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9. Macromolecular Mechanics 

An alternative approach to describing macromolecular conformation that applied both to 

equilibrium and non-equilibrium phenomena uses a mechanical description of the forces acting 

on the chain. Of course, forces are present everywhere in biology. Near equilibrium these exist as 

local fluctuating forces that induce thermally driven excursions from the free-energy minimum, 

and biological systems use non-equilibrium force generating processes derived from external 

energy sources (such as ATP) in numerous processes such as those in transport and signaling. 

For instance, the directed motion of molecular motors along actin and microtubules, or the 

allosteric transmembrane communication of a ligand binding event in GPCRs.  

Our focus in this section is on how externally applied forces influence macromolecular 

conformation, and the experiments that allow careful application and measurement of forces on 

single macromolecules. These are being performed to understand mechanical properties and 

stress/strain relationships. The can also be unique reporters of biological function involving the 

strained molecules.  

Single Molecule Force Application Experiments 

 Force Range 
(pN) 

Displacement 
(nm) 

Loading rate 
(pN/sec) 

 

Optical Tweezers: 0.1–100 pN 0.1–105 5–10  Near equilibrium 
AFM: 10–104 0.5–104 100–1000  Non-equilibrium! 
Stretching under flow: 0.1–1000 pN 10–105 1–100 Steady state force 
MD simulations: Arb. <10 nm 105–107 !  

Remember: Bk T: 4.1 pN nm 

 

  

http://bpc.uchicago.edu/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Force and Work 

Here we will focus on the stretching and extension behavior of macromolecules. The work done 

on the system by an external force to extend a chain is  

extw f dx  
 

   

Work (w) is a scalar, while force (f) and displacement (x) are vectors. On extension, the external 

force is negative, leading to a positive value of w, meaning work was done on the system. 

Classical mechanics tells us that the force is the negative gradient of the potential one is 

stretching against ( / )f U x 


, but we will have to work with free energy and the potential of 

mean force since the configurational entropy of the chain is important. Since the change in free 

energy for a process is related to the reversible work needed for that process, we can relate the 

force along a reversible path to the free energy through  

, ,
rev

p T N

G
f

x

    


 

This describes the reversible process under which the system always remains at equilibrium, 

although certainly it is uncomfortable relating equilibrium properties (G) to nonequilibrium ones 

such as pulling a protein apart. For an arbitrary process, ΔG ≤ w.   

Jarzynski Equality 

A formal relationship between the free energy difference between two states and the work 

required to move the system from initial to final state has been proposed. The Jarzynski equality 

states 

eG/kT  ew/kBTin

path
 

Here one averages the Boltzmann-weighted work in the quantity at right over all possible paths 

connecting the initial and final states, setting T to the initial temperature (Tin), and one obtains 

the Boltzmann weighted exponential in the free energy. This holds for irreversible processes! 

Further, since one can show that / /B Bw k T w k Te e   , we see that the average work done to move 

the system between two states is related to the free energy through w G    . This reinforces 

what we know about the macroscopic nature of thermodynamics, but puts an interesting twist on 

it: Although the average work done to change the system will equal or exceed the free energy 

difference, for any one microscopic trajectory, the work may be less than the free energy 

difference. This has been verified by single molecule force/extension experiments.  
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Statistical Mechanics of Work 

Let’s relate work and the action of a force to changes in statistical thermodynamic variables.1 

The internal energy is 

j j
j

U E P E      

and therefore, the change in energy in a thermodynamic process is 

j j j j
j j

dU d E E dP P dE       

Note the close relationship between this expression and the First Law: 

– –dU dw dq   

We can draw parallels between the two terms in these expressions:  

–
rev j j

j

j j
j

d q TdS E dP

dw pdV or f dx P dE

 

 




 

Heat is related to the ability to change populations of energetically different states, whereas work 

is related to the ability to change the energy levels with an external force. 
  

