
Transport 

Andrei Tokmakoff, Concepts in Biophysical Chemistry, 08/04/2018   

15. Passive Transport  
Passive transport is often synonymous with diffusion, where thermal energy is the only source of 

motion. 
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In biological systems, diffusive transport may work 

on a short scale, but it is not effective for long-range 

transport.  Consider: 

 r21/2 for small protein moving in water 
    ~10 nm →10–7 s 
   ~10 μm → 10–1 s 

Active transport refers to directed motion: 

( )r t v t r t       

This requires an input of energy into the system, however, we must still deal with random 

thermal fluctuations. 

How do you speed up transport? 

We will discuss these possibilities: 

 Reduce dimensionality: Facilitated diffusion 

 Free energy (chemical potential) gradient: Diffusion in a potential 

 Directional: Requires input of energy, which drives the switching between two 

conformational states of the moving particle tied to translation. 
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Dimensionality Reduction 

One approach that does not require energy input works by recognizing that displacement is faster 

in systems with reduced dimensionality. Let’s think about the time it takes to diffusively 

encounter a small fixed target in a large volume, and how this depends on the dimensionality of 

the search. We will look at the mean first passage time to find a small target with radius b 

centered in a spherical volume with radius R, where R ≫ b. If the molecules are initially 

uniformly distributed within the volume the average time it takes for them to encounter the target 

(i.e., MFPT) is1 
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Here Dn is the diffusion constants in n dimensions (cm2/sec). If we assume that the magnitude of 

D does not vary much with n, the leading terms in these expressions are about equal, and the big 

differences are in the last factor 
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Based on the volume that needs searching, there can be a tremendous advantage to lowering the 

dimensionality. 
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Facilitated Diffusion2  

Facilitated diffusion is a type of dimensionality reduction that has been used to describe the 

motion of transcription factors and regulatory proteins looking for their binding target on DNA. 

E. coli Lac Repressor  

Experiments by Riggs et al. showed that E. coli Lac repressor finds its binding site about one 

hundred times faster than expected by 3D diffusion.3 They measured ka=7×109 M−1 s−1, which is 

100–1000 times faster than typical rates. The calculated diffusion-limited association rate from 

the Smoluchowski equation is ka≈108 M−1 s−1 using estimated values of D≈5×10−7 cm2 s−1 and 

R≈5×10−8 cm. Berg and von Hippel theoretically described the possible ways in which 

nonspecific binding to DNA enabled more efficient one-dimensional motion coupled to three-

dimensional transport.4 

Many Possibilities for Locating Targets Diffusively: Coupled 1D + 3D Diffusion 

1) Sliding (1D diffusion along chain as a result of nonspecific interaction) 

2) Microhop (local translocation with free diffusion) 

3) Macrohop (...to distal segment via free diffusion) 

4) Intersegmental transfer at crossing—varies with DNA dynamics 

 

                                                 
2.  P. H. von Hippel and O. G. Berg, Facilitated target location in biological systems, J. Biol. Chem. 264 (2), 675–

678 (1989). 

3. A. D. Riggs, S. Bourgeois and M. Cohn, The lac represser-operator interaction, J. Mol. Biol. 53 (3), 401–417 
(1970); Y. M. Wang, R. H. Austin and E. C. Cox, Single molecule measurements of repressor protein 1D 
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Consider Coupled Sliding and Diffusion: The Steady‐State Solution 

The transcription factor diffuses in 1D along DNA with the objective of locating a specific 

binding site. The association of the protein and DNA at all points is governed by a nonspecific 

interaction. Sliding requires a balance of nonspecific attractive forces that are not too strong (or 

the protein will not move) or too weak (or it will not stay bound). The nonspecific interaction is 

governed by an equilibrium constant and exchange rates between the bound and free forms: 
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We can also think of this equilibrium constant in terms of the average times spent diffusing in 

1D or 3D. The protein stays bound for a period of time dictated by the dissociation rate kd. It can 

then diffuse in 3D until reaching a contact with DNA again, at a point which may be short range 

in distance but widely separated in sequence. 

