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10. Diffusion 

Continuum Diffusion 

We are now going to start a new set of topics that involve the dynamics of molecular transport. A 

significant fraction of how molecules move spatially in biophysics is described macroscopically 

by “diffusion” and microscopically through its counterpart “Brownian motion”. Diffusion refers 

to the phenomenon by which concentration and temperature gradients spontaneously disappear 

with time, and the properties of the system become 

spatially uniform. As such, diffusion refers to the 

transport of mass and energy in a nonequilibrium 

system that leads toward equilibrium. Brownian motion 

is also a spontaneous process observed in equilibrium 

and non-equilibrium systems. It refers to the random motion of molecules in fluids that arises 

from thermal fluctuations of the environment that rapidly randomize the velocity of particles. 

Much of the molecular transport in biophysics over nanometer distances arises from diffusion. 

This can be contrasted with directed motion, which requires the input of energy and is crucial for 

transporting cargo to targets over micron-scale distances. Here we will start by describing 

diffusion in continuum systems, and in the next section show how this is related to the Brownian 

motion of discrete particles. 

Fick’s First Law 

We will describe the time evolution of spatially varying concentration distributions C(x,t) as they 

evolve toward equilibrium. These are formalized in two laws that were described by Adolf Fick 

(1855).1 Fick’s first law is the “common sense law” that is in line with everyone’s physical 

intuition. Molecules on average will tend to diffuse from regions of higher concentration to 

regions of lower concentration. Therefore we say that the flux of molecules through a surface, J, 

is proportional to the concentration gradient across that surface.  

 
C
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x


 

   (1) 

J is more accurately called a flux density, since it has units of 

concentration or number density per unit area and time. The 

proportionality constant between flux density J (mol m–2 s–1) and 

concentration gradient (mol m–4) which sets the timescale for the 

process is the diffusion constant D (m2 s–1). The negative sign 

                                                 
1. A. Fick, Ueber diffusion, Ann. Phys. 170, 59–86 (1855). 
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assures that the flux points in the direction of decreasing concentration. This relationship follows 

naturally, when we look at the two concentration gradients in the figure. Both C and C have a 

negative gradient that will lead to a flux in the positive direction. C will give a bigger flux than 

C because there is more probability for flow to right. The gradient disappears and the 

concentration distribution becomes constant and time invariant at equilibrium. Note, in a general 

sense, /C x   can be considered the leading term in an expansion of C in x. 

Fick’s Second Law 

Fick’s second law extends the first law by adding an additional 

constraint based on the conservation of mass. Consider diffusive 

transport along x in a pipe with cross-sectional area a, and the 

change in the total number of particles within a disk of thickness 

Δx over a time period Δt. If we take this disk to be thin enough 

that the concentration is a constant at any moment in time, then 

the total number of particles in the slab at that time is obtained 

from the concentration times the volume:  

N = aC(t)∆x 

Within the time interval Δt the concentration can change and therefore the total number of 

particles within the disk changes by an amount  

ΔN=a{C(t+Δt) ‒ C(t)}Δx 

Now, the change in the number of particles is also dependent on the fluxes of molecules at the 

two surfaces of the disk. The number of molecules passing into one surface of the disk is ‒aJ∆t, 

and therefore the net change in the number of molecules during Δt is obtained from the 

difference of fluxes between the left and right surfaces of the disk:  

ΔN = –a {J(x+Δx) ‒ J(x)}∆t 

Setting these two calculations of ΔN equal to each other, we see that the flux and concentration 

gradients for the disk are related as  

{C(t+Δt) ‒ C(t)}∆x = ‒{J(x+Δx) ‒ J(x)}∆t 

or rewriting this in differential form 

 
C J

t x

 
 

    (2) 

This important relationship is known as a continuity expression. Substituting eq. (1) into this 

expression leads to Fick’s Second Law
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This is the diffusion equation in one dimension, and in three dimensions:2 

 
2C

D C
t


 

  (4) 

Equation (4) can be used to solve diffusive transport problems in a variety of problems, choosing 

the appropriate coordinate system and applying the specific boundary conditions for the problem 

of interest.  

