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11. Brownian Motion 

Brownian motion refers to the random motions of small particles under thermal excitation in 

solution first described by Robert Brown (1827), 1  who with his microscope observed the 

random, jittery spatial motion of pollen grains in water. This phenomenon is intrinsically linked 

with diffusion. Diffusion is the macroscopic realization of the Brownian motion of molecules 

within concentration gradients. The theoretical basis for this relationship was described by 

Einstein in 1905, 2  and Jean Perrin 3  provided the detailed experiments that confirmed his 

predictions.  

Since the motion of any one particle is unique, the Brownian motion must be described 

statistically. We observe that the mean-squared displacement of a particle averaged over many 

measurements grows linearly with time, just as with diffusion.   

    

The proportionality factor between mean-squared displacement and time is the diffusion constant 

in Fick’s Second Law. As for diffusion, the proportionality factor depends on dimensionality. In 

1D, if 2( ) / 2x t t D    then in 3D 2( ) / 6r t t D   , where D is the diffusion constant. 

Brownian motion is a property of molecules at thermal equilibrium. It 

applies to a larger particle (i.e., a protein) experiencing an imbalance 

of many microscopic forces exerted by many much small molecules 

of the surroundings (i.e., water). The thermal agitation originates by 

partitioning the kinetic energy of the system on average as kBT/2 per 

degree of freedom. Free diffusion implies motion which is only 

limited by kinetic energy.   

                                                 
1.  R. Brown, "On the Particles Contained in the Pollen of Plants; and On the General Existence of Active 

Molecules in Organic and Inorganic Bodies" in The Miscellaneous Botanical Works of Robert Brown, edited by 
J. J. Bennett (R. Hardwicke, London, 1866), Vol. 1, pp. 463-486. 

2. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden 
Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322, 549–560 (1905). 

3. J. Perrin, Brownian Movement and Molecular Reality. (Taylor and Francis, London, 1910). 
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Brownian motion applies to a specific range of forces and masses where thermal energy 

(kBT(300 K) = 4.1 pN nm) can have a significant influence on a particle. Let’s look at the 

average translational kinetic energy: 

2 1

22
x

B
mv k T  

For a ~10 kDa protein with mass ~10–23 kg, the root mean squared velocity due to thermal 

energy is 2 1/2
rms xvv     = 20 m/s. For water at 300 K, D ~10–5 cm2/s. The same protein has a net 

displacement in one second of 
2 1/2 2rms x Dx t  

  50 m. The large difference in these 

values indicates the large number of randomizing collisions that this particle experiences during 

one second of evolution: (vrms1sec)/xrms ≈ 4×105. For the protein, the velocities and 

displacements are a dominant force on the molecular scale. In comparison, a 1 kg mass with kBT 

of energy will have vrms ~ 10–11 m/s, and an equally insignificant displacement! 

Ergodic Hypothesis 

A system is known as ergodic when time average and ensemble averages for a time-dependent 

variable are equal. 

Ensemble average: 
1

( )  i
i

x x P x x dx
N

      

Time-average: 
0

1
( ) lim ( )

T

T
x t x t dt

T
   

In practice, the time average can be calculated using a single particle trajectory by averaging 

over the displacement observed for all time intervals within the trajectory such that t=(tfinal‒ 

tinitial). 

In the case of Brownian motion and diffusion: 
2 2

( ) ( )t t  0 0r r r r .        
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Random Walk and Diffusion 

We want to describe the correspondence between a microscopic picture for the random walk of 

particles and macroscopic diffusion of particle concentration gradients. We will describe the 

statistics for the location of a random walker in one dimension (x), which is allowed to step a 

distance Δx to the right (+) or left (–) during each time interval Δt. At each time point a step must 

be taken left or right, and steps to left and right are equally probable.  

Let’s begin by describing where the system is at after taking n steps qualitatively. We can relate 

the position of the system to where it was before taking a step by writing: 

( ) ( 1)x n x n x     

This expression can be averaged over many steps:  

( ) ( 1)

( 1) ( 2) (0)

x n x n

x n

x

x n x

  

  



  
 

Since there is equal probability of moving left or right with each step, the ±Δx term averages to 

zero, and x  does not change with time. The most probable position for any time will always be 

the starting point.  

Now consider the variance in the displacement: 

2 22

22

( 1) 2 ( 1) ( )( )

( )( 1)

x xx n x nx n

x xn

    

  

 

 In the first line, the middle term averages to zero, and the variance gains a factor of Δx2. 

Repeating this process for each successive step back shows that the mean square displacement 

grows linearly in the number of steps.  
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2 2( ) ( )n xx n      (1) 

Qualitatively, these arguments indicate that the statistics of a random walker should have the 

same mean and variance as the concentration distribution for diffusion of particles from an initial 

position.  
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Random Walk Step Distribution Function 

Now let’s look at this a little more carefully and describe the probability distribution for the 

position of particles after n steps, which we equate with the number of possible random walk 

trajectories that can lead to a particular displacement. What is the probability of starting at x0 = 0 

and reaching point x after n jumps separated by the time interval Δt?   

