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7. Statistical Description of Macromolecular Structure 

There are a number of ways in which macromolecular structure is described in biophysics, which 

vary in type of information they are trying to convey. Consider these two perspectives on 

macromolecular structure that represent opposing limits: atomistic vs. statistical. 

1) Atomistic: Use of atoms, small molecules, or functional groups as building blocks for 

biomolecular structure. This perspective is rooted in the dominant methods used for 

studying macromolecular structure (90% X-ray crystallography; 10% NMR). It has the 

most value for describing detailed Ångstrom to nanometer scale interactions of a 

chemical nature, but also tends to reinforce a unique and rigid view of structure, even 

though this cannot be the case at physiological temperatures. 

The atomistic perspective is inherent to molecular force fields used in computational 

biophysics, which allow us to explore time-dependent processes and molecular disorder. 

Even within the atomistic representation, there are many complementary ways of 

representing macromolecular structure. Below are several representations of myoglobin 

structure, each is used to emphasize specific physical characteristics of the protein.  

 

2) Statistical/physical: More applicable for disordered or flexible macromolecules. 

Emphasis is on a statistical description of molecules that can have multiple 

configurations. Often the atomic/molecular structure is completely left out. These tools 

have particular value for describing configurational entropy and excluded volume, and 

are influenced by the constraints of covalent bonding linkages along the chain. This 

approach is equally important: 30–40% of primary sequences in PDB are associated with 

disordered or unstructured regions. Conformational preferences are described 

statistically.  

http://bpc.uchicago.edu
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Statistical Models 

 Structure described in terms of spatial probability distribution functions.  

 There may be constraints on geometry or energy functions that describe interactions 

between and within chains.   

 We will discuss several models that emerge for a continuous chain in space that varies in 

stiffness, constraints on conformation, and excluded volume. 

o Segment models: random coils, feely jointed chain, freely rotating chain 

o Lattice models: Flory–Huggins theory 

o Continuum model: worm-like chain 
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Segment Models1 

 (n + 1) beads link by n segments or bonds of length 

. 

 Each bead has a position ir


 and a mass mi. 

 Each bond is assigned a vector, 1i i ir r  
   . 

 The bending angle between adjacent segments i and 

(i + 1) is θi: 1cos i i  
 
   

 For each bending angle there is an associated 

dihedral angle ϕi defined as the rotation of segment 

(i+1) out of the plane defined by segments i and (i‒

1). 

 There are n‒1 separate bending and dihedral angles. 

Statistical Variables for Macromolecules 

End‐to‐end distance 

The contour length is the full length of the polymer along the contour of the chain: 

CL n    

Each chain has the same contour length, but varying dimensions in space that result from 

conformational flexibility. The primary structural variable for measuring this conformational 

variation is the end-to-end vector between the first and last bead, 0nR r r 
  

, or equivalently 

1

n

i
i

R


 

  

Statistically, the dimensions of a polymer can be characterized by the statistics of the end-to-end 

distance. Consider its mean-square value: 

2

11

nn

ji
ji

R R R


            
   


  
  

After expanding these sums, we can collect two sets of terms: (1) the self-terms with i = j and (2) 

the interbond correlations (i ≠ j): 

                                                 
1. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules. 

(W. H. Freeman, San Francisco, 1980), Ch. 18.; K. Dill and S. Bromberg, Molecular Driving Forces: Statistical 
Thermodynamics in Biology, Chemistry, Physics, and Nanoscience. (Taylor & Francis Group, New York, 
2010); P. J. Flory, Principles of Polymer Chemistry. (Cornell University Press, Ithaca, 1953). 
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



    

 





  
  

 
 (1) 

Here θij is the angle between segments i and j. This second term describes any possible 

conformational preferences between segments along the chain. We will call the factor ۦcos θijۧ 

the segment orientation correlation function, which is also written  

 
( ) cos

k i

k

i k

g k

k j i



 

  

 
 
 

  (2) 

Here k refers to the separation between two segments. This correlation function can vary in value 

from 1 to ‒1, where +1 represents a highly aligned or extended chain and negative values would 

be very condensed or compact. No interband correlations (g = 0) is expected for placement of 

segments by a random walk.  