                                                 
1. T. L. Hill, An Introduction to Statistical Thermodynamics. (Addison-Wesley, Reading, MA, 1960), pp. 11–13, 

66–77. 
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Worm‐like Chain 

The worm-like chain (WLC) is perhaps the most commonly encountered models of a polymer 

chain when describing the mechanics and the thermodynamics of macromolecules. This model 

describes the behavior of a thin flexible rod, and is particularly useful for describing stiff chains 

with weak curvature, such as double stranded DNA. Its behavior is only dependent on two 

parameters that describe the rod: κb its bending stiffness, and LC, the contour length.  

Let’s define the variables in this model: 

  s  The distance separating two points along the contour of the rod 

 Normal unit vector 

t


=
r

s



 Tangent vector  

t

s





  Curvature of chain  

1

R
  is inverse of local radius of curvature 

The worm-like chain is characterized by: 

 Persistence length, which is defined in terms of tangent vector correlation function: 

 ( ) exp[ | | ](0) ( ) pg s st t s  
 

   (1) 

 Bending energy: The energy it takes to bend the tangent vectors of a segment of length s 

can be expressed as     

 

2

0

1

2

L

b b

t
U ds

s
    

 


  (2) 

Bending Energy 

Let’s evaluate the bending energy of the WLC, making some simplifying assumptions, useful for 

fairly rigid rods. If we consider short distances over which the curvature is small, then /s R 
and 

1t d

s ds R


 




 

Then we can express the bending energy in terms of an angle: 

21

2b bU
s
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Note the similarity of this expression to the energy needed to displace a particle bound in a 

harmonic potential with force constant k: U = ½kx2.  

The bending energy can be used to obtain thermodynamic averages. For instance, we can 

calculate the variance for the tangent vector angles as a function of s (spherical coordinates): 

 

2 ( )2 2

0 0

1
( ) sin  

2

b BU k T

bend

B

b

s d d e
Q

sk T

      







 
  (3) 

Here we have used sin θ ≈ θ. The partition function for the bending of the rod is: 

Q
bend

 d
0

2

 d
0



 sin eUb ( ) kBT  

Persistence Length 

To describe the persistence length of the WLC, we recognize that eq. (1) can be written as 

( ) cos ( )g s s  and expand this for small θ: 

2
21( )( ) 1cos ( ) ( )1

22

sg s s s
     

 

and from eq. (3) we can write:  

( ) 1 B

b

sk T
g s


   

If we compare this to an expansion of the exponential in eq. (1) 

( ) 1ps

p

sg s e  


 

we obtain an expression for the persistence length of the worm-like chain 

 b
p

Bk T


   

  

End‐to‐End Distance 

The end-to-end distance for the WLC is obtained by integrating the tangent vector over one 

contour length: 

0
( )

CL
R dst s 
 

 

So the variance in the end-to-end distance is determined from the tangent vector autocorrelation 

function, which we take to have an exponential form: 
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Let’s examine this expression in two limits:  

2 2

2 2

rigid:

flexible: 2 2        

p C C

p C C p e e p e

L R L

L R L n

  

     

 

     
 

 

DNA Bending in Nucleosomes 

What energy is required to wrap DNA around the histone octamer 

in the nucleosome? Double stranded DNA is a stiff polymer with a 

persistence length of p ≈ 50 nm, but the nucleosome has a radius 

of ~4.5 nm. From p and kBT = 4.1 pN nm, we can determine the 

bending rigidity using: 

b = p kBT = (50 nm)(4.1 pN nm) = 205 pN nm2 

Then the energy required to bend dsDNA into one full loop is 

2 2

2

-1

-1

(2 )

2 2(2 )

(205pn nm )
143pN nm

4.5nm

35 15kcal (mol loops)

or 0.15 kcal basepair

b b b
b

B

U
s R R

k T

    




  

 

 

 

Continuum Mechanics of a Thin Rod2 

The worm-like chain is a model derived from the continuum mechanics of a thin rod. In addition 

to bending, a thin rod is subject to other distortions: stretch, twist, and write. Let’s summarize the 

energies required for these deformations: 

                                                 
2.  D. H. Boal, Mechanics of the Cell, 2nd ed. (Cambridge University Press, Cambridge, UK, 2012). 
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Deformation variables: 

s:  Position along contour of rod 

L0:  Unperturbed length of rod 

t


:  Tangent vector.   