 

The target for the transcription factor search can be much larger that the physical size of the 

binding sequence. Since the 1D sliding is the efficient route to finding the binding site, the target 

size is effectively covered by the mean 1D diffusion length of the protein, that is, the average 

distance over which the protein will diffuse in 1D before it dissociates. Since one can express the 

average time that a protein remains bound as 1D = 1
dk  , the target will have DNA contour length 

of 
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If the DNA is treated as an infinitely long cylinder with radius b, and the protein is considered to 

have a uniform probability of nonspecifically associating with the entire surface of the DNA, 

then one can solve for the steady-state solution for the diffusion equation, assuming a completely 

absorbing target. The rate constant for specific binding to the target has been determined as 
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where K  is the equilibrium constant for nonspecific binding per unit surface area of the cylinder 

(M–1 cm–2 or cm). We can express the equilibrium constant per base-pair as 2K bK   , where 

 is the length of a base pair along the contour of the DNA. The association rate will be given by 

the product of bindk and the concentration of protein.  
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Search Times in Facilitated Diffusion5 

Consider a series of repetitive 1D and 3D diffusion cycles. The search time for a protein to find 

its target is  
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where k is the number of cycles. If the genome has a length of M bases and the average number 

of bases scanned per cycle is n , the average number of cycles k̅ = M/n̅, and the average search 

time can be written as  

  1D 3Ds

M
t

n
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  is the mean search time during one cycle. If we assume that sliding occurs through normal 1D 

diffusion, then we expect that 1D 1Dn D  , where the diffusion constant is expressed in units of 

bp2/s. More accurately, it is found that if you executed a random walk with an exponentially 

weighted distribution of search times: 
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Let’s calculate the optimal search time, topt. In the limits that 1 or 3  0 , you just have pure 

1D or 3D diffusion, but this leads to suboptimal search times because a decrease in 1D  or 3D  

leads to an increase in the other. To find the minimum search time we solve: 
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and find that optt  corresponds to the condition 
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Using this in eq. (1) we have  
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5. M. Slutsky and L. A. Mirny, Kinetics of protein-DNA interaction: Facilitated target location in sequence-

dependent potential, Biophys. J. 87 (6), 4021–4035 (2004); A. Tafvizi, L. A. Mirny and A. M. van Oijen, 
Dancing on DNA: Kinetic aspects of search processes on DNA, Chemphyschem 12 (8), 1481–1489 (2011). 
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Now let’s find out how much this 1D + 3D search process speeds up over the pure 1D or 3D 

search.   

 3D only:  1D 0 1n     leading to 

t
3D
 M 

3D
 

Facilitated diffusion speeds up the search relative to pure 3D diffusion by a factor 

proportional to the average number of bases searched during the 1D sliding.  
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 Facilitated diffusion speeds up the search over pure 1D diffusion by a factor or M/n̅. 

Example: Bacterial Genome 

M  5 106  bp

n  200  500 bp  

 Optimal facilitated diffusion is ~102 faster than 3D 

  ~104 faster than 1D 

Energetics of Diffusion 

What determines the diffusion coefficient for sliding and 
 1

? We need the non-specific protein 

interaction to be strong enough that it doesn’t dissociate too rapidly, but also weak enough that it 

can slide rapidly. To analyze this, we use a model in which the protein is diffusing on a 

modulated energy landscape looking for a low energy binding site. 
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Model6 

 Assume each sequence can have different interaction with the protein.  

 Base pairs in binding patch contribute additively and independently to give a binding 

energy En for each site, n.  

 Assume that the variation in the binding energies as a function of site follow Gaussian 

random statistics, characterized by the average binding energy E  and the surface 

energy roughness  . 