Interbond correlation can be inserted into segment models, both 

through ad hoc rules, or by applying an energy function that 

constrains the intersegment interactions. For instance, the 

torsional energy function below, Uconf, would be used to weight 

the probability that adjacent segments adopt a particular 

torsional angle. A general torsional energy function Uconf() 

involves all 2(n‒1) possible angles Θ = {1,1,2,2,… 

n-1,n1}, the joint probability density for adopting a particular 

conformation is 

conf

conf

( )

( )
( )

B

B

U k T

U k T

e
P

d e

 

 
 


 

The integral over Θ reflects 2(n‒1) integrals over polar coordinates for all adjacent segments,  

2 2

1 1 1 1 1 10 0 0 0
sin sin n n nd d d d d

   
              

Then the alignment correlation function is  

 2 cosi j ijd P   
 
    

This is not a practical form, so we will make simplifying assumptions about the form of this 

probability distribution. For instance, if any segments configuration depends only on its nearest 

neighbors then P(Θ)=P(θ,ϕ)(n‒1).  
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Persistence Length 

For any polymer, alignment of any pair of vectors in the chain becomes uncorrelated over a long 

enough sequence of segments. To quantify this distance we define a “persistence length” p.  

1

n
i

i ijp
j

 
    


 

This is the characteristic distance along the chain for the decay for the orientational correlation 

function between bond vectors,  

2( ) coskg k      

How will this behave? If you consider that |cosθ|<1, then ۦcoskθۧ will drop with increasing k, 

approaching zero as k → ∞. That is the memory of the alignment between two bond vectors 

drops with their separation, where the distance scale for the loss of correlation is p. We thus 

expect a monotonically decaying form to this function: 

 /2( ) pkg k e     (3) 

For continuous thin rod models of the polymer, this expression is written in terms of the contour 

distance s, the displacement along the contour of the chain (i.e., s =  k), 

| |/2( ) psg s e   

How do we relate θ and p?2 Writing ۦcoskθۧ ≈ exp(k ln[ۦcosθۧ]) and equating this with eq. (3) 

indicates that  

ln cosp       

For stiff chains, we can approximate ln(x) ≈ (1‒x), so  

1 cosp 


  
  

Radius of gyration 

The radius of gyration is another important structural variable that is closely related to 

experimental observables. Here the polymer dimensions are expressed as extension relative to 

the center of mass for the chain. This proves useful for branched polymers and heteropolymers 

(such as proteins). Denoting the position and mass of the ith bead as ir


 and mi, we define the 

center of mass for the polymer as a mass-weighted mean position of the beads in space: 

                                                 
2. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules. 

(W. H. Freeman, San Francisco, 1980), Ch. 19 p. 1033. 
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The sum index starting at 0 is meant to reflect the sum over n+1 beads. The denominator of this 

expression is the total mass of the polymer 
0

n

ii
M m


 . If all beads have the same mass, then 

mi/M =	1/(n+1) and R0 is the geometrical mean of their positions.  

0
0

1

1

n

i
i

R r
n 


 

 
 

The radius of gyration RG for a configuration of the polymer describes the mass-weighted 

distribution of beads R0, and is defined through  

2 2

0

1

1

n

G i
i

R S
n 


 


 

where iS


 is gyration radius, i.e., the radial distance of the ith bead from the center of mass  

 22
0

i
i i

m
S r R

M
 

 
     (mass-weighted) 

 22
0

1

1i i
S r R

n
 



 
 (equal mass beads) 

Additionally, we can show that the mean-squared radius of gyration is related to the average 

separation of all beads of the chain.  