/dt ds


 : curvature 

Ω:  Local twist 

 

The energy for distorting the rod is 

st b twU U U U    

In the harmonic approximation for the restoring force, we can write these contributions as 

0 0 0

2

21 1 1

2 2 2

L L L

st b tw

L L L

dt
U sds ds ds

ds
       

   


 

The force constants, with representative values for dsDNA, are: 

 Stretching:  st  stentropic  stenthalpic
 

  κst-entropic ≈ 3kBT/pLc  

 Bending: κb 
  κb ≈ 205 pN nm2  

 Twisting: κtw 
  κtw ≈ (86nm)kBT = 353 pN nm2   

 

Writhe 

An additional distortion in thin rods is writhe, which refers to coupled twisting and coiling, and 

is an important factor in DNA supercoiling. Twisting of a rod can induce in-plane looping of the 

rod, for instance as encountered with trying to coil a garden hose. The writhe number W of a rod 

refers to the number of complete loops made by the rod. The writhe can be positive or negative 

depending on whether the rod crosses over itself from right-to-left or left-to-right. The twist 

number T is the number of Ω = 2π rotations of the rod, and can also be positive of negative. 
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The linking number L = T+W is conserved in B-form DNA, so that twist can be converted into 

writhe and vice-versa. Since DNA in cells is naturally negatively supercoiled in nucleosomes, 

topoisomerases are used to change of linking number by breaking and reforming the 

phosphodiester backbone after relaxing the twist. Negatively supercoiled DNA can be converted 

into circular DNA by local bubbling (unwinding into single strands). 
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Polymer Elasticity and Force–Extension Behavior 

The Entropic Spring 

To extend a polymer requires work. We calculate the reversible work to extend the 

macromolecule from the difference in free energy of the chain held between the initial and final 

state. This is naturally related to the free energy of the system as a function of polymer end-to-

end distance: 

0
0( ) ( )

r

stretch revr
w F r F r f dr    

   

 

For an ideal chain, the free energy depends only on the entropy of the chain: F TS  . There are 

fewer configurational states available to the chain as you stretch to larger extension. The number 

of configurational states available to the system can be obtained by calculating the 

conformational partition function, Qconf. For stretching in one-dimension, the Helmholtz free 

energy is:   

ln

– ·

 conf B conf

B confk T Q

dF p dV S dT f dx

S k lnQ

  




   

 

, ,

ln conf conf
B

V T N

Q SF
f k T T

x xx

           
  (4) 

When you increase the end-to-end distance, the number of configurational states available to the 

system decreases. This requires an increasingly high force as the extension approaches the 

contour length. Note that more force is needed to stretch the chain at higher temperature. 

Since this is a freely joined chain and all microstates have the same energy, we can equate the 

conformational partition function of a chain at a particular extension x with the probability 

density for the end-to-end distances of that chain 

( )conf fjcQ P r  

Although we are holding the ends of the chain at a fixed and stretching with the ends restrained 

along one direction (x), the probability distribution function takes the three-dimensional form to 
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properly account for all chain configurations: 
2 2

0( ) r
confP r P e  with 2 23 / 2Bk T n    and 

3 3/2
0 β πP   is a constant. Then 

2 2
0ln ( ) lnconfP r r P  
 

The force needed to extend the chain can be calculated from eq. (4) after substituting r2 = 

x2+y2+z2, which gives 

22 B stf k T x x      

So we have a linear relationship between force and displacement, which is classic Hooke’s Law 
spring with a force constant κst given by

  
2 2

0

3 3B B
st

k T k T

n r
  

 
 

Here 2
0r   refers to the mean square end-to-end distance for the FJC in the absence of any 

applied forces. Remember: 2 2
0 Cr n L     . In the case that all of the restoring force is due to 

entropy, then we call this an entropic spring κES.  