 

Similar to our discussion of the random walk polymer, we can express the displacement of a 

random jumper to the total number of jumps in the positive direction n+ and in the negative 

direction n–. If we make n total jumps, then 

n = n+ + n– → t = n Δt  

The total number of steps n is also our proxy for the length of time for a given trajectory, t. The 

distance between the initial and final position is related to the difference in + and ‒ steps:  

m = n+ – n– → x = m Δx 

Here m is our proxy for the total displacement x. Note from these definitions we can express n+ 

and n– as 

 2

n m
n


   (2) 

The number of different ways of making n jumps with the constraint of n+ positive and n– 

negative jumps is 

!

! !

n

n n 

 
 

The probability of observing a particular sequence of n “+” and “–” jumps is 

( ) ( ) ( ) (1 / 2)nn nP n P P 
   . 

The total number of trajectories that are possible with n equally probably “+” and “‒” jumps is 

2n, so the probability that any one sequence of n steps will end up at position m is given by Ω/2n 

or 
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   
 

         
   
     

This is the binomial probability distribution function. Looking at the example below for twenty 

steps, we see m  = 0 and for a discrete probability distribution which has a Gaussian envelope. 

 

For very large n, the distribution function becomes continuous. To see this, let’s apply Stirling’s 

approximation, ! ( / ) 2 nn n e n , and after a bit of manipulation we find4  

 
2 22

( , ) m nP m n e
n

   (3) 

Note, this distribution has an envelope that follows a normal Gaussian distribution for a 

continuous variable where the variance σ2 is proportional to the number of steps n. 

To express this with a time variable, we instead insert n = t/Δt and m = x/Δx in eq. (3) to obtain 

the discrete probability distribution function: 

2

2
( , ) exp

2 2 ( )
  

   

x
P x t

t t x

t t

 

Note that we can re-write this discrete probability distribution similar to the continuum diffusion 

solution 

  
2

2
4( )

( , )
4


 x Dtx

P x t e
Dt  (4) 

if we equate the variance and diffusion constant as 

                                                 
4. M. Daune, Molecular Biophysics: Structures in Motion. (Oxford University Press, New York, 1999), Ch. 7. 
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2( )

2





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D
t  

Equation (4) is slightly different because P is a unitless probability for finding the particle 

between x and x+Δx, rather than a continuous probability density ρ with units of m-1: ρ(x,t) dx = 

P(x,t). Even so, eq. (4) suggests that the time-dependent probability distribution function for the 

random walk obeys a diffusion equation  

 

2 2

2 2

    
  

   
P P

x D or D
t x t x   (5) 

Three‐Dimensional Random Walk 

We can extend this treatment to diffusion from a point source in three dimensions, by using a 

random walk of n steps of length Δx on a 3D cubic lattice. The steps are divided into those taken 

in the x, y, and z directions:  

x y zn n n n    

and distance of the walker from the origin is obtained from the net displacement along the x, y, 

and z axes:  

2 2 2 1/2( )    r x y z m x  
2 2 2  x y zm m m m  

For each time-interval the walker takes a step choosing the positive or negative direction along 

the x, y, and z axes with equal probability. Since each dimension is independent of the others  

( , ) ( , ) ( , ) ( , )x x y y z zP r n P m n P m n P m n
 

Looking at the radial displacement from the origin, we find  

2 2 2 2
x y z r     

 

where  

2
2 ( )

2 



x x

x t
D t

t  

but since each dimension is equally probable 2 23r x  . Then using eq. (3)   

2 2
3/22

2
3 23

( , )
2




 

  
 

r

r

rx
P r t e

   

where 2 6 r Dt .  
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Markov Chain and Stochastic Processes5 

Working again with the same problem in one dimension, let’s try and write an equation of 

motion for the random walk probability distribution: P(x,t).  

 This is an example of a stochastic process, in which the evolution of a system in time and 

space has a random variable that needs to be treated statistically.  

 As above, the movement of a walker only depends on the position where it is at, and not 

on any preceding steps. When the system has no memory of where it was earlier, we call 

it a Markovian system. 

 Generally speaking, there are many flavors of a stochastic problem in which you describe 

the probability of being at a position x at time t, and these can be categorized by whether 

x and t are treated as continuous or discrete variables. The class of problem we are 

discussing with discrete x and t points is known as a Markov Chain. The case where 

space is treated discretely and time continuously results in a Master Equation, whereas a 

Langevin equation or Fokker–Planck equation describes the case of continuous x and t. 

 To describe the walkers time-dependence, we relate the probability distribution at one 

point in time, P(x,t+Δt), to the probability distribution for the preceding time step, P(x,t) 

in terms of the probabilities of a walker making a step to the right ( P ) or to the left ( P ) 

during the interval Δt. Note, when P P  , there is a stepping bias in the system. If 

1P P   , there is a resistance to stepping either as a result of an energy barrier or 

excluded volume on the chain. 

 In addition to the loss of probability by stepping away from x to the left or right, we need 

to account for the steps from adjacent sites that end at x.  