2 2
2

0 0

1
( )

( 1)

n n

G i j
i j

R r r
n  

 
   
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Freely Jointed Chain 

The freely jointed chain describes a macromolecule as a backbone for which all possible θ and ϕ 

are equally probable, and there are no correlations between segments. It is known as an “ideal 

chain” because there are no interactions between beads or excluded volume, and configuration of 

the polymer backbone follows a random walk. If we place the first bead at r = 0, we find that ۦRۧ 

= 0, as expected for a random walk, and eq. (1) reduces to 

2 2R n     

or 2 1/2
rmsR R n      

While the average end-to-end distance may be zero, the variance in the end-to-end distribution is 

22
r nRR    

 

The radius of gyration for an ideal chain is:  

22

6 6G

nRR  


 

Gaussian Random Coil 

The freely jointed chain is also known as a Gaussian random coil, because the statistics of its 

configuration are fully described by ۦRۧ	and	ۦR2ۧ,	 the first two moments of a Gaussian end-to-

end probability distribution P(R).   

The end-to-end probability density in one dimension can be obtained from a random walk with n 

equally sized steps of length  in one dimension, where forward and reverse steps are equally 

probable. If the first bead it set at x0 = 0, then the last bead is placed by the last step at position x. 

In the continuous limit: 

 
2 22

2

1
( , )

2
x nP x n e

n
 


  (4) 

( , )P x n dx  is the probability of finding the end of the chain with n beads at a distance between x 

and x+dx from its first bead. Note this equates the rms end-to-end distance with the standard 

deviation for this distribution: 2 2 2R n     .  

To generalize eq. (4) to a three-dimensional chain, we recognize that propagation in the x, y, and 

z dimensions is equally probable, so that the 3D probability density can be obtained from a 

product of 1D probability densities ( ) ( ) ( ) ( )P r P x P y P z . Additionally, we need to consider the 

constraint that the distribution of end-to-end distances are equal in each dimension: 

2 2 2 2 2
x y zR n       



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and since 2 2 2
x y z    ,  

2 2 23 xR n   


  

Therefore, 

2 22 2 2 2

2 2

2 2 2

3/2

2

22 2

3 2

1 1 1
( , )

2 2 2

3

2

yx z

x y z

xx x

r

P r n e e e

e

 





 
  
 

 



  

  

To simplify, we define a scaling parameter with dimensions of inverse length 

2 1/2
2

3 3

2 2
R

n
    

  

Then, the probability density in Cartesian coordinates,  

2 2
3

3/2
( , , , ) rP x y z n e 


  where r2 = x2 + y2 + z2 

Note the units of P(x, y,z,n) are inverse volume or concentration. The probability of finding the 

end of a chain of n beads in a box of volume dx dy dz at the position x,y,z is ( , , , )P x y z n dx dy dz . 

This function illustrates that the most probable end-to-end distance for a random walk polymer is 

at the origin. On the other hand, we can also express this as a radial probability density that gives 

the probability of finding the end of a chain at a radius between r and r+dr from the origin. Since 

the volume of a spherical shell grows in proportion to its surface area: 

 P(r,n)dr  4r2P(x, y, z,n)dr  

 
3/2 2

2
2 2

3 3
( , ) 4 exp

2 2

r
P r n r

n n



          

  (5) 

The units of ( , )P r n  are inverse length. For the freely jointed chain, we see that 1 22 / 3R      

is the most probable end-to-end distance.  
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Freely Rotating Chain 

An extension to the freely jointed chain that adds a single configurational constraint that better 

resembles real bonding in polymers is the freely rotating chain. In this case, the backbone angle 

 has a fixed value, and the dihedral angle  can rotate freely.   

 

To describe the chain dimensions, we need to evaluate the angular bond correlations between 

segments. Focusing first on adjacent segments, we know that after averaging over all ϕ, the fixed 

θ assures that 2
1

cos
i i

 
 

  . For the next segment in the series, only the component parallel 

to 1i


  will contribute to sequential bond correlations as we average over i+2: 

       
2 2

1 1 12
cos cos si ( )

cos

n sin cosi ii i ii i    


  




 
 


 

 

Extending this reasoning leads to the observation  

 2(cos ) j i
i j  
 

   

To evaluate the bond correlations in this expression, it is helpful to define an index for the 

separation between two bond vectors: 

k = j – i 

and cos   

Then the segment orientation correlation function is 

2( ) k
i jg k  
 

   

For a separation k on a chain of length n, there are n–k possible combinations of bond angles,  
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 
1

1

( )cos
n

j i k

j i k

n k 




 

    

1
2 2 2

1

 ( )
n

k

k

R n n k 




        