Diffusion from a Point Source 

As our first example of how concentration distributions evolve diffusively, we consider the time-

dependent concentration profile when the concentration is initially all localized to one point in 

space, x = 0. The initial condition is  

0( , 0) ( )C x t C x   

and the solution to eq. (3) is 

 C(x,t) 
C

0

4Dt
e x2 4 Dt   (5) 

The concentration profile has a Gaussian form which is centered on the origin, ⟨x⟩ = 0, with the 

mean square displacement broadening with time as: 

2 2x Dt    

 

                                                 
2. This equation assumes that D is a constant, but if it is a function of space:    C D C . In three dimensions, 

Fick’s First Law and the continuity expression are: J(r,t)  vC(r,t)DC(r,t) and dC(r,t) / dt  J(r,t)  
where v is the velocity of the fluid. These expressions emphasize that flux density and velocity are vectors, 
whereas concentration field is a scalar. 
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Diffusive transport has no preferred direction. Concentration profiles spread evenly in the 

positive and negative direction, and the highest concentration observed will always be at the 

origin and have a value max 0 / 4C C Dt . Viewing time-dependent concentrations in space 

reveal that they reach a peak at tmax = x2/2D, before decaying at t‒1/2 (dashed line below). 

 

When we solve for 3D diffusion from a point source: 

0( , , , 0) ( ) ( ) ( )C x y z t C x y z     

If we have an isotropic medium in which D is identical for diffusion in the x, y, and z 

dimensions,  

  
2 40

3/2

 
( , , , )

4
r DtC

C x y z t e
Dt

   (6) 

where 2 2 2 2r x y z   . Calculating the mean square displacement from 

2

2 0

0

( , )

( , )

6



  






dr r C r t
r

dr C r t

Dt  

or in d dimensions, 2 (2 )  r d Dt .  

Diffusion Constants 

Typical diffusion constants for biologically relevant molecules in water are shown in the graph 

below, varying from small molecules such as O2 and glucose in the upper left to proteins and 

viruses in the lower right.  
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 For a typical globular protein, typically diffusion coefficients are: 

in water D ~ 10–10 m2/s 
in cells  D ~ 10–12 m2/s 
in lipids D ~ 10–14 m2/s 

1/22 1 ,   ~ 0.4 sec  in cells

10 , ~ 40 sec  in cells

µm tr
µm t




 

 Ions in water at room temperature usually have a diffusion coefficient of 0.6×10–5 to 

2×10–5 cm2/s.  

 Lipids:  

o Self-diffusion 10–12 m2/s 

o Tracer molecules in lipid bilayers 1–10×10–12 m2/s 
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Anomalous Diffusion 

The characteristic of simple diffusive behavior is the linear 

relationship between the mean square displacement and time. 

Deviation from this behavior is known as anomalous diffusion, 

and is characterized by a scaling relationship 2 ~ .r t   We refer 

to ν<1 as sub-diffusive behavior and ν>1 as super-diffusive. 

Diffusion in crowded environments can result in sub-diffusion.3  

Thermodynamic Perspective on Diffusion 

Thermodynamically, we can consider the driving force for diffusion as a gradient in the free 

energy or chemical potential of the system. From this perspective, in the absence of any other 

interactions, the driving force for reaching uniform spatial concentration is the entropy of 

mixing. For a mixture with mole fraction xA, we showed   

 mix ln ln 1

ln 1

     

  
B A A B B B A

A B A A

S Nk x x x x x x

N k x for x   

We then use ΔF = ‒TΔS to calculate the chemical potential: 

,

ln

 
    
 

A
A V T

A B A

F

N

k T x
  

We see that a concentration gradient, means that the mole fraction and therefore chemical 

potential is different for two positions in the system. At equilibrium    1 2  A Ar r , which 

occurs when    1 2A Ax r x r .  

Thermodynamics does not tell you about rate, only the direction of spontaneous change 

(although occasionally diffusion is discussed in terms of a time-dependent “entropy 

production”). The diffusion constant is the proportionality constant between gradients in 

concentration or chemical potential and the time-dependent flux of particles. The flux density 

described in Fick’s first law can be related to µi, the chemical potential for species i:  

 



i i i

i
B i

DC µ
J

k T r  

 

                                                 
3. J. A. Dix and A. S. Verkman, Crowding effects on diffusion in solutions and cells, Annu. Rev. Biophys. 37, 

247–263 (2008). 
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Solving the Diffusion Equation 

Solutions to the diffusion equation, such as eq. (5) and (6), are commonly solved with the use of 

Fourier transforms. If we define the transformation from real space to reciprocal space as  

 ,   ( ) ikxC k t C x e dx



   

one can express the diffusion equation in 1D as 

 
   2,

,
dt

dC k t
Dk C k t




  (7) 

[More generally one finds that the Fourier transform of a linear differential equation in x can be 

expressed in polynomial form: ( / ) ( ) ( )n n nf x ik f k   F ]. This manipulation converts a partial 

differential equation into an ordinary one, which has the straightforward solution

     2, ,0 expC k t C k Dk t   . We do need to express the boundary conditions in reciprocal 

space, but then, this solution can be transformed back to obtain the real space solution using 

 1( , )   (2 ) , ikxC x t C k t e dk  


   .  