 

Then the probability of observing the particle at position x during the interval Δt is:  

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

(1 ) ( , ) ( , ) ( , )

( , ) [ ( , ) ( , )] [ ( , ) ( , )]

   

   

 

            
        

 


   


  




P x t t P x t P P x t P P x t P P x t P P x t

P P P x t P P x t P P x

x x

x x

x x

t

P x t P P x t P x t P P x t P x t

 

                                                 
5. A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed 

Molecular Systems. (Oxford University Press, New York, 2006). 
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and the net change probability is 

( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )]          x xP x t t P x t P P x t P x t P P x t P x t  

We can cast this as a time-derivative if we divide the change of probability by the time-

step Δt: 

 

( , ) ( , )

[ ( , ) ( , )] [ ( , ) ( , )]

( , ) ( , )

 

   

   


 
     

  

 



 
 

P P x t t P x t

t t

P P x t P x t P P x t P xx x t

P P x t P P x t
  (6) 

Where /  P P t  is the right and left stepping rate, and ( , ) ( , ) ( , )   P x t P x t P x tx  

 We would like to show that this random walk model results in a diffusion equation for the 

probability density ρ(x,t) we deduced in eq. (5). To simplify, we assume that the left and 

right stepping probabilities 1
2  P P , and substitute  

P(x,t) = ρ(x,t) dx 

into eq. (6): 

[ ( , ) 2 ( , ) ( , )]
   
    


 P x t x x xt tx

t  

 where 1 / 2 P t . We then expand these probability density terms in x as 

2
2

2

1
( , ) (0, )

2

    
  

 
x t t x x

x x  

 and find that the probability density follows a diffusion equation  

2

2

  


 
D

t x  

 where 2 / 2  D x t . 
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Fluorescence Correlation Spectroscopy6 

Fluorescence correlation spectroscopy (FCS) allows one to measure diffusive properties of 

fluorescent molecules, and is closely related to FRAP. Instead of measuring time-dependent 

concentration profiles and modeling the kinetics as continuum diffusion, FCS follows the steady 

state fluctuations in number density of a very dilute fluorescent probe molecule in the small 

volume observed in a confocal microscope. We measure the fluctuating changes in fluorescence 

intensity emitted from probe molecules as they diffuse into and out of the focal volume. 

 

 Average concentration of sample: C0 = <10–9 M – 10–7 M. 

This corresponds to an average of ~0.1-100 molecules in the focal volume, although this 

number varies with diffusion into and out of the volume. 

 The fluctuating fluorescence trajectory is proportional to the time-dependent number 

density or concentration: 

( ) ( )F t C t  

 How big are the fluctuations? For a Gaussian random process, we expect 
1

~rmsN

N N


 

 The observed concentration at any point in time can be expressed as time-dependent 

fluctuations about an average value:       C t C C t . 

To describe the experimental observable, we model the time-dependence of δC(t) from the 

diffusion equation: 

                                                 
6. P. Schwille and E. Haustein, "Fluorescence Correlation Spectroscopy: An Introduction to its Concepts and 

Applications" in Biophysics Textbook Online. 
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2C
D C

t

 
 

  
2( ) 40

3/2
( ,0) ( , )

(4 )
r r DtC

eC r C r t
Dt

 


  
 

The concentration fluctuations can be related to the fluorescence intensity fluctuations as 

( ) ( ) ( , )F t A W r C r t  
W(r): Spatial optical profile of excitation and detection 
A: Other experimental excitation and detection parameters 

Calculate FCS correlation function for fluorescence intensity fluctuations. ( ) ( )  F t F F t  

2

(0) ( )
( )

F F t
G t

F

 



 

For the case of a Gaussian beam with a waist size w0: 

( ) ~
1 FCS

B
G t

t   

Where the amplitude is 2 2 2 2
0 0 04B A I C w  , and the correlation time is related to the diffusion 

constant by: 

2
0

4FCS

w

D
 
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Orientational Diffusion 

The concepts we developed for translation diffusion and Brownian motion are readily extended 

to rotational diffusion. For continuum diffusion, if one often assumes that one can separate the 

particle probability density into a radial and angular part: ( , , ) ( ) ( , )P r P r P    . Then one also 

separate the diffusion equation into two parts for which the orientational diffusion follows a 

small-angle diffusion equation 

 
P(,t)

t
 D

or
2 P(,t)  (7) 

where  refers to the spherical coordinates (θ,ϕ). Dor is the orientational diffusion constant with 

units of rad2 s–1. Microscopically, one can consider orientational 

diffusion as a random walk on the surface of a sphere, with steps being 

small angular displacements in θ and ϕ. Equation (7) allows us to obtain 

the time-dependent probability distribution function P(Ω,t|Ω0) that 

describes the distribution of directions Ω at time t, given that the vector 

had the orientation Ω0 at time t = 0. This can be expressed as an 

expansion in spherical harmonics  

       0 0
0

*, | m m m

m

P t c t Y Y


 

       


  
 

 

The expansion coefficients are given by 

   exp 1m
orc t D t      
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2. R. Phillips, J. Kondev, J. Theriot and H. Garcia, Physical Biology of the Cell, 2nd ed. (Taylor 

& Francis Group, New York, 2012). 

 