2

2
, ,2ES

N V T

T S

x

     
 

This works for small forces, while the force is reversible. Notice that κES increases with 

temperature—as should be expected for entropic restoring forces. 

Example: Stretching DNA3 

At low force: 

dsDNA → st  = 5 pN/nm 

ssDNA → st  = 160 pN/nm → more entropy/more force 

At higher extension you asymptotically approach the contour length. 

                                                 
3. A. M. van Oijen and J. J. Loparo, Single-molecule studies of the replisome, Annu. Rev. Biophys. 39, 429–448 

(2010). 



 11

 

Force/Extension of a Random Walk Polymer 

Let’s derive force extension behavior for a random walk polymer in one dimension. The end-to-

end distance is r, the segment length is , and the total number of segments is n. 

 

For any given r, the number of configurations available to the polymer is: 

 

!

! !

n

n n 

 
 

This follows from recognizing that the extension of a random walk chain in one dimension is 

related to the difference between the number of segments that step in the positive direction, n+, 

and those that step in the negative direction, n‒. The total number of steps is n = n+ + n‒. Also, 

the end-to-end distance can be expressed as 

 ( ) (2 ) ( 2 )r n n n n n n             (5) 

1

2

r
n n

   
   

1

2

n

r

 

 
 

Then we can calculate the free energy of the random walk chain that results from the entropy of 

the chain, i.e., the degeneracy of configurational states at any extension. This looks like an 

entropy of mixing calculation:
 

 

 
 

ln

ln ln ln

ln ln

B

B

B

F k T

k T n n n n n n

nk T
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 1
1

2

n
x

n


     

Here the fractional end-to-end extension of the chain is 

 

C

r
x

L
   (6) 

 

Next we can calculate the force needed to extend the polymer as a function of r:  

F
f

r


 


 → 

F

r




 
 

  
1

2 Cr L

 


 

Using eq. (5) 

  1
ln ln

2

1
ln

2 1

1 1
ln

2 1

B
C

B

C

B

f nk T
L

nk T x
L x

k T x

x

 

 
      

 
     

     

 

 
1tanh ( )Bk T

f x 


  (7) 

where I used the relationship: 11
ln 2 tanh ( )

1

x
x

x
    

. Note, here the forces are scaled in units of 

/Bk T  . For small forces x≪1, 1tanh ( ) xx   and eq. (7) gives B

C

k T
f r

L



. This gives Hooke’s 

Law behavior with the entropic force constant expected for a 1D chain. For a 3D chain, we 

would expect: 
3 B

C

k T
f r

L



. The spring constant scales with dimensionality. 
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The relationship between position, force, and the partition function 

Now let’s do this a little more carefully. From classical statistical mechanics, the partition 

function is 

3 3 exp( / )N N
BQ dr dp H k T    

Where H is the Hamiltonian for the system. The average value for the position of a particle 

described by the Hamiltonian is 

3 31
exp( / )Bx dr dp x H k T

Q
      

If the Hamiltonian takes the form 

H f x     

Then  

, , , ,

lnB
B

V T N V T N

k T Q Q
x k T

Q f f

    
          

 

 

This describes the average extension of a chain if a force is applied to the ends. 

Force/Extension Behavior for a Freely Jointed Chain 

Making use of the expressions above and NQ q  

3 3 BU kT
conf

f r k Tq dr dp e e  
 

   
, ,

ln conf
B

U r n

q
Nk Tr

f
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Here we also inserted a general Hamiltonian which accounts for the internal chain interaction 

potential and the force ex the chain: H U f r  
 

. For N freely jointed chains with n segments, 

we set U→0, and focus on force exerted on every segment of the chain.  

