

sol ln 2BT S k T    

Evaluating at 300 K,  

sol 1.7 kJ/mol water molecules @ 300 K

0.4 kcal/mol water molecules 

T S  


 

This value is less than the typical enthalpy for hydrogen bond formation, which is another way of 

saying that the hydrogen bonds like to stay mostly intact, but have large amplitude fluctuations.  

Temperature Dependence of Hydrophobic Solvation 

From ∆Ssol we expect ∆Gsol to rise with temperature as a result of the entropic term. This is a classic 

signature of the hydrophobic effect: The force driving condensation or phase-separation increases 

with temperature. Since the hydrogen-bond strength connectivity and fluctuations in water’s 

hydrogen-bond network change with temperature, the weighting of enthalpic and entropic factors 

in hydrophobic solvation also varies with T. Consider a typical temperature dependence of ΔGsol 

for small hydrophobic molecules: 

 3 configurations 1,2 1,3 1,4 
 
Ωsurface = 3 
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The enthalpic and entropic contributions are two strongly temperature-dependent effects, which 

compete to result in a much more weakly temperature-dependent free energy. Note, this is quite 

different from the temperature dependence of chemical equilibria described by the van’t Hoff 

equation, which assumes that ΔH is independent of temperature. The temperature dependence of 

all of these variables can be described in terms of a large positive heat capacity.  
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At low temperatures, with a stronger, more rigid hydrogen-bond network, the S  term dominates. 

But at high temperature, approaching boiling, the entropic penalty is far less.  
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Hydrophobic Solvation: Solute Size Effect 

To create a new interface there are enthalpic and entropic penalties. The influence of each of these 

factors depends on the size of the solute (R) relative to the scale of hydrogen bonding structure in 

the liquid (correlation length, , ~0.5–1.0 nm). 

For small solutes (R < ): Network deformation 

The solute can insert itself into the hydrogen bond network without breaking hydrogen bonds. It 

may strain the HBs (∆H > 0) and reduce the configurational entropy (∆S < 0), but the liquid mostly 

maintains hydrogen bonds intact. We expect the free energy of this process to scale as volume of 

the solute ∆Gsol(R < )  R3. 

 

For large solutes, R > : Creating an interface  

The hydrogen bond network can no longer maintain all of its HBs between water molecules. The 

low energy state involves dangling hydrogen bonds at the surface. One in three surface water 

molecules has a dangling hydrogen bond, i.e., on average five of six hydrogen bonds of the bulk 

are maintained at the interface. 

 

We expect ∆Gsol to scale as the surface area ∆Gsol(R > )  R2. Of course, large solutes also have 

a large volume displacement term. Since the system will always seek to minimize the free energy, 

there will be a point at which the R3 term grows faster with solute radius than the R2 term, so large 

solutes are dominated by the surface term.  
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Calculating ΔG for Forming a Cavity in Water 

Let’s investigate the energy required to form cavities in water using a purely thermodynamic 

approach. To put a large cavity (R > ) into water, we are creating a new liquid–vapor interface for 

the cavity. So we can calculate the energy to create a cavity using the surface tension of water. 

Thermodynamically, the surface tension γ is the energy required to deform a liquid–vapor 

interface:   , ,N V T
U a    , where a is the surface area. So we can write the change in energy as 

a result of inserting a spherical cavity into water as the product of the surface tension of water 

times the surface area of the cavity, 

  2  4U R R    

In principle, the experimentally determined γ should include entropic and enthalpic contributions 

to altering the hydrogen bond network at a surface, so we associate this with ΔGsol. For water at 

300 K,  = 72 pN/nm. γ varies from 75 pN/nm at 0 °C to 60 pN/nm at 100 °C. 

The surface tension can also be considered a surface energy per unit area: which can also be 

considered a surface energy, i.e., γ = 72 mJ/m2. To relate this to a molecular scale quantity, we can 

estimate the surface area per water molecule in a spherical cavity. The molecular volume of bulk 

water deduced from its density is 3.0×10−26 L/molecule, and the corresponding surface area per 

molecule deduced from geometric arguments is ~10 Å2. This area allows us to express γ ≈ 4.3 

kJ/mol, which is on the order of the strength of hydrogen bonds in water. 

For small cavities (R<), the considerations are different since we are not breaking hydrogen 

bonds. Here we are just constraining the configurational space of the cavity and interface, which 

should scale as volume. We define  

 
3

sol

4

3 E

R
G R

      

where E  is an energy density.1   

E  ≈ 240  10–9 pJ/nm3 = 240 pN nm−2 

Remembering that ,/ |N TG V p   , the energy density corresponds to units of pressure with a 

value E = 2.4103 atm. If we divide E  by the molarity of water (55M), then we find it can be 

expressed as 4.4 kJ/mol, similar to the surface free energy value deduced.  