 The protein will attempt to move to an adjacent site at a frequency ν = Δτ-1. The rate of 

jumping is the probability that the attempt is successful times ν, and depends on the 

energy difference between adjacent sites, ΔE=En±1‒En. The rate is ν if ΔE<0, and νexp[‒

ΔE/kBT] for ΔE>0. 

Calculating the mean first passage time to reach a target site at a distance of L base pairs from 

the original position yields 
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Which follows a diffusive form with a diffusion constant  

                                                 
6. M. Slutsky and L. A. Mirny, Kinetics of protein-DNA interaction: Facilitated target location in sequence-

dependent potential, Biophys. J. 87 (6), 4021–4035 (2004). 
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Using this to find conditions for the fastest search time:  
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Speed vs Stability Paradox  

Speed: Fast speed  fast search in 1D. From eq. (2), we see that  
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With this strong dependence on σ, effective sliding with proper n  requires  

  2kBT   

Stability: On the other hand, we need to remain stably bound for proper recognition and activity. 

To estimate we argue that we want the equilibrium probability of having the protein bound at the 

target site be eq 0.25P  .  If E0 is minimum energy of the binding site, and the probability of 

occupying the binding site is the following. First we can estimate that  

E0   2 log M    

which suggests that for adequate binding: 

  5kBT  

Proposed Two‐State Sliding Mechanism 

To account for these differences, a model has been proposed: 

 While 1D sliding, protein is constantly switching between two states, the search and 

recognize conformations: .  S binds loosely and allows fast diffusion, whereas R 

interacts more strongly such that σ increases in the R state.  

 These fast conformational transitions must have a rate faster than  


n

1D

~ 104 s1

  

 Other criteria:  
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Diffusion on rough energy landscape 

The observation in eq. (3), relating the roughness of an energy landscape to an effective diffusion 

rate is quite general.7  If we are diffusing over a distance long enough that the corrugation of the 

energy landscape looks like Gaussian random noise with a standard deviation σ, we expect the 

effective diffusion coefficient to scale as 
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where D0 is the diffusion constant in the absence of the energy roughness.  

Single‐Molecule Experiments 

To now there still is no definitive evidence for coupled 1D + 3D transport, although there is a lot 

of data now showing 1D sliding.  These studies used flow to stretch DNA and followed the 

position of fluorescently labelled proteins as they diffused along the DNA. 

Austin: Lac Repression follow up  observed D1D varies by many orders of magnitude.8 
2 5 2

1D :10 -10  nm /s

500nm
D

n
 

Blainey and Xie: hOGG1 DNA repair protein:9  

                                                 
7.  R. Zwanzig, Diffusion in a rough potential, Proc. Natl. Acad. Sci. U. S. A. 85 (7), 2029 (1988). 

8.  Y. M. Wang, R. H. Austin and E. C. Cox, Single molecule measurements of repressor protein 1D diffusion on 
DNA, Phys. Rev. Lett. 97 (4), 048302 (2006). 

Reprinted from M. Slutsky and L. A. Mirny, Kinetics of protein-DNA interaction: Facilitated target location in sequence-
dependent potential, Biophys. J. 87 (6), 4021–4035 (2004), with permission from Elsevier.  
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  D1D
�106 107  bp2 /s 101 100  m2 /s 

                                                                                                                                                             
9. P. C. Blainey, A. M. van Oijen, A. Banerjee, G. L. Verdine and X. S. Xie, A base-excision DNA-repair protein 

finds intrahelical lesion bases by fast sliding in contact with DNA, Proc. Natl. Acad. Sci. U. S. A. 103 (15), 
5752 (2006). 

Reprinted from A. Tafvizi, F. Huang, J. S. Leith, A. R. Fersht, L. A. Mirny and A. M. van Oijen, Tumor Suppressor p53 Slides
on DNA with Low Friction and High Stability, Biophys. J. 95 (1), L01–L03 (2008), with permission from Elsevier.  