From this you can obtain 

 
 

2 2

2

2 11

1 1

n

R n
n

 
 

        
  

In the limit of long chains (n  ), we find 

22
1

1
nR




   
 

     

and  
2 1

6 1
G

n
R




    


 

   

Restricted dihedrals 

When the freely rotating chain is also amended to restrict the dihedral angle ϕ, we can solve the 

mean square end-to-end distance in the limit n . Given an average dihedral angle,  

cos 
  

2 2 11
11

R n



         
   

 
  

RMS end-to-end distance 
1/22R  in units 

of  as a function of n and θ  
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Nonideal Behavior 

Flory characteristic ratio 

Real polymers are stiff and have excluded volume, but the R ~ n  scaling behavior usually 

holds at large n (R ≫ p). To characterize non-ideality, we use the Flory characteristic ratio: 

2

2n

R
C

n

 



 

For freely jointed chains Cn = 1. For nonideal chains with 

angular correlations, Cn > 1. Cn depends on the chain length 

n, but should have an asymptotic value for large n: C. For 

example, if we examine long freely rotating chains  

2

2

1
lim

1n

R
C

n


 

  
 

   
 = cos  

(In practice, this limit typically holds for n > 30). Consider a tetrahedrally bonded polymer with 
full angle 109° ( = 54°). then cos  = 1/3, and Cn = 2. In practice, we reach the long chain limit 
C  at n ≈ 10. This relation works well for polyglycine and polyethylene glycol (PEG). 

Statistical segment or Kuhn length  

How stiff or flexible a polymer is depends on the length scale of observation. What is stiff on 

one scale is flexible for another. For an infinitely long polymer, one can always find a length 

scale for which its statistics are that of a Gaussian random coil. As a result for a segment 

polymer, one can imagine rescale continuous segments into one longer “effective segment” that 

may not represent atomic dimensions, but rather is defined in order to correspond to a random 

walk polymer, with Cn  1. Then, the effective length of the segment is e (also known as the 

Kuhn length) and the number of effective segments is ne.  Then the freely jointed chain equations 

apply: 

LC = nee 
2 2

e eR n     

From these equations, 2 /e CR L   . We see that e ≫  applies to stiff chains, whereas e ൎ  
are flexible.  

We can also write the contour length as LC = γn, where  is a geometric factor < 1 that describes 

constraint on bond angles. For a freely rotating chain: cos( /2)   . Using the long chain chain 

expressions (n→∞): 2 2R C n    , we find 



 

 

 

12

2

e

C

n n
C





    
 

  
 



 

 

1

2
p

C    
 

 
 

Representative values for polymer segment models 

C (n
e
/n)  (nm) 

e 
(nm)  

p
(nm)

Polyethylene  6.7 (n > 10) 0.154 1.24 0.83  

PEG  3.8   0.34   

Poly·alanine  9 (n > 70) 0.38 3.6 0.95 0.5 

Poly·proline  90 (n > 700)    5-10 

dsDNA  86  0.35 30–100 1 50 

ssDNA       1.5 

Cellulose       6.2 

Actin     16700  10000–

20000
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Excluded Volume Effects 

In real polymers, the chance of colliding with another part of the chain increases with chain 

length.  

22
i j

i j

nR


  
 

    

  i j i i sg s s i j     
   
      

g(s) gives the orientational correlations between polymer segments.  

Flory, statistical mechanics of chain molecules 

 If correlations are purely based on bond angles and rotational potential, then g(s) decays 

exponentially with s. There is no excluded volume. 

 With excluded volume, g(s) does not vanish for large k. There are “long-range” 

interactions within the chain.  

o “Long range” means along long distance along contour, but short range in space. 

 Excluded volume depends on chain + solvent and temperature.  

Virial expansion 

At low densities, thermodynamic functions can be expanded in a power series in the number of 

particles per unit volume: /n N V  (density). 