So combining the surface and volume terms we write 

                                                 
1. D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437, 640–647 (2005). 
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Alternatively, we can define an effective length scale (radius) for the scaling of this interaction 
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where Rsurf = 0.067 nm and RV = 1.6 nm at 300 K. We can assess the crossover from volume-

dominated to area-dominated hydrophobic solvation effects by setting these terms equal and 

finding that this occurs when R = 3γ/ E  = 0.9 nm. The figure below illustrates this behavior and 

compares it with results of MD simulations of a sphere in water. 

 

An alternate approach to describing the molar free energy of solvation for a hydrophobic sphere 

of radius r equates it with the probability of finding a cavity of radius r: 
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This leads to an expression much like we previously described for large cavities. It is instructive 

to determine for water @ 300 K:  

Reprinted by permission from 
Macmillan Publishers Ltd: D. 
Chandler, Nature 437, 640–
647 (2005). Copyright 2005. 
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This is very small, but agrees well with simulations. (There is not much free volume in water!) 

However, when you repeat this to find the variance in the size of the cavities δr = (⟨r2⟩  ⟨r⟩2)1/2, 

we find r = 0.028 nm. So the fluctuations in size are of the same scale as the average and therefore 

quite large in a relative sense, but still less than the size of a water molecule. 

Simulations give the equilibrium distribution of cavities in water 

Δμ0 = ‒kBT ln(P) 

 

Reprinted with permission from N. T. Southall, K. A. Dill and A. D. J. Haymet, J. Phys. Chem. B 106, 521–533 
(2002). Copyright 2002 American Chemical Society.
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Hydrophobic Collapse2 

We see that hydrophobic particles in water will attempt to minimize their surface area with water 

by aggregating or phase separating. This process, known as hydrophobic collapse, is considered 

to be the dominant effect driving the folding of globular proteins. 

Let’s calculate the free energy change for two oil droplets coalescing into one. The smaller droplets 

both have a radius R0 and the final droplet a radius of R.  

collapse sol sol 0( ) 2 ( )G G R G R       

The total volume of oil is constant—only the surface area changes. If the total initial surface area 

is A0, and the final total surface area is A, then 

collapse 0( )  G A A  

which is always negative since 0A A  and γ is positive. 
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  2
collapse 0 0( ) 0.41 4      G A A R   

This neglects the change in translational entropy due to two drops coalescing into one. Considering 

only the translational degrees of freedom of the drops, this should be approximately ΔScollapse  kB 

ln(3/6). In other words, a small number compared to the surface term.  

                                                 
2.  See K. Dill and S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, 

Physics, and Nanoscience. (Taylor & Francis Group, New York, 2010), p. 675. 
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We can readily generalize this to a chain of n  beads, each of radius R0, which collapse toward a 

single sphere with the same total volume. In this case, let’s consider how the free energy of the 

system varies with the number of beads that have coalesced. 

 

 

Again the total volume is constant,  34
03

V n R , and the surface area changes. The initial surface 

area is 2
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0
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min( )4 4  min mRA R . Along the path, 

there is a drop of total surface area for each bead that coalesces. Let’s consider one path, in which 

an individual bead coalesces with one growing drop. The total surface area once n of m particles 

have coalesced is 

An = (surface area of drop formed by n coalesced beads) + (total area of remaining m‒n beads) 
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The free energy change for coalescing n beads is 

 
 

coll 0

2/3 2
04



 
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 

nG A A

n n R
  

      
This free energy is plotted as a function of the bead number at fixed volume.  This is an energy 

landscape that illustrates that the downhill direction of spontaneous change leads to a smaller 

Initial total surface area A0 Final surface area Aminsurface area An
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 (nm) 

min = 1.96 

number of beads. The driving force for the collapse of this chain can be considered to be the 

decrease in free energy as a function of the number of beads in the chain:   

coll coll 
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This is not a real force expressed in Newtons, but we can think of it as a pseudo-force, with the 

bead number acting as a proxy for the chain extension. If you want to extend a hydrophobic chain, 

you must do work against this. Written in terms of the extension of the chain x (not the drop area 

A) 
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x x
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extx x
n

G A
w f dx dx

A x
  

Here we still have to figure out the relationship between extension and surface area,  nA x . 

Alternatively, we can think of the collapse coordinate as the number of coalesced beads, n. 

Hydrophobic Collapse and Shape Fluctuations 

An alternate approach to thinking about this problem is in terms 

of the collapse of a prolate ellipsoid to a sphere as is seeks to 

minimize its surface area. We take the ellipsoid to have a long 

radius /2 and a short radius r.  The area and volume are then: 
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Let’s plot the free energy of this ellipsoid as a function of . For V = 4 nm3, kBT=4.1 pN nm we 

find min=1.96 nm. Note that at kBT the dimensions of the ellipsoid can fluctuate over many ~5 Å. 
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