1 1

cos
n n

i i
i i

f r f f
 

     
      

Treating the segments as independent and integrating over all θ, we find that  

2 sinh
( )confq f

 



 

 
1

cothr n
      
   (8) 

where the unitless force parameter is 

 

B

f

k T
 


  (9) 

As before, the magnitude of force is expressed relative to /Bk T  . Note this calculation is for the 

average extension that results from a fixed force. If we want the force needed for a given average 

extension, then we need to invert the expression. Note, the functional form of the force-extension 

curve in eq.  is different than what we found for the 1D random walk in eq. (7). We do not expect 

the same form for these problems, since our random walk example was on a square lattice, and 

the FJC propagates radially in all directions.  

Derivation  

For a single polymer chain: 

3 3

/1
( )

ln

B B

B B

U k T f r k T

U k T f r k T

B

u

q dr dp e e

P r e e
q

qk T
r

fq

 

 

  



    

 

In the case of the Freely Jointed Chain, set U→0. 

1 1

cos
n n

i i
i i

f r f f
 

     
    

 Decoupled segments: 3 exp cos i
i B

f
q dr

k T
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 2

0 0
exp[ cos ]sin

2 sinh( )

n

n

d d
 

     

  
   

 
    

 
1

ln

2 sinh( )
ln

coth( )

B

B

k T qr
f

nk T
f

nr 






          
    

 

 coth(x) 
ex  e x

ex  e x
 

or 1coth( )x          The average fractional extension: / Cx r L     

Now let’s look at the behavior of the expression for ۦxۧ—also known as the Langevin function.   

 
1coth( )r n          (10) 

Looking at limits: 

 Weak force (φ≪1): f  /Bk T   

Inserting and truncating the expansion: 3 51 1 1 2
coth

3 45 945
       


 , we get 

1

3C

r
x

L

 
      

21

3 B

n
r f

k T
  


 

or  2

3
ES

Bk T
f r r

n
     


 

Note that this limit has the expected linear relationship between force and displacement, 

which is governed by the entropic spring constant.  

 Strong force (φ≫1). /Bf k T   Taking the limit coth(x) →1. 

  
1

1r n
     

   

Or 
1

where
1

B

C

k T rf x
x L

   
  

 

 For strong force limit, the force extension behavior scales as, x~1‒f ‒1. 

 

lim
f 

 lim


 L
C  Contour length 
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So, what is the work required to extend the chain? 

At small forces, we can integrate over the linear force-extension behavior. Under those 

conditions, to extend from r to r+Δr, we have 

2
2

0

3

2

r

e Sv E
B

r

k T
w r dr r

n



    
 

Force/Extension of Worm‐like Chain 

For the worm-like chain model, we found that the variance in the end-to-end distance
 was

 

  22 2 2 1 pC
p C p

LLr e
       (11) 

where LC is the contour length, and the persistence length was related to the bending force 

constant as b
p

Bk T


 . The limiting behavior for eq. (11) is:  

22

2

2

rigid:

flexible: ~ 2

       

p C C

p C C p

e e

L Lr

L Lr

n





 

  



 

Following a similar approach to the FJC above, it is not possible to find an exact solution for the 

force-extension behavior of the WLC, but it is possible to show the force extension behavior in 

the rigid and flexible limits.   

Setting 2p = e , /e Bf k T   , and using the fractional extension 
C

rx
L

   : 

1) Weak force (φ≪1) Expected Hooke’s Law behavior  

3
3eB

e B
e C B

fk T
f k T f xr

L k T
    

 


 

 For weak force limit, the force extension behavior scales as, x~f. 

2) Strong force (φ≫1) 

 2

1 1
1

2 4 1
e

e B C
B

f
f k T r L

k T x

 
           

   

For strong force limit, the force extension behavior scales as, x~1‒f ‒1/2. 

An approximate expression for the combined result (from Bustamante): 

 
 2

1 1

44 1
pf

x
kT x

    
  


  (12) 

∴ for WLC 

(2p = e) 
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Adapted with permission from N. M. Toan and D. Thirumalai, Macromolecules 43, 4394–4400 (2010). Copyright 
2010 American Chemical Society. 