Since eq. (7) is a linear differential equation, sums of solutions to the diffusion equation are also 

solutions. We can use this superposition principle to solve problems for complex initial 

conditions.  Similarly, when the diffusion constant is independent of x and t, the general solution 

to the diffusion equation can also be expressed as a Fourier series. If we separate the time and 

space variables, so that the form of the solution is      ,  C x t X x T t  we find that we can write  

2
2

2

1 1T x

DT t x x
 

  
   

Where α is a constant. Then 
2DtT e   and cos sinx A x B x   . This leads to the general 

form: 

   2

0

( , ) cos sin n Dt
n n n n

n

C x t A x B x e  






    (8) 

Here An and Bn are constants determined by the boundary conditions. 

Examples 

Diffusion across boundary 

At time t = 0, the concentration is uniform at a value C0 for x ≥ 0, and zero for x < 0, similar to 

removing a barrier between two homogeneous media. Using the superposition principle, the 

solution is obtained by integrating the point source solution, eq. (5), over all initial point sources 

(x – x0) such that x0 = 0  ∞. Defining 2 2
0( ) / 4y x x Dt  , 
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0

2

( )

4

00 0 ( )
( , )

2 4
x x

Dt

y x xC C
C x t dy e erfc

Dt




       
   

 

Diffusion into “hole” 

A concentration “hole” of width 2a is inserted into a box of length 2L with an initial 

concentration of C0. Let’s take L = 2a.  Concentration profile solution:  

   

 

2

0
1

cos,

2sin

n Dt
n n

n

n
n n

L a
C C A ex t x

L

a n
A

n L



 







       

 


 

 

 Fluorescence Recovery after Photobleaching (FRAP): We can use this solution to 

describe the diffusion of fluorescently labeled molecules into a photobleached spot. 

Usually observe the increase of fluorescence with time from this spot. We integrate 

concentration over initial hole: 

2
0

1

( ) ( , )

2
( 1) n

a

FRAP a

Dt
n

n

N t C x t dx

a
C L L A e

L













     




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Reflecting and Absorbing Boundary Conditions  

We will be interested in describing the time-dependent probability distribution for the case in 

which particles are releases at 0x  , subject to encountering an impenetrable wall at wx x , 

which can either absorb or reflect particles.  

Consider the case of a reflecting wall, where the boundary condition requires that the flux at xw is 

zero. This boundary condition and the resulting pile-up near the wall can be described by making 

use of the fact that any  , wP x x t  can be reflected about wx , which is equivalent to removing 

the boundary and adding a second source term to  ,P x t  for particles released at 2 wx x   

       refl , , 2 ,   w wP x t P x t P x x t x x   

This is also known as a wrap-around solution, since any component with any population from 

 ,P x t  that passes the position of the wall is reflected about xw. Similarly, an absorbing wall, 

 , 0 wP x x t , means that we remove any population that reached xw, which is obtained from 

the difference of the two mirrored probability distributions:  

       abs , , 2 ,   w wP x t P x t P x x t x x   
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Steady‐State Solutions 

Steady state solutions can be applied when the concentration gradient may vary in space but does 

not change with time, / 0C t   . Under those conditions, the diffusion eq. (4) simplifies to 

Laplace’s equation 

 
2 0C    (9) 

For certain conditions this can be integrated directly by applying the proper boundary conditions, 

and then the steady state flux at a target position is obtained from Fick’s first law, eq. (1). 

Diffusion through a Membrane4  

The steady-state solution to the diffusion equation in 

one dimension can be used to describe the diffusion 

of a small molecule through a cell plasma membrane 

that resists the diffusion of the molecule. In this 

model, the membrane thickness is h, and the 

concentrations of the diffusing small molecule in the 

fluid on left and right side of membrane are Cl and Cr. Within the membrane resists diffusion of 

the small molecule, which is reflected in the small molecule’s partition coefficient between 

membrane and fluid: 

membrane

fluid

C
K

C
p  

Kp can vary between 103 and 10–7 depending on the nature of the small molecules and membrane 

composition.   

For the steady-state diffusion equation 2 2/ 0,C x   solutions take the form 1 2( )C x A x A  . 