 
0

int

2
int p B

F F F

F N k T nB n C

 

  
  

 0F refers to ideal chain 

 Np is # of polymer molecules 

 B: units of volume 

Excluded volume (repulsion) and attractive interactions are related to the second virial 

coefficient B. The excluded volume (or volume correlation relative to ideal behavior) for 

interacting beads of a polymer chain is calculated from 

  3
ex 1 exp / BV d r U r k T       

U(r) is the interaction potential. In the high temperature limit Vex = 2B. So 2B can be associated 

with the excluded volume associated with one segment (bead) of the chain.  
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Temperature dependence   

 At high T   Bk T   

 The attractive part of potential is negligible, and repulsions result in excluded volume. In 

this limit 2 exB V . 

 As 0T  , the attractive part of potential matters more and more, resulting in collapse 

relative to ideal chain. 

 Cross over: Theta point T=Θ  

Near Θ  2 ~ ex

T
B V

 
  

  

T > Θ High T. Repulsion dominates. Polymer swells (good solvent) 

T < Θ Low T. Attractions dominate. Polymer collapses (globule, poor solvent) 

Polymer swelling 

At high temperatures (T≫Θ), the free energy of a coil can be expressed in terms interaction 

potential, which is dominated by repulsions that expand the chain, and the entropic elasticity that 

opposes it (see next chapter).   

2

3 2

3 3
.

4 2B B

n R
F U TS nk T B k T const

R n
    


  

By minimizing F with respect to the end-to-end distance, R, and solving for R, we can find how 

the R scales with polymer size: 

2 3/5 3/5( )R B n    

We see that the end-to-end distance of the chain with excluded volume scales with monomer 

number (n) with a slightly larger exponent than an ideal chain:  n3/5 rather than n1/2.  Generally, 

the relationship between R and n is expressed in terms of the Flory exponent, ν, which is related 

to several physical properties of polymer chains: 

R n   
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Polymer Loops 

For certain problems, we are concerned with cyclic polymers chains: 

 Bubbles/loops in DNA melting 

 Polypeptide and RNA hairpins 

 DNA strand separation in transcription 

 Cyclic DNA, chromosomal looping, and supercoiling  

 

In describing macromolecules in closed loop form, the primary new variable that we need to 

address is the loop’s configurational entropy. Because of configurational constraints that tie the 

ends of a loop together (Ree→0) the loop has lower configurational entropy than an unrestrained 

coil.   

Let’s describe how the configurational entropy of a loop SL depends on the size of the loop. We 

will consider the segment model with nL segments in the loop. We start with the radial 

probability distribution for an unconstrained random coil, which is the reference state for our 

calculations: 
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The entropy of the loop SL will reflect the constraints placed by holding the ends of the random 
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Δr of each other. Since Ree<Δr, 2 2r n   , and the exponential term in eq. (6) is ~1. Then the 
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In the last line we find that the probability of finding a looped chain decreases as 3/2
L LP n , 

where b is the proportionality constant that emerges from integration. From the assumptions we 

made, b≪1, and PL<1. 

To calculate the configurational entropy of the chain, we assume that the polymer (free or 

looped) can be quantified by Ω configurational states per segment of the chain. This reflects the 

fact that our segment model coarse-grains over many internal degrees of freedom of the 

macromolecule. Then, the entropy of a random coil of n segments is SC = kB ln Ωn. To calculate 

the loop entropy, we correct the unrestrained chain entropy to reflect the constraints placed by 

holding the ends of the random coil together in the loop.  

lnL C B LS S k P   

This expression reflects the fact that the number of configurations available to the constrained 

chain is taken to be  ( ) Ln
L L L Ln P n   , and each of these configurations are assumed to be 

equally probable ( lnL B LS k  ). Since PL<1, the second term is negative, lowering the loop 

entropy relative to the coil. We find that we can express the loop configurational entropy as 

3
( ) ln ln

2L L B L LS n k n b n
        

Since this expression derives from the random coil, it does not account for excluded volume of 

the chain. However, regardless of the model used to obtain the loop entropy, we find that we can 

express it is the same form:  

 ( ) lnL L B L LS n k n a b c n  
 

where a, b, and c are constants. For the random coil c = 1.50, and for a self-avoiding random 

walk on a cubic lattice we find that it increases to c = 1.77. In 2D, a random coil results in c = 

1.0, and a SAW gives c = 1.44.  
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