Applying boundary conditions for the concentration of small molecule in the membrane at the 

two boundaries, we find  
 

1
r lK C C

A
h


 p  2 lA CK p  

Then we can write the transmembrane flux density of the small molecule across the membrane as  

 mol mol
mol r

K D K D CC
J D C C

x h h


   

 
p p  

The membrane permeability is equivalent to the volume of small molecule solution that diffuses 

across a given area of the membrane per unit time, and is defined as  

                                                 
4. A. Walter and J. Gutknecht, Permeability of small nonelectrolytes through lipid bilayer membranes, J. Membr. 

Biol. 90, 207–217 (1986). 
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P

m


J

C


K
p
D

mol

h
(m s–1) (10) 

The membrane resistance to flow is R = 1/Pm, and the rate of transport across the membrane is 

dn/dt = J A, where A is area.  

This linear relationship in eq. (10) between Pm and Kp, also known as the Overton relation, has 

been verified for thousands of molecules. For small molecules with molecular weight <50,  Pm 

can vary from 101 to 10–6 cm s–1. It varies considerably even for water across different membrane 

systems, but its typical value for a phospholipid vesicle is 10–3 cm s–1. Some of the highest 

values (>50 cm s–1) are observed for O2. Cations such as Na+ and K+ have permeabilities of 

~5×10–14 cm s–1, and small peptides have values of 10–9–10–6 cm s–1
. 

Diffusion to Capture 

What is the flux of a diffusing species onto a spherical surface from a solution with a bulk 

concentration C0? This problem appears often for diffusion limited reaction rates. To find this, 

we calculate the steady-state radial concentration profile C(r) around a perfectly absorbing 

sphere with radius a, i.e. C(a) = 0. At steady state, we solve eq. (9) by taking the diffusion to 

depend only on the radial coordinate r and not the angular ones.  

2
2

1
0

C
r

r r r

      
 

Let’s look for the simplest solution. We begin by assuming that the quantity in parenthesis is a 

constant and integrate twice to give          

 C(r)  
A

1

r
 A

2   (11) 

Where A1 and A2 are constants of integration. Now, using the boundary conditions ( ) 0C a  and 

0( )C C   we find: 

0( ) 1
   
 

a
C r C

r
 

Next, we use this expression to calculate the flux of molecules incident on the surface of the 

sphere (r = a). 

   0




   

 r a

C DC
J a D

r a   (12) 
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Here J is the flux density in units of (molecules area–1 

sec–1) or [(mol/L) area–1 sec–1]. The sign of  the flux 

density is negative reflecting that it is a vector quantity 

directed toward r = 0. We then calculate the rate of 

collisions of molecules with the sphere (the flux, j) by 

multiplying the magnitude of J by the surface area of the 

sphere (A = 4πa2): 

04 j JA D aC

 This shows that the rate constant, which expresses the proportionality between rate of collisions 

and concentration is k = 4πDa.  

Probability of capture 

In an extension of this problem useful to ligand binding simulations, we can ask what the 

probability is that a molecule released near an absorbing sphere will reach the sphere rather than 

diffuse away?  

Suppose a particle is released near a spherical absorber 

of radius a at a point r = b. What is the probability that 

the particle will be absorbed at r = a rather than 

wandering off beyond an outer perimeter at r = c? 

To solve this problem we solve for the steady-state 

flux at the surfaces a and c subject to the boundary 

conditions C(a) = 0, C(b) = C0, and C(c) = 0. That is, 

the inner and outer surfaces are perfectly absorbing, 

but the concentration has a maximum value C(b) = C0 

at r = b.   

We separate the problem into two zones, a-to-b and b-to-c, and apply the general solution eq. 

(11) to these zones with the appropriate boundary conditions to yield:  

 

   

   

0

0

1
1 /

1
/ 1

C a
C r a r b

a b r

C a
C r b r c

c b r

       

       

  

Then the radial flux density is:  
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   

   

0
2

0
2

1 /

/ 1

r

r

DC a
J r a r b

a b r

DC c
J r b r c

c b r

   


  


 

Calculating the areas of the two absorbing surfaces and multiplying the flux densities by the 

areas gives the flux. The flux from the spherical shell source to the inner absorber is 

 
 in 04
1 /

a
j DC

a b
 


  

and the flux from the spherical shell source to the outer absorber is 

 
 out 04

/ 1

c
j DC

c b
 


  

We obtain the probability that a particle released at r = b and absorbed at r = a from the ratio 

 
 
 

in

in out
capture

a c bj
P

j j b c a


 

 
  

In the limit  c, this probability is just a/b. This is the probability of capture for the sphere of 

radius a immersed in an infinite medium. Note that this probability decreases only inversely with 

the radial distance b–1, rather than the surface area of the sphere. 